JP2008257951A - Light source for scanner - Google Patents

Light source for scanner Download PDF

Info

Publication number
JP2008257951A
JP2008257951A JP2007097480A JP2007097480A JP2008257951A JP 2008257951 A JP2008257951 A JP 2008257951A JP 2007097480 A JP2007097480 A JP 2007097480A JP 2007097480 A JP2007097480 A JP 2007097480A JP 2008257951 A JP2008257951 A JP 2008257951A
Authority
JP
Japan
Prior art keywords
light emitting
resistance
anode
organic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007097480A
Other languages
Japanese (ja)
Inventor
Hiroyasu Kawachi
浩康 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2007097480A priority Critical patent/JP2008257951A/en
Publication of JP2008257951A publication Critical patent/JP2008257951A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light source for a scanner capable of preventing change of luminance of a light-emitting part, even when the temperature of the light-emitting part changes, and capable of extending own lifetime. <P>SOLUTION: This light source 11 for a scanner is provided with the elongated light emitting part 17, having an organic EL layer 15 formed between a positive electrode 14 and a negative electrode 16; terminal parts 19 for the positive electrode electrically connected to an external drive circuit; terminal parts 20 for the negative electrode electrically connected to the negative electrode 16; and resistance parts 22, arranged in parts other than the light emitting part 17 and having a positive temperature coefficient. The resistance parts 22 are arranged throughout the total length in the longitudinal direction of the positive electrode 14. The light source for a scanner is also provided with a power feed part 18 electrically connected to all of the resistance parts 22, and supplying a current to the positive electrode 14 via the resistance parts 22. The organic EL layer 15 and the resistance parts 22 are structured, such that the sum of the voltage applied to the light-emitting part 17 and the voltage applied to the resistance part 22 is set to be a constant, regardless of the temperature variations of the light-emitting part 17 and the resistance parts 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スキャナ用光源に関する。   The present invention relates to a light source for a scanner.

有機EL素子は陽極と陰極との間に有機EL層が設けられることで構成されており、例えば、この有機EL素子を発光部として、原稿に対する照射光を出射するスキャナ用光源が考えられている。   An organic EL element is configured by providing an organic EL layer between an anode and a cathode. For example, a scanner light source that emits irradiation light on a document using the organic EL element as a light emitting unit is considered. .

また、複数の画素からなる自発光表示パネルにおいて、発光機能層が有する発光輝度特性と同傾向の温度抵抗特性を有する温度補償機能層が画素毎に設けられることで発光輝度の温度依存性を軽減するものが提案されている(例えば、特許文献1参照。)。特許文献1に記載された自発光表示パネルは、第一の電極と、第一の電極上に形成された少なくとも一層以上の発光機能層と、発光機能層上に形成された第二の電極とからなる自発光素子が画素毎に設けられることで構成されている。温度補償機能層は温度上昇に対して相対的に抵抗値が高くなる温度抵抗特性を有しているため、発光機能層が温度上昇するのに伴って温度補償機能層の温度も上昇し相対的に抵抗値が高くなる。そして、温度補償機能層は第一の電極と第二の電極間に印加する電圧供給路に対して直列に積層されているため、発光機能層の温度変化による電圧特性の変化は、温度補償機能層の抵抗変化で相殺され、輝度変化が抑えられる。
特開2006−269284号公報
In addition, in a self-luminous display panel composed of a plurality of pixels, a temperature compensation functional layer having a temperature resistance characteristic that has the same tendency as the light emission luminance characteristic of the light emission functional layer is provided for each pixel, thereby reducing the temperature dependence of the light emission luminance. Have been proposed (see, for example, Patent Document 1). The self-luminous display panel described in Patent Document 1 includes a first electrode, at least one or more light emitting functional layers formed on the first electrode, and a second electrode formed on the light emitting functional layer. The self-light-emitting element consisting of is provided for each pixel. Since the temperature compensation functional layer has a temperature resistance characteristic in which the resistance value is relatively increased with respect to the temperature rise, as the temperature of the light emitting functional layer rises, the temperature of the temperature compensation functional layer also rises. The resistance value increases. Since the temperature compensation function layer is laminated in series with the voltage supply path applied between the first electrode and the second electrode, the change in the voltage characteristic due to the temperature change of the light emitting function layer is the temperature compensation function. The change in brightness is offset by the resistance change of the layer, and the change in luminance is suppressed.
JP 2006-269284 A

有機EL素子は、周囲温度の熱影響等を受けて温度が変わると、順電圧が変化して輝度が変わる。そのため、有機EL素子をスキャナ用光源の発光部として用いた場合、周囲温度の変化に伴って発光部の輝度が変化することがある。発光部が細長形状であると周囲温度の熱影響によって発光部内で温度にばらつきが生じることがあり、この場合、発光部の部位毎に印加電圧に差が生じて温度の高い部位では輝度が高くなり温度の低い部位では輝度が小さくなるという特性がある。したがって、有機EL素子をスキャナ用光源の発光部とした場合、周囲温度の熱影響を受けることによって発光部の輝度分布が変化することもあった。   When the temperature of the organic EL element changes due to the influence of the ambient temperature or the like, the forward voltage changes and the luminance changes. Therefore, when the organic EL element is used as the light emitting part of the light source for the scanner, the luminance of the light emitting part may change with a change in ambient temperature. If the light emitting part has an elongated shape, the temperature in the light emitting part may vary due to the thermal effect of the ambient temperature. In this case, the applied voltage varies for each part of the light emitting part, and the brightness is high at the part where the temperature is high. Therefore, there is a characteristic that the luminance is low at a part where the temperature is low. Therefore, when the organic EL element is used as the light emitting part of the light source for the scanner, the luminance distribution of the light emitting part may change due to the thermal influence of the ambient temperature.

特許文献1に記載された自発光表示パネルは、複数の画素からなる表示パネルであり、EL素子からなる発光部は画素毎に設けられているため、スキャナ用光源に用いられる発光部とは面積が異なる。また、自発光表示パネルでは、スキャナ用光源として用いることで発光部の面積が大きくなった場合に起きる問題について何ら配慮されていない。   The self-luminous display panel described in Patent Document 1 is a display panel including a plurality of pixels, and a light-emitting unit including an EL element is provided for each pixel. Is different. In the self-luminous display panel, no consideration is given to a problem that occurs when the area of the light emitting portion is increased by using it as a light source for a scanner.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、周囲温度の熱影響を受けた場合でも発光部の輝度が変化することを抑制するとともに、寿命を延ばすことができるスキャナ用光源を提供することにある。   The present invention has been made in view of the above-described conventional problems, and its purpose is to suppress the change in luminance of the light emitting section even when it is affected by the thermal effect of the ambient temperature and to extend the lifetime. An object of the present invention is to provide a scanner light source.

請求項1に記載の発明は、陽極と陰極との間に有機EL層が設けられた細長形状の発光部と、外部からの電流が入力可能に構成された陽極用端子部と、前記陰極と電気的に接続された陰極用端子部と、前記陽極の長手方向の全長に亘って設けられると共に、前記発光部以外の部分に設けられ、温度係数が正である抵抗部と、前記陽極用端子部及び前記抵抗部全体と電気的に接続され、前記抵抗部を介し前記陽極に電流を供給する給電部とを備え、前記発光部に印加される電圧と前記抵抗部に印加される電圧との和が前記発光部及び前記抵抗部の温度変化に拘わらず一定となるように構成されていることを要旨とする。   The invention according to claim 1 is an elongated light emitting part in which an organic EL layer is provided between an anode and a cathode, an anode terminal part configured to allow an external current to be input, the cathode, An electrically connected cathode terminal portion, a resistor portion provided over the entire length in the longitudinal direction of the anode and provided in a portion other than the light emitting portion, and having a positive temperature coefficient, and the anode terminal And a power supply unit that is electrically connected to the whole and the resistor unit and supplies current to the anode through the resistor unit, and a voltage applied to the light emitting unit and a voltage applied to the resistor unit The gist of the invention is that the sum is constant regardless of the temperature change of the light emitting portion and the resistance portion.

なお、「陽極の長手方向の全長に亘って設けられ」とは、陽極の長手方向における全長に対して10割対応するように設けられていることに限らず、長手方向における目標の輝度分布に対して、輝度偏差が±5%以内になるような間隔で設けられていることを意味する。また、「発光部に印加される電圧と抵抗部に印加される電圧との和が発光部及び抵抗部の温度変化に拘わらず一定」とは、発光部に印加される電圧と抵抗部に印加される電圧との和の変動が±5%の範囲内であることを意味する。   Note that “provided over the entire length in the longitudinal direction of the anode” is not limited to being provided so as to correspond to 100% of the total length in the longitudinal direction of the anode, but in the target luminance distribution in the longitudinal direction. On the other hand, it means that the brightness deviation is provided at an interval that is within ± 5%. In addition, “the sum of the voltage applied to the light emitting portion and the voltage applied to the resistance portion is constant regardless of the temperature change of the light emitting portion and the resistance portion” means that the voltage applied to the light emitting portion and the resistance portion are applied. It means that the fluctuation of the sum with the applied voltage is within ± 5%.

この発明では、周囲温度の熱影響を受けて発光部及び抵抗部がともに温度変化して、発光部の順電圧が変化した場合でも、抵抗部に印加される電圧は発光部の順電圧の変化に応じて変化する。したがって、発光部及び抵抗部の温度変化に拘わらず発光部に印加される電圧と抵抗部に印加される電圧との和は一定であり発光部に流れる電流量は変化しないため、発光部の温度が変化しても発光部の輝度が変化することを抑制できる。   In the present invention, even when the light emitting part and the resistance part change in temperature under the influence of the ambient temperature, and the forward voltage of the light emitting part changes, the voltage applied to the resistance part is a change in the forward voltage of the light emitting part. It changes according to. Therefore, the sum of the voltage applied to the light emitting part and the voltage applied to the resistance part is constant and the amount of current flowing through the light emitting part does not change regardless of the temperature change of the light emitting part and the resistor part. Even if changes, it can suppress that the brightness | luminance of a light emission part changes.

また、発光部が細長形状であると発光部及び抵抗部の部位毎に温度差が生じる場合があり、そのために発光部に印加される電圧及び抵抗部に印加される電圧が部位毎に異なっても、発光部に印加される電圧と抵抗部に印加される電圧との和はどの部位においても一定になる。そのため、発光部に流れる電流量が発光部の部位によって異なることを抑制でき、周囲温度の熱影響を受けても発光部の輝度分布が変化することを抑制できる。   In addition, if the light emitting part has an elongated shape, a temperature difference may occur for each part of the light emitting part and the resistance part. For this reason, the voltage applied to the light emitting part and the voltage applied to the resistance part are different for each part. However, the sum of the voltage applied to the light emitting portion and the voltage applied to the resistance portion is constant at any part. Therefore, it can suppress that the electric current amount which flows into a light emission part changes with the site | parts of a light emission part, and can suppress that the luminance distribution of a light emission part changes even if it receives to the thermal influence of ambient temperature.

また、発光部の部分毎に温度差が生じた場合、従来品は、温度が高い部分の電流値が高くなり、その部分の輝度が高くなることにより、輝度劣化が他の部分と比較して早くなる。しかし、本発明では、発光部の部分的温度変化に対して、発光部に流れる電流値は変化しないため、スキャナ光源の寿命を延ばすことができる。   In addition, when there is a temperature difference for each part of the light emitting part, the current value of the part with high temperature becomes high and the brightness of that part becomes high, so the brightness deterioration is compared with other parts. Get faster. However, in the present invention, the value of the current flowing through the light emitting unit does not change with respect to the partial temperature change of the light emitting unit, so that the life of the scanner light source can be extended.

請求項2に記載の発明は、請求項1に記載の発明において、前記抵抗部は金属で形成されていることを要旨とする。
この発明では、抵抗部を金属で形成しても、温度による抵抗部の抵抗値の変化に対応して発光部の抵抗値が変化するEL材料を有機EL層に用いることで、発光部に印加される電圧と抵抗部に印加される電圧との和を一定にすることができる。
The invention according to claim 2 is summarized in that, in the invention according to claim 1, the resistance portion is made of metal.
In this invention, even if the resistance portion is made of metal, an EL material whose resistance value of the light emitting portion changes in response to a change in the resistance value of the resistance portion due to temperature is applied to the light emitting portion. The sum of the applied voltage and the voltage applied to the resistance portion can be made constant.

本発明によれば、周囲温度の熱影響を受けた場合でも発光部の輝度が変化することを抑制するとともに、寿命を延ばすことができる。   ADVANTAGE OF THE INVENTION According to this invention, even when it receives to the thermal influence of ambient temperature, while changing the brightness | luminance of a light emission part, a lifetime can be extended.

以下、本発明を具体化した一実施形態を図1〜図4に従って説明する。なお、図1(a),(b)は、有機EL素子の構成を模式的に示したものであり、図示の都合上、一部の寸法を誇張して分かり易くしているために、それぞれの部分の幅、長さ、厚さ等の寸法の比は実際の比と異なっている。   Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS. FIGS. 1A and 1B schematically show the structure of the organic EL element. For convenience of illustration, some dimensions are exaggerated for easy understanding. The ratio of dimensions such as the width, length, and thickness of the portion is different from the actual ratio.

図1(a)に示すように、スキャナ用光源11は、図示しない実装基板上に実装されるとともに帯状(細長形状)で、かつ平面視矩形状に形成された有機EL素子12で構成されている。図1(b)に示すように、有機EL素子12は、基板13上に陽極14、有機EL層15及び陰極16が順に積層されるとともに、有機EL層15からの光が基板13側から取り出される(出射される)所謂ボトムエミッションタイプに構成され、基板13と反対側の面が図示しない実装基板と対向する状態で図示しない実装基板に実装されている。   As shown in FIG. 1A, the scanner light source 11 is configured by an organic EL element 12 which is mounted on a mounting substrate (not shown) and has a strip shape (elongated shape) and a rectangular shape in plan view. Yes. As shown in FIG. 1B, in the organic EL element 12, an anode 14, an organic EL layer 15, and a cathode 16 are sequentially laminated on a substrate 13, and light from the organic EL layer 15 is extracted from the substrate 13 side. It is configured as a so-called bottom emission type that is mounted (emitted), and is mounted on a mounting board (not shown) in a state where the surface opposite to the board 13 faces a mounting board (not shown).

基板13には可視光透過性を有するものが使用され、例えば、ガラス基板が使用されている。陽極14は公知の透明な導電性材料(例えば、ITO(インジウム錫酸化物))で形成されるとともに有機EL層15より大きく形成されている。有機EL層15は、公知の有機EL材料を用いて形成され、有機EL素子12は単色発光を行うように構成されている。有機EL層15は公知のEL材料から構成されるとともに、温度が高くなるにつれ抵抗値が降下する特性を有し、一般的に負の温度係数となっている。陰極16は、公知の陰極材料、例えば、アルミニウムで形成されるとともに、反射性を有している。なお、陰極16と陽極14との間に有機EL層15が設けられた有機EL素子を発光部17としている。発光部17は、細長形状であるとともに、全長が少なくとも照射すべき領域(読み取り領域)以上の長さとなるように形成され、例えば、A4サイズの原稿を照射する場合には、全長がA4サイズの縦の長さ以上となるように形成されている。   As the substrate 13, a substrate having visible light transmittance is used, and for example, a glass substrate is used. The anode 14 is made of a known transparent conductive material (for example, ITO (indium tin oxide)) and is larger than the organic EL layer 15. The organic EL layer 15 is formed using a known organic EL material, and the organic EL element 12 is configured to emit monochromatic light. The organic EL layer 15 is made of a known EL material, and has a characteristic that the resistance value decreases as the temperature increases, and generally has a negative temperature coefficient. The cathode 16 is made of a known cathode material, such as aluminum, and has reflectivity. The organic EL element in which the organic EL layer 15 is provided between the cathode 16 and the anode 14 is used as the light emitting unit 17. The light emitting unit 17 has an elongated shape and is formed so that the total length is at least longer than the region to be irradiated (reading region). For example, when irradiating an A4 size document, the total length is A4 size. It is formed to be longer than the vertical length.

そして、図1(a)に示すように、陽極14の一方の長辺より外側には、陽極14の長辺に沿って延びる平面視長方形状の給電部18が設けられている。給電部18は一定の幅で陽極14と同一部材で形成されるとともに、後述する抵抗部22を介して陽極14に電流を供給するように構成されている。なお、「給電部18の幅」とは、有機EL素子12の短手方向の長さを意味する。給電部18には、その長手方向の両端に図示しない外部駆動回路と電気的に接続するための陽極用端子部19が設けられている。陽極用端子部19は陽極14及び給電部18と同一部材で形成され、かつ、給電部18と一体的に形成されている。   As shown in FIG. 1A, a power supply portion 18 having a rectangular shape in plan view extending along the long side of the anode 14 is provided outside the one long side of the anode 14. The power feeding unit 18 is formed of the same member as the anode 14 with a constant width, and is configured to supply current to the anode 14 via a resistance unit 22 described later. The “width of the power supply unit 18” means the length of the organic EL element 12 in the short direction. The power feeding portion 18 is provided with anode terminal portions 19 for electrical connection with an external drive circuit (not shown) at both ends in the longitudinal direction. The anode terminal portion 19 is formed of the same member as the anode 14 and the power feeding portion 18 and is formed integrally with the power feeding portion 18.

また、陰極16の長手方向の両端に位置する辺の外側には、それぞれ陰極用端子部20が形成されている。陰極用端子部20は、陽極14及び陽極用端子部19と同一材料で形成され、図1(a)及び(b)に示すように、陰極16の一部が外側に延出した陰極延出部16aと接続されている。   Further, cathode terminal portions 20 are formed on the outer sides of the sides located at both ends of the cathode 16 in the longitudinal direction. The cathode terminal portion 20 is formed of the same material as the anode 14 and the anode terminal portion 19, and as shown in FIGS. 1A and 1B, a cathode extension in which a part of the cathode 16 extends outward. It is connected to the part 16a.

図1(a)に示すように、陽極用端子部19及び陰極用端子部20は、基板13の長手方向の端部(図1(a)における左側端部又は右側端部)側において長手方向と直交する方向に並ぶように配置されている。   As shown in FIG. 1A, the anode terminal portion 19 and the cathode terminal portion 20 are longitudinal in the longitudinal end portion (the left end portion or the right end portion in FIG. 1A) of the substrate 13. Are arranged in a direction orthogonal to the direction.

また、有機EL層15より外側となる領域には、陽極用端子部19の一部分上及び給電部18上に連続して延び、なおかつ、給電部18上では陽極14の長辺に沿って延びる補助電極21が設けられている。補助電極21は、一定の幅で給電部18より狭くなるように形成されるとともに、陽極14より体積抵抗率が低く陰極16と同じ材料で形成されている。   Further, in the region outside the organic EL layer 15, it extends continuously on a part of the anode terminal portion 19 and on the power feeding portion 18, and on the power feeding portion 18, it extends along the long side of the anode 14. An electrode 21 is provided. The auxiliary electrode 21 is formed so as to be narrower than the power supply unit 18 with a constant width, and has a volume resistivity lower than that of the anode 14 and is formed of the same material as the cathode 16.

そして、給電部18と陽極14との間には、給電部18を陽極14に電気的に接続する複数の抵抗部22が陽極14の長手方向の全長に亘って設けられると共に、発光部17以外の部分に設けられている。複数の抵抗部22は陽極14の長手方向に沿って並列された状態で全て陽極14及び給電部18と同一平面上に形成される。複数の抵抗部22は全て陽極14の長辺及び給電部18の長辺に接続されている。各抵抗部22の抵抗値は、発光部17における長手方向の輝度分布が所定の輝度分布になるように、幅および部位毎に調整されている。また、隣り合う抵抗部22間の距離は一定になっている。抵抗部22は給電部18及び陽極14の材料とは異なる材料で、かつ温度係数が正である材料によって構成され、この実施形態では大東通信機社製のポリセーフティ(登録商標)によって構成されている。ここで、抵抗部22を構成するポリセーフティとは、絶縁物である結晶性ポリマーと導電性を持つカーボンとを混練することで形成されている。抵抗部22の温度係数は、正であり、その絶対値が発光部17の温度係数の絶対値とほぼ等しい。ここで、「抵抗部22の温度係数は、その絶対値が発光部17の温度係数の絶対値とほぼ等しい」とは、抵抗部22の温度係数の絶対値と発光部17の温度係数の絶対値との誤差範囲が一割以内であることを意味する。   Between the power supply unit 18 and the anode 14, a plurality of resistance units 22 that electrically connect the power supply unit 18 to the anode 14 are provided over the entire length in the longitudinal direction of the anode 14, and other than the light emitting unit 17. It is provided in the part. The plurality of resistance portions 22 are all formed on the same plane as the anode 14 and the power feeding portion 18 in a state of being arranged in parallel along the longitudinal direction of the anode 14. The plurality of resistance portions 22 are all connected to the long side of the anode 14 and the long side of the power feeding portion 18. The resistance value of each resistance unit 22 is adjusted for each width and part so that the luminance distribution in the longitudinal direction of the light emitting unit 17 becomes a predetermined luminance distribution. Moreover, the distance between the adjacent resistance parts 22 is constant. The resistance portion 22 is made of a material different from the material of the power feeding portion 18 and the anode 14 and has a positive temperature coefficient. In this embodiment, the resistance portion 22 is made of polysafety (registered trademark) manufactured by Daito Tsushinki Co., Ltd. Yes. Here, the polysafety constituting the resistance portion 22 is formed by kneading a crystalline polymer that is an insulator and conductive carbon. The temperature coefficient of the resistance unit 22 is positive, and the absolute value thereof is substantially equal to the absolute value of the temperature coefficient of the light emitting unit 17. Here, “the absolute value of the temperature coefficient of the resistance portion 22 is substantially equal to the absolute value of the temperature coefficient of the light emitting portion 17” means that the absolute value of the temperature coefficient of the resistance portion 22 and the absolute temperature coefficient of the light emitting portion 17 are absolute. This means that the error range from the value is within 10%.

なお、有機EL層15が水分(水蒸気)及び酸素の悪影響を受けないように、陽極14、有機EL層15、陰極16、陰極延出部16a、給電部18、抵抗部22及び補助電極21は図示しない保護膜で被覆されている。図示しない保護膜は公知のパッシベーション膜、例えば、窒化ケイ素等のセラミック膜で構成されている。   In order to prevent the organic EL layer 15 from being adversely affected by moisture (water vapor) and oxygen, the anode 14, the organic EL layer 15, the cathode 16, the cathode extension portion 16a, the power feeding portion 18, the resistance portion 22, and the auxiliary electrode 21 are It is covered with a protective film (not shown). The protective film (not shown) is a known passivation film, for example, a ceramic film such as silicon nitride.

次に、有機EL素子12の電気的構成について説明する。
図2は、有機EL素子12の電気的構成を表した等価回路図であり、陽極14と陰極16との間に有機EL層15が設けられることで構成された発光部17の抵抗をダイオードの回路図記号で示す。
Next, the electrical configuration of the organic EL element 12 will be described.
FIG. 2 is an equivalent circuit diagram showing an electrical configuration of the organic EL element 12, and the resistance of the light emitting unit 17 configured by providing the organic EL layer 15 between the anode 14 and the cathode 16 is changed to that of the diode. Shown with circuit diagram symbols.

有機EL素子12において、陽極用端子部19と陰極用端子部20との間は抵抗部22と発光部17とによって電気的に接続され、抵抗部22と発光部17とは直列接続されている。   In the organic EL element 12, the anode terminal portion 19 and the cathode terminal portion 20 are electrically connected by the resistor portion 22 and the light emitting portion 17, and the resistor portion 22 and the light emitting portion 17 are connected in series. .

発光部17の順電圧は発光部17の抵抗値と発光部17に流れる電流値との積によって決定され、発光部17は温度が高くなるにつれて順電圧が降下する周囲温度‐順電圧特性を有する。発光部17は、例えば、周囲温度が20℃で80[mA]の電流が流れる場合、発光部17の順電圧は5.4[V]となり、周囲温度が60℃で80[mA]の電流が流れる場合、発光部17の順電圧は4.9[V]となる。そして、流れる電流値が一定の時に温度が高くなるにつれて発光部17の順電圧が降下するという発光部17の周囲温度―順電圧特性を言い換えれば、温度が高くなるにつれ抵抗値が下がるという特性(負の温度係数)を発光部17が有するということである。そして、発光部17の周囲温度‐順電圧特性を温度係数に換算した場合、その温度係数は約−12.5×10E−3[1/℃]となる。   The forward voltage of the light emitting unit 17 is determined by the product of the resistance value of the light emitting unit 17 and the current value flowing through the light emitting unit 17, and the light emitting unit 17 has an ambient temperature-forward voltage characteristic in which the forward voltage drops as the temperature increases. . For example, when a current of 80 [mA] flows at an ambient temperature of 20 ° C., the light emitting unit 17 has a forward voltage of 5.4 [V] and a current of 80 [mA] at an ambient temperature of 60 ° C. When the current flows, the forward voltage of the light emitting unit 17 is 4.9 [V]. Further, in other words, the ambient temperature-forward voltage characteristic of the light emitting unit 17 in which the forward voltage of the light emitting unit 17 decreases as the temperature increases when the flowing current value is constant, in other words, the characteristic that the resistance value decreases as the temperature increases ( That is, the light emitting unit 17 has a negative temperature coefficient. When the ambient temperature-forward voltage characteristic of the light emitting unit 17 is converted into a temperature coefficient, the temperature coefficient is about −12.5 × 10E−3 [1 / ° C.].

これに対して、抵抗部22は温度が高くなるにつれ抵抗値が上がる特性(正の温度係数)を有し、温度係数が約+12.5×10E−3[1/℃]の抵抗体が選定されている。 そして、陽極用端子部19と陰極用端子部20との間に電圧が印加されると、電流は給電部18から抵抗部22及び発光部17を通って陰極用端子部20に流入し、陰極用端子部20から外部へ出力される。この時、抵抗部22及び発光部17に電流が流れると、抵抗部22には電圧Vrが印加され、発光部17には電圧Vdiが印加される。   On the other hand, the resistor 22 has a characteristic (positive temperature coefficient) in which the resistance value increases as the temperature increases, and a resistor having a temperature coefficient of about + 12.5 × 10E-3 [1 / ° C.] is selected. Has been. When a voltage is applied between the anode terminal unit 19 and the cathode terminal unit 20, the current flows from the power supply unit 18 through the resistance unit 22 and the light emitting unit 17 into the cathode terminal unit 20, and the cathode Is output from the terminal section 20 to the outside. At this time, when a current flows through the resistance unit 22 and the light emitting unit 17, the voltage Vr is applied to the resistance unit 22, and the voltage Vdi is applied to the light emitting unit 17.

次に前記のように構成されたスキャナ用光源11をスキャナの照明装置に搭載した場合の作用を説明する。
図3に示すように、スキャナ23は、原稿等が載置されるガラス板24と、ガラス板24の下方に設けられた照明装置25と、照明装置25から照射されて、ガラス板24上に載せられた原稿Pで反射した光を受光するセンサ装置26とを備えている。センサ装置26にはCCD等の光電変換素子を駆動制御するための図示しない制御回路が搭載されている。スキャナ用光源11は照明装置25に組み込まれて使用され、スキャナ23が動作する時、発光部17に電圧Vrが印加されて発光することでスキャナ用光源11は照射光を出射する。
Next, an operation when the scanner light source 11 configured as described above is mounted on a scanner illumination device will be described.
As shown in FIG. 3, the scanner 23 includes a glass plate 24 on which a document or the like is placed, an illumination device 25 provided below the glass plate 24, and an illumination device 25 that emits light on the glass plate 24. And a sensor device 26 that receives light reflected by the placed document P. The sensor device 26 is equipped with a control circuit (not shown) for driving and controlling a photoelectric conversion element such as a CCD. The scanner light source 11 is used by being incorporated in the illumination device 25. When the scanner 23 operates, the voltage Vr is applied to the light emitting unit 17 to emit light, whereby the scanner light source 11 emits irradiation light.

ここで、スキャナ23の周囲温度は常に一定でなく変化することがあり、このような場合、スキャナ用光源11全体の温度も変化するためそれに伴って発光部17及び抵抗部22も温度変化する。発光部17が温度変化すると発光部17の抵抗値が変化することになるため、図4に示すように、発光部17及び抵抗部22の温度変化に伴って、発光部17に印加される電圧Vdi及び抵抗部22に印加される電圧Vrは変化する。したがって、スキャナ用光源11の温度変化に拘わらず、発光部17に印加される電圧Vdiと抵抗部22に印加される電圧Vrとの和Vdi+Vrは一定である。そして、発光部17に流れる電流量は変化しないためスキャナ用光源11の温度が変化しても発光部17の輝度が変化することは抑制される。なお、「発光部17に印加される電圧Vdiと抵抗部に印加される電圧Vrとの和Vdi+Vrが発光部17及び抵抗部22の温度変化に拘わらず一定」とは、発光部17に印加される電圧Vdiと抵抗部22に印加される電圧Vrとの和Vdi+Vrの変動が±5%の範囲内であることを意味する。   Here, the ambient temperature of the scanner 23 is not always constant and may change. In such a case, the temperature of the entire scanner light source 11 also changes, and accordingly, the temperature of the light emitting unit 17 and the resistance unit 22 also changes. Since the resistance value of the light emitting unit 17 changes when the temperature of the light emitting unit 17 changes, the voltage applied to the light emitting unit 17 with the temperature change of the light emitting unit 17 and the resistance unit 22 as shown in FIG. Vdi and the voltage Vr applied to the resistance portion 22 change. Therefore, the sum Vdi + Vr of the voltage Vdi applied to the light emitting portion 17 and the voltage Vr applied to the resistance portion 22 is constant regardless of the temperature change of the scanner light source 11. Since the amount of current flowing through the light emitting unit 17 does not change, the luminance of the light emitting unit 17 is suppressed from changing even if the temperature of the scanner light source 11 changes. Note that “the sum Vdi + Vr of the voltage Vdi applied to the light emitting unit 17 and the voltage Vr applied to the resistor unit is constant regardless of temperature changes of the light emitting unit 17 and the resistor unit 22” is applied to the light emitting unit 17. This means that the variation of the sum Vdi + Vr of the voltage Vdi and the voltage Vr applied to the resistor 22 is within a range of ± 5%.

また、周囲温度が高くなることでスキャナ用光源11の温度が高くなった場合に、例えばアルミニウムのような金属からなる抵抗部に電流を流して陽極14に電流を供給するスキャナ用光源に比べて温度変化に伴う部分的電流集中が生じにくい。したがって、周囲温度の熱影響を受けて発光部17が早期に劣化するという事態が生じることを回避でき、スキャナ用光源11の寿命を延ばすことができる。   Further, when the temperature of the scanner light source 11 is increased due to an increase in the ambient temperature, the current is supplied to the anode 14 by supplying a current to a resistance portion made of a metal such as aluminum, for example. Partial current concentration is unlikely to occur due to temperature changes. Therefore, it is possible to avoid a situation in which the light emitting unit 17 deteriorates early due to the thermal influence of the ambient temperature, and the life of the scanner light source 11 can be extended.

また、スキャナ23が長時間動作した場合に、スキャナ用光源11の発光部17の中心部分に配置された制御回路(図示しない。)が発熱することでその熱影響がスキャナ用光源11に与えられ、発光部17の中心部分の温度T1が最も高くなり、端子側に近づくにつれて温度T2〜T5が低くなるような温度分布になった。この時、図4に示すように、発光部17の中心部分から端子側端部へ順に発光部17の各部位に印加される電圧Vdi1〜Vdi5は、発光部17の端子側端部から遠くなるにつれて小さくなり、その分、発光部17の中心部分から端子側端部へ順に抵抗部22の各部位に印加される電圧Vr1〜Vr5は端子側から遠くなるにつれて大きくなる。そして、抵抗部22に印加される電圧Vrと有機EL素子12に印加される電圧Vdiとの和Vdi+Vrは、給電部18と陰極用端子部20との間におけるどの部位においても一定となり、発光部17の各部位に流れる電流値は同じになる。したがって、周囲温度の熱影響に起因してスキャナ用光源11の部分毎に温度にばらつきが生じても、発光部17の輝度分布が変化することは抑制される。   Further, when the scanner 23 is operated for a long time, a control circuit (not shown) arranged in the central portion of the light emitting unit 17 of the scanner light source 11 generates heat, and the thermal effect is given to the scanner light source 11. The temperature distribution was such that the temperature T1 at the central portion of the light emitting portion 17 was the highest, and the temperatures T2 to T5 were lowered as approaching the terminal side. At this time, as shown in FIG. 4, the voltages Vdi <b> 1 to Vdi <b> 5 applied to each part of the light emitting unit 17 in order from the central part of the light emitting unit 17 to the terminal side end are far from the terminal side end of the light emitting unit 17. Accordingly, the voltages Vr1 to Vr5 applied to the respective portions of the resistor portion 22 in order from the central portion of the light emitting portion 17 to the terminal side end portion increase as the distance from the terminal side increases. The sum Vdi + Vr of the voltage Vr applied to the resistance unit 22 and the voltage Vdi applied to the organic EL element 12 is constant in any part between the power supply unit 18 and the cathode terminal unit 20, and the light emitting unit The value of the current flowing through each part 17 is the same. Therefore, even if the temperature varies for each portion of the scanner light source 11 due to the thermal effect of the ambient temperature, the change in the luminance distribution of the light emitting unit 17 is suppressed.

この実施形態によれば、以下の効果を得ることができる。
(1)有機EL層15及び抵抗部22は、発光部17に印加される電圧Vdiと抵抗部22に印加される電圧Vrとの和Vdi+Vrが発光部17及び抵抗部22の温度変化に拘わらず一定となるように構成されている。したがって、スキャナ用光源11の温度が変化した場合でも発光部17の輝度分布が変化することを抑制できる。
According to this embodiment, the following effects can be obtained.
(1) The organic EL layer 15 and the resistance unit 22 have a sum Vdi + Vr of the voltage Vdi applied to the light emitting unit 17 and the voltage Vr applied to the resistance unit 22 regardless of temperature changes of the light emitting unit 17 and the resistance unit 22. It is configured to be constant. Therefore, even when the temperature of the light source 11 for scanner changes, it can suppress that the luminance distribution of the light emission part 17 changes.

(2)スキャナ用光源11の温度が部分的に高くなっても、発光部17の対応する部分に流れる電流量は、従来のスキャナ用光源に比べて少ないため、発光部17が早期に劣化するという事態が生じることを回避でき、スキャナ用光源11の寿命を延ばすことができる。   (2) Even if the temperature of the light source 11 for the scanner partially increases, the amount of current flowing through the corresponding portion of the light emitting unit 17 is smaller than that of the conventional light source for the scanner, so the light emitting unit 17 deteriorates early. It is possible to avoid the occurrence of such a situation, and the life of the scanner light source 11 can be extended.

(3)周囲温度の熱影響によってスキャナ用光源11の部分毎に温度にばらつきが生じても、発光部17の各部位における電圧と抵抗部22の各部位における電圧との和は一定であるため、発光部17の輝度分布が変化することを抑制できる。   (3) Even if the temperature varies for each portion of the scanner light source 11 due to the thermal effect of the ambient temperature, the sum of the voltage at each portion of the light emitting portion 17 and the voltage at each portion of the resistance portion 22 is constant. The luminance distribution of the light emitting unit 17 can be prevented from changing.

(4)複数の抵抗部22は陽極14の長手方向の全長に亘って設けられ、複数の抵抗部22全てと電気的に接続される給電部18が設けられることで全ての抵抗部22に対して電流が供給される。そして、例えば、一つの画素より面積の大きな細長形状の発光部17を備えたスキャナ用光源11であって、スキャナ用光源11の部分毎に温度にばらつきが生じても、抵抗部22の一箇所から電流が供給される場合に比べて各抵抗部22に供給される電流量を同じすることができる。したがって、発光部17が細長形状に形成されたスキャナ用光源であって、そのスキャナ用光源11が周囲温度の熱影響を受けても発光部17の輝度分布が変化することを抑制できる。   (4) The plurality of resistance portions 22 are provided over the entire length in the longitudinal direction of the anode 14, and the power supply portions 18 that are electrically connected to all of the plurality of resistance portions 22 are provided. Current is supplied. For example, the scanner light source 11 includes the elongated light-emitting unit 17 having a larger area than one pixel, and even if the temperature of each portion of the scanner light source 11 varies, one position of the resistor unit 22 The amount of current supplied to each resistance unit 22 can be made the same as compared with the case where current is supplied from. Therefore, the light source 17 is a scanner light source formed in an elongated shape, and the luminance distribution of the light emitter 17 can be prevented from changing even if the scanner light source 11 is affected by the influence of the ambient temperature.

(5)抵抗部22は、温度係数が、負であり、温度係数の絶対値が発光部17の温度係数の絶対値とほぼ等しい材料から構成され、発光部17の間に印加される電圧Vdiと抵抗部22に印加される電圧Vrとの和は一定になっている。したがって、有機EL層15に用いる材料が公知のEL材料であっても、発光部17及び抵抗部22の温度変化に拘わらず発光部17の輝度分布の変化を抑制することができる。   (5) The resistance unit 22 is made of a material having a negative temperature coefficient, an absolute value of the temperature coefficient being substantially equal to the absolute value of the temperature coefficient of the light emitting unit 17, and a voltage Vdi applied between the light emitting units 17. And the voltage Vr applied to the resistor 22 is constant. Therefore, even if the material used for the organic EL layer 15 is a known EL material, the change in the luminance distribution of the light emitting unit 17 can be suppressed regardless of the temperature change of the light emitting unit 17 and the resistance unit 22.

実施形態は前記に限定されるものではなく、例えば次のように構成してもよい。
○ 抵抗部22は少なくとも陽極14の長手方向において、長手方向の狙いの輝度分布に対して、輝度偏差が±5%以内になるような間隔で設けられていればよく、複数の抵抗部22を設ける代わりに、例えば、陽極14の長辺に沿って連続して延びるとともに陽極14の長辺全体に接続される抵抗部を設けてもよい。
The embodiment is not limited to the above, and may be configured as follows, for example.
The resistance portions 22 may be provided at intervals at which the luminance deviation is within ± 5% with respect to the target luminance distribution in the longitudinal direction at least in the longitudinal direction of the anode 14. Instead of providing, for example, a resistance portion that extends continuously along the long side of the anode 14 and is connected to the entire long side of the anode 14 may be provided.

○ 正の温度係数を有する材料であれば、抵抗部22を構成する材料を変更してもよい。有機EL層15が公知のEL材料から構成される場合には、発光部17の温度係数とは絶対値が同じで、負の温度係数からなる材料で抵抗部22を構成すればよく、例えば、マレイン酸変性ポリエチレン、ポリプロピレン等にチタンカーバイドを分散させた高分子複合材料から抵抗部22を構成してもよい。また、例えば、抵抗部22をアルミニウム、金、銀、銅、クロム等の金属で形成してもよい。ただし、この場合、温度変化に伴う抵抗部22の抵抗値の変化を無効にすることができるように、抵抗部22を構成する材料の温度係数と絶対値が同じで、かつ負の温度係数であるEL材料から有機EL層を構成する必要がある。   O As long as the material has a positive temperature coefficient, the material constituting the resistance portion 22 may be changed. When the organic EL layer 15 is made of a known EL material, the temperature coefficient of the light emitting part 17 has the same absolute value, and the resistor part 22 may be made of a material having a negative temperature coefficient. The resistance portion 22 may be made of a polymer composite material in which titanium carbide is dispersed in maleic acid-modified polyethylene, polypropylene, or the like. For example, the resistance portion 22 may be formed of a metal such as aluminum, gold, silver, copper, or chromium. However, in this case, the temperature coefficient of the material constituting the resistance unit 22 is the same as the absolute value and a negative temperature coefficient so that the change in the resistance value of the resistance unit 22 due to the temperature change can be invalidated. It is necessary to form an organic EL layer from a certain EL material.

○ 抵抗部22は、異なった温度係数を持つ材料を直列接続してもよい。この場合、一
方の材料は、温度係数の絶対値が小さい材料で構成し、他方の材料は、負の温度係数を有する構成にしてもよい。
The resistor 22 may be connected in series with materials having different temperature coefficients. In this case, one material may be made of a material having a small absolute value of the temperature coefficient, and the other material may be made to have a negative temperature coefficient.

○ 抵抗部22を構成する部材については限定されない。例えば、抵抗部22を膜から構成してもよいし、実装用のリードを備える部材から構成してもよい。
○ 抵抗部として外付け抵抗を用いてもよい。この場合、例えば、基板13上に、陽極14、有機EL層15、陰極16が順に積層された発光部17を作製するとともに陽極14の長辺に接続される接続端子部を成膜する。なお、この時、陽極14を成膜する際には発光部17とは別に基板13上に給電部18を同時に成膜し、陰極16を成膜する際には同時に補助電極21を給電部18上に成膜する。そして、その後、給電部18と外付け抵抗の端子との間及び接続端子部と外付け抵抗の端子との間にACF(異方性導電フィルム)を介在させて、給電部18と陽極14とを外付け抵抗を介して電気的に接続させる。なお、この時、外付け抵抗は陽極14の長手方向の全長に亘るように複数設けられる。
○ The members constituting the resistance portion 22 are not limited. For example, the resistance portion 22 may be formed of a film or a member including a mounting lead.
○ An external resistor may be used as the resistor. In this case, for example, on the substrate 13, the light emitting portion 17 in which the anode 14, the organic EL layer 15, and the cathode 16 are sequentially laminated is manufactured, and a connection terminal portion connected to the long side of the anode 14 is formed. At this time, when forming the anode 14, the power supply unit 18 is simultaneously formed on the substrate 13 separately from the light emitting unit 17, and when the cathode 16 is formed, the auxiliary electrode 21 is simultaneously formed with the power supply unit 18. A film is formed on top. Thereafter, an ACF (anisotropic conductive film) is interposed between the power supply unit 18 and the external resistor terminal, and between the connection terminal unit and the external resistor terminal. Are electrically connected through an external resistor. At this time, a plurality of external resistors are provided so as to extend over the entire length of the anode 14 in the longitudinal direction.

○ 図5に示すように、プリント回路基板27上に発光部17及び抵抗部としての外付け抵抗28を実装してもよい。この場合、プリント回路基板27上に発光部17を実装し、その後、外付け抵抗28の入力側端子を給電部としての第1配線パターン29に接続し、外付け抵抗28の出力側端子を発光部17付近に位置する第2配線パターン30に接続する。そして、このように接続される外付け抵抗28を陽極14の長手方向(図5における紙面と垂直な方向)の全長に亘るように複数設け、フレキシブルプリント基板(FPC)31を介して第2配線パターン30を陽極14の長辺に接続される接続端子部32に接続することで、電流は第1配線パターン29から外付け抵抗28を流れ陽極14に供給されるようになる。   As shown in FIG. 5, the light emitting unit 17 and an external resistor 28 as a resistor unit may be mounted on the printed circuit board 27. In this case, the light emitting unit 17 is mounted on the printed circuit board 27, and thereafter, the input side terminal of the external resistor 28 is connected to the first wiring pattern 29 as a power feeding unit, and the output side terminal of the external resistor 28 emits light. Connected to the second wiring pattern 30 located near the portion 17. A plurality of external resistors 28 connected in this way are provided so as to extend over the entire length of the anode 14 in the longitudinal direction (the direction perpendicular to the paper surface in FIG. 5), and the second wiring is provided via a flexible printed circuit board (FPC) 31. By connecting the pattern 30 to the connection terminal portion 32 connected to the long side of the anode 14, current flows from the first wiring pattern 29 through the external resistor 28 and is supplied to the anode 14.

○ 有機EL素子12は、長手方向の両端部に陽極用端子部19及び陰極用端子部20が形成された構成に限らない。例えば、陰極用端子部20のいずれか一方を省略して、陽極用端子部19のみ有機EL素子12の両端部に形成してもよい。また、陽極用端子部19及び陰極用端子部20のそれぞれ一方を省略して、有機EL素子12の片側のみに陽極用端子部19及び陰極用端子部20を設けてもよい。   The organic EL element 12 is not limited to the configuration in which the anode terminal portion 19 and the cathode terminal portion 20 are formed at both ends in the longitudinal direction. For example, either one of the cathode terminal portions 20 may be omitted, and only the anode terminal portion 19 may be formed at both ends of the organic EL element 12. Alternatively, each of the anode terminal portion 19 and the cathode terminal portion 20 may be omitted, and the anode terminal portion 19 and the cathode terminal portion 20 may be provided only on one side of the organic EL element 12.

○ スキャナ用光源11が備える有機EL素子12の数については特に限定されない。例えば、実装基板に複数の有機EL素子を実装することでスキャナ用光源を構成してもよい。そして、複数の有機EL素子からスキャナ用光源を構成する場合、複数の有機EL素子を直列接続してもよい。例えば、二つの有機EL素子を直列接続する場合には、一方の有機EL素子の陽極用端子を外部駆動回路と接続するとともに陰極用端子部を他方の有機EL素子の陽極用端子部に接続し、他方の有機EL素子の陰極用端子部を外部駆動回路に接続すれば、二つの有機EL素子を直列接続することができる。   The number of organic EL elements 12 included in the scanner light source 11 is not particularly limited. For example, the scanner light source may be configured by mounting a plurality of organic EL elements on a mounting substrate. And when comprising the light source for scanners from a some organic EL element, you may connect a some organic EL element in series. For example, when two organic EL elements are connected in series, the anode terminal of one organic EL element is connected to an external drive circuit, and the cathode terminal is connected to the anode terminal of the other organic EL element. If the cathode terminal of the other organic EL element is connected to an external drive circuit, the two organic EL elements can be connected in series.

○ 有機EL素子12は、ボトムエミッションタイプに限らず、有機EL層15からの発光を基板13と反対側から出射するトップエミッションタイプにしてもよい。この場合、有機EL素子12は、陰極16が透明電極で構成され、陽極14は透明電極で構成されても不透明な電極で構成されてもよい。また、基板13は透明基板に限らず、不透明な基板であってもよい。   The organic EL element 12 is not limited to the bottom emission type, but may be a top emission type that emits light emitted from the organic EL layer 15 from the side opposite to the substrate 13. In this case, in the organic EL element 12, the cathode 16 may be formed of a transparent electrode, and the anode 14 may be formed of a transparent electrode or an opaque electrode. The substrate 13 is not limited to a transparent substrate, and may be an opaque substrate.

○ 有機EL素子12を実装基板上に実装しなくともよく、スキャナ用光源11を有機EL素子12だけから構成して照明装置25に搭載してもよい。
○ 有機EL層15は赤や青や緑の単色発光を行う構成に限らず、例えば、赤や青や緑や黄色等の単色光を組み合わせで白色発光する構成に変更してもよい。
The organic EL element 12 may not be mounted on the mounting substrate, and the scanner light source 11 may be configured by only the organic EL element 12 and mounted on the illumination device 25.
The organic EL layer 15 is not limited to a configuration that emits monochromatic light of red, blue, or green, but may be changed to a configuration that emits white light by combining monochromatic light such as red, blue, green, or yellow.

○ 有機EL素子12を構成する陽極14、有機EL層15及び陰極16の材料は前記のものに限らず、公知の有機EL素子で使用されている他の材料等を用いてもよい。   The materials of the anode 14, the organic EL layer 15 and the cathode 16 constituting the organic EL element 12 are not limited to those described above, and other materials used in known organic EL elements may be used.

(a)は本実施形態の平面図、(b)は(a)のA−A線部分側断面図。(A) is a top view of this embodiment, (b) is the AA line partial side sectional view of (a). 有機EL素子の電気的構成図。The electrical block diagram of an organic EL element. スキャナの部分模式図。The partial schematic diagram of a scanner. 発光部に印加される電圧及び抵抗部に印加される電圧と温度との関係を説明する説明図。Explanatory drawing explaining the relationship between the voltage applied to a light emission part, the voltage applied to a resistance part, and temperature. 別の実施形態におけるスキャナ用光源の側断面図。The sectional side view of the light source for scanners in another embodiment.

符号の説明Explanation of symbols

Vdi…発光部に印加される電圧、Vr…抵抗部に印加される電圧、11…スキャナ用光源、12…有機EL素子、14…陽極、15…有機EL層、16…陰極、17…発光部、18…給電部、19…陽極用端子部、20…陰極用端子部、22…抵抗部、28…抵抗部としての外付け抵抗、29…給電部としての第1配線パターン。   Vdi: voltage applied to the light emitting unit, Vr: voltage applied to the resistor unit, 11: light source for scanner, 12 ... organic EL element, 14 ... anode, 15 ... organic EL layer, 16 ... cathode, 17 ... light emitting unit , 18... Power supply section, 19... Anode terminal section, 20... Cathode terminal section, 22... Resistance section, 28... External resistor as resistance section, 29.

Claims (2)

陽極と陰極との間に有機EL層が設けられた細長形状の発光部と、
外部からの電流が入力可能に構成された陽極用端子部と、
前記陰極と電気的に接続された陰極用端子部と、
前記陽極の長手方向の全長に亘って設けられると共に、前記発光部以外の部分に設けられ、温度係数が正である抵抗部と、
前記陽極用端子部及び前記抵抗部全体と電気的に接続され、前記抵抗部を介し前記陽極に電流を供給する給電部とを備え、
前記発光部に印加される電圧と前記抵抗部に印加される電圧との和が前記発光部及び前記抵抗部の温度変化に拘わらず一定となるように構成されているスキャナ用光源。
An elongated light emitting part in which an organic EL layer is provided between an anode and a cathode;
An anode terminal portion configured to allow input of an external current; and
A cathode terminal electrically connected to the cathode;
A resistance portion that is provided over the entire length of the anode in the longitudinal direction, is provided in a portion other than the light emitting portion, and has a positive temperature coefficient;
A power supply section that is electrically connected to the anode terminal section and the entire resistance section and supplies current to the anode through the resistance section;
A scanner light source configured such that a sum of a voltage applied to the light emitting unit and a voltage applied to the resistor unit is constant regardless of a temperature change of the light emitting unit and the resistor unit.
前記抵抗部は金属で形成されている請求項1に記載されたスキャナ用光源。 The scanner light source according to claim 1, wherein the resistance portion is made of metal.
JP2007097480A 2007-04-03 2007-04-03 Light source for scanner Pending JP2008257951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007097480A JP2008257951A (en) 2007-04-03 2007-04-03 Light source for scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007097480A JP2008257951A (en) 2007-04-03 2007-04-03 Light source for scanner

Publications (1)

Publication Number Publication Date
JP2008257951A true JP2008257951A (en) 2008-10-23

Family

ID=39981317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097480A Pending JP2008257951A (en) 2007-04-03 2007-04-03 Light source for scanner

Country Status (1)

Country Link
JP (1) JP2008257951A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007480A1 (en) * 2009-07-17 2011-01-20 シャープ株式会社 Organic el device, organic el device producing method, and organic el illumination device
US8710735B2 (en) 2011-02-22 2014-04-29 Panasonic Corporation Organic electroluminescence element
WO2015079718A1 (en) * 2013-11-28 2015-06-04 パイオニア株式会社 Light emitting device
JP2015159141A (en) * 2014-02-21 2015-09-03 セイコーエプソン株式会社 Organic electroluminescent device, semiconductor device, and electronic apparatus
JP2016170963A (en) * 2015-03-12 2016-09-23 パイオニア株式会社 Light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315073A (en) * 1991-04-19 1993-11-26 Ricoh Co Ltd El element
JP2006269284A (en) * 2005-03-24 2006-10-05 Tohoku Pioneer Corp Self-luminous display panel and manufacturing method thereof
JP2007026971A (en) * 2005-07-20 2007-02-01 Toyota Industries Corp Electroluminescence element and electroluminescence element unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315073A (en) * 1991-04-19 1993-11-26 Ricoh Co Ltd El element
JP2006269284A (en) * 2005-03-24 2006-10-05 Tohoku Pioneer Corp Self-luminous display panel and manufacturing method thereof
JP2007026971A (en) * 2005-07-20 2007-02-01 Toyota Industries Corp Electroluminescence element and electroluminescence element unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007480A1 (en) * 2009-07-17 2011-01-20 シャープ株式会社 Organic el device, organic el device producing method, and organic el illumination device
US8525163B2 (en) 2009-07-17 2013-09-03 Sharp Kabushiki Kaisha Organic EL device, method for fabricating organic EL device, and organic EL illumination system
US8710735B2 (en) 2011-02-22 2014-04-29 Panasonic Corporation Organic electroluminescence element
WO2015079718A1 (en) * 2013-11-28 2015-06-04 パイオニア株式会社 Light emitting device
JP2015159141A (en) * 2014-02-21 2015-09-03 セイコーエプソン株式会社 Organic electroluminescent device, semiconductor device, and electronic apparatus
JP2016170963A (en) * 2015-03-12 2016-09-23 パイオニア株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
JP5285056B2 (en) Organic light emitting diode display
JP6469089B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US10043439B2 (en) Display device
JP6510560B2 (en) Organic light emitting device
JP6452675B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP6322769B2 (en) Organic light emitting device
WO2014017075A1 (en) Organic el device
JP2008257951A (en) Light source for scanner
JP2016518000A (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US8076845B2 (en) Display apparatus
US8809878B2 (en) Illumination device
JP2012521630A (en) Electroluminescent device and segmented lighting device
EP3076757B1 (en) Oled device and driving method
JP2009123363A (en) Organic electroluminescent device
JP2007026971A (en) Electroluminescence element and electroluminescence element unit
KR20110130949A (en) Electrode for organic light emitting device and organic light emitting device comprising same
KR102063476B1 (en) Lighting device
JP4798050B2 (en) Light source for scanner
JP5471317B2 (en) Organic EL panel
KR101707991B1 (en) Organic light emitting device and illuminator using the same
JP5332123B2 (en) Organic EL module
JP2007201333A (en) Light emitting panel and light emitting device
US20060284548A1 (en) Electroluminescent device
JP2013125690A (en) Light emitting device
JP2012078499A (en) Surface light emitting element and image reading device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802