JP2016150920A - Compound for organic electroluminescent element and organic electroluminescent element using the same - Google Patents

Compound for organic electroluminescent element and organic electroluminescent element using the same Download PDF

Info

Publication number
JP2016150920A
JP2016150920A JP2015029527A JP2015029527A JP2016150920A JP 2016150920 A JP2016150920 A JP 2016150920A JP 2015029527 A JP2015029527 A JP 2015029527A JP 2015029527 A JP2015029527 A JP 2015029527A JP 2016150920 A JP2016150920 A JP 2016150920A
Authority
JP
Japan
Prior art keywords
compound
substituted
group
organic electroluminescent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015029527A
Other languages
Japanese (ja)
Inventor
直子 矢内
Naoko Yanai
直子 矢内
純一 星野
Junichi Hoshino
純一 星野
海老沢 晃
Akira Ebisawa
晃 海老沢
友美 岩本
Tomomi Iwamoto
友美 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015029527A priority Critical patent/JP2016150920A/en
Publication of JP2016150920A publication Critical patent/JP2016150920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furan Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound for an organic electroluminescent element which allows a sufficiently long driving life to be obtained when used as a constituent material of an organic electroluminescent element, and to provide an organic electroluminescent element using the compound.SOLUTION: The compound for an organic electroluminescent element is an anthracene compound having at least one substituent represented by general formula (2). The organic electroluminescent element uses the compound. (L is a linking group and is a single bond, a substituted/unsubstituted arylene group, a substituted/unsubstituted divalent group having a heterocyclic skeleton, or the like; and R1 and R2 are each independently H, a substituted/unsubstituted alkyl group, or the like.)SELECTED DRAWING: None

Description

本発明は、有機電界発光素子用化合物およびこれを用いた有機電界発光素子に関する。   The present invention relates to a compound for an organic electroluminescent device and an organic electroluminescent device using the same.

有機電界発光素子は、数V〜数十V程度の低電圧で発光が可能であり、また、蛍光性有機化合物の種類を選択することにより種々の色の発光が可能なことから、様々な発光素子、表示素子等への応用が期待されており、活発に開発、研究が進められている。一般に、有機電界発光素子は、発光層および該層をはさんだ一対の対向電極から構成されている。両電極間に電界が印加されると、ホール注入電極(陽極)側からホール(正孔)が注入され、電子注入電極(陰極)側から電子が注入される。更に、発光層においてホール(正孔)と電子が再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する。   The organic electroluminescence device can emit light at a low voltage of about several volts to several tens of volts, and can emit light of various colors by selecting the type of the fluorescent organic compound. Applications to devices, display devices, etc. are expected, and development and research are being actively promoted. In general, an organic electroluminescent element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. When an electric field is applied between both electrodes, holes are injected from the hole injection electrode (anode) side, and electrons are injected from the electron injection electrode (cathode) side. Furthermore, holes and electrons recombine in the light emitting layer to generate an excited state, and energy is released as light when the excited state returns to the ground state.

従来の有機電界発光素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低く、また、特性劣化も著しく実用化には至っていなかったが、有機電界発光素子用材料の改良により有機電界発光素子の性能は徐々に改善されてきている。有機電界発光素子の発光効率の向上および長寿命化は発光素子、表示素子の消費電力の低下、耐久性の向上につながる重要な課題である。   Conventional organic electroluminescent elements have a higher driving voltage than inorganic light emitting diodes, have low luminance and luminous efficiency, and have not been put into practical use. Improvements have gradually improved the performance of organic electroluminescent devices. Improving the luminous efficiency and extending the life of organic electroluminescent elements are important issues that lead to lower power consumption and improved durability of the light emitting elements and display elements.

これらの問題を解決すべく、有機電界発光素子用材料の様々な改良が行われ、種々の構造の化合物が提案されてきた。中でもアントラセン構造を有する化合物は長寿命、高効率な有機電界発光素子用材料として優れていることが知られている。特許文献1には、ダイアントラセン構造を有する信頼性の高い有機電界発光素子用化合物が記載されている。長寿命、高効率な有機電界発光素子用化合物として、特許文献2および3には、フェナントレンやピレンを有する非対称なアントラセン誘導体、また、特許文献4には、フルオレンを有するアントラセン誘導体が記載されている。   In order to solve these problems, various improvements in materials for organic electroluminescent elements have been made, and compounds having various structures have been proposed. Among them, it is known that a compound having an anthracene structure is excellent as a material for organic electroluminescence devices having a long life and high efficiency. Patent Document 1 describes a highly reliable compound for an organic electroluminescence device having a dianthracene structure. As long-life, high-efficiency compounds for organic electroluminescence devices, Patent Documents 2 and 3 describe asymmetric anthracene derivatives having phenanthrene and pyrene, and Patent Document 4 describes anthracene derivatives having fluorene. .

特許第4190542号公報Japanese Patent No. 4190542 特許第4041816号公報Japanese Patent No. 4041816 特許第4839351号公報Japanese Patent No. 4839351 特開2002−154993号公報JP 2002-154993 A

しかしながら、これらの材料を用いた場合でも、有機電界発光素子の駆動寿命は未だ不十分であり、より一層の長寿命化が求められている。   However, even when these materials are used, the driving life of the organic electroluminescent element is still insufficient, and further life extension is required.

本発明は、上記事情に鑑みてなされたものであって、有機電界発光素子の構成材料として用いた場合に、十分に長い駆動寿命が得られる有機電界発光素子用化合物およびこの化合物を用いた有機電界発光素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when used as a constituent material of an organic electroluminescent element, a compound for an organic electroluminescent element capable of obtaining a sufficiently long driving life and an organic material using this compound An object is to provide an electroluminescent device.

本発明者らは、鋭意研究を重ねた結果、下記一般式(1)で表される化合物を有機電界発光素子用材料として用いることにより、上記課題を解決することを見出した。本発明は、下記一般式(1)で表される有機電界発光素子用化合物を提供する。   As a result of intensive studies, the present inventors have found that the above problem can be solved by using a compound represented by the following general formula (1) as a material for an organic electroluminescence device. This invention provides the compound for organic electroluminescent elements represented by following General formula (1).

本発明は、下記一般式(1)で表される有機電界発光素子用化合物を提供する。   This invention provides the compound for organic electroluminescent elements represented by following General formula (1).

Figure 2016150920
[式中、X〜X10のうち少なくとも1つは下記一般式(2)で表される。
Figure 2016150920
[Wherein, at least one of X 1 to X 10 is represented by the following general formula (2).

Figure 2016150920
(式中、Lは連結基であり、位置1〜14のいずれかの位置と連結する。なお、式中の番号は、連結基Lの連結位置を示すための番号である。連結されなかった位置1〜14は、水素原子、置換または無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基のいずれかで置換される。Lは、単結合、置換もしくは無置換のアルキリレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換の複素環骨格を有する2価の基のいずれかを示す。RおよびRは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基のいずれかを示す。)X〜X10のうち一般式(2)でないものは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基のいずれかを示す。]
Figure 2016150920
(In the formula, L is a linking group and is linked to any one of positions 1 to 14. The number in the formula is a number for indicating the linking position of the linking group L. Not linked. Positions 1 to 14 are substituted with any of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group, and L is a single bond, substituted or unsubstituted. R 1 and R 2 are each independently a hydrogen atom, substituted or unsubstituted, a substituted alkylylene group, a substituted or unsubstituted arylene group, or a divalent group having a substituted or unsubstituted heterocyclic skeleton. A substituted alkyl group or a substituted or unsubstituted aryl group.) Among X 1 to X 10 , those not represented by the general formula (2) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, Place Or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. ]

本発明にかかる有機電界発光素子用化合物によれば、有機電界発光素子の構成材料として用いた場合に、十分長い駆動寿命を得ることが可能となる。本発明にかかる有機電界発光素子用化合物によりこのような効果が得られる理由は必ずしも明らかでないが、本発明者らは次のように考えている。   According to the compound for an organic electroluminescent element according to the present invention, when it is used as a constituent material of the organic electroluminescent element, a sufficiently long driving life can be obtained. The reason why such an effect is obtained by the compound for organic electroluminescence device according to the present invention is not necessarily clear, but the present inventors consider as follows.

対称性の高い分子は、駆動に伴う発熱や時間経過により容易に分子が配列し、薄膜の結晶化が生じるため、有機電界発光素子の材料として用いた場合に、十分に長い駆動寿命を得ることができない。本発明にかかる有機電界発光素子用化合物は、アントラセン上に少なくとも1つの一般式(2)で表される立体障害の大きな置換基を有している。これにより、分子全体の対称性が低下し、結晶性が低下するために、安定な非晶質膜を作製することができ、十分に長い駆動寿命が得られると考えられる。   Highly symmetric molecules easily align with the heat generated by driving or the passage of time, resulting in crystallization of the thin film, so that a sufficiently long driving life can be obtained when used as a material for organic electroluminescent devices. I can't. The compound for organic electroluminescent elements according to the present invention has at least one substituent having a large steric hindrance represented by the general formula (2) on anthracene. As a result, the symmetry of the whole molecule is lowered and the crystallinity is lowered, so that it is possible to produce a stable amorphous film and to obtain a sufficiently long driving life.

また、本発明にかかる有機電界発光素子は、陽極と陰極からなる一対の電極の間に、発光層を含む少なくとも1層の有機層が挟持された有機電界発光素子において、前記有機層の少なくとも1層が、一般式(1)で表される化合物を単独もしくは混合物の成分として含有することが好ましい。   The organic electroluminescent device according to the present invention is an organic electroluminescent device in which at least one organic layer including a luminescent layer is sandwiched between a pair of electrodes composed of an anode and a cathode. It is preferable that a layer contains the compound represented by General formula (1) individually or as a component of a mixture.

かかる有機電界発光素子によれば、上記有機電界発光素子用化合物を含むので、十分に長い駆動寿命を得ることが可能となる。   According to such an organic electroluminescent element, since the compound for an organic electroluminescent element is included, a sufficiently long driving life can be obtained.

また、本発明にかかる有機電界発光素子は、陽極と陰極からなる一対の電極の間に、発光層を含む少なくとも1層の有機層が挟持された有機電界発光素子において、前記発光層が一般式(1)で表される化合物とトリアリールアミン誘導体との混合層からなることが好ましい。   Moreover, the organic electroluminescent device according to the present invention is an organic electroluminescent device in which at least one organic layer including a luminescent layer is sandwiched between a pair of electrodes composed of an anode and a cathode. It is preferable to consist of a mixed layer of the compound represented by (1) and a triarylamine derivative.

かかる有機電界発光素子によれば、上記有機電界発光素子用化合物の結晶性が低いために、トリアリールアミン誘導体との安定な非晶質の混合層を形成することができ、十分に長い駆動寿命を得ることが可能となる。   According to such an organic electroluminescent device, since the crystallinity of the compound for organic electroluminescent device is low, a stable amorphous mixed layer with the triarylamine derivative can be formed, and a sufficiently long driving life is achieved. Can be obtained.

また、本発明にかかる有機電界発光素子は、陽極と陰極からなる一対の電極の間に、ホール注入層を含む複数の有機層が挟持された有機電界発光素子において、前記ホール注入層が一般式(1)で表される化合物と電子アクセプター化合物との混合層からなることが好ましい。   Further, the organic electroluminescent device according to the present invention is an organic electroluminescent device in which a plurality of organic layers including a hole injection layer are sandwiched between a pair of electrodes composed of an anode and a cathode. It is preferable to consist of a mixed layer of the compound represented by (1) and an electron acceptor compound.

かかる有機電界発光素子によれば、上記有機電界発光素子用化合物の結晶性が低いために、電子アクセプター化合物との安定な非晶質の混合層を形成することができ、十分に長い駆動寿命を得ることが可能となる。   According to such an organic electroluminescent element, since the crystallinity of the compound for organic electroluminescent element is low, a stable amorphous mixed layer with the electron acceptor compound can be formed, and a sufficiently long driving life is obtained. Can be obtained.

また、本発明にかかる有機電界発光素子は、発光層およびホール注入層を含む複数の有機層が挟持された有機電界発光素子において発光層が一般式(1)で表される化合物からなり、前記ホール注入層が一般式(1)で表される化合物および電子アクセプター化合物との混合層からなることが好ましい。   The organic electroluminescent device according to the present invention comprises a compound represented by the general formula (1) in the organic electroluminescent device in which a plurality of organic layers including a light emitting layer and a hole injection layer are sandwiched, The hole injection layer is preferably composed of a mixed layer of a compound represented by the general formula (1) and an electron acceptor compound.

かかる有機電界発光素子によれば、上記有機電界発光素子用化合物の結晶性が低いために、安定な非晶質の発光層およびホール注入層を形成することができ、十分に長い駆動寿命を得ることが可能となる。   According to such an organic electroluminescent device, since the crystallinity of the compound for organic electroluminescent device is low, a stable amorphous light emitting layer and hole injection layer can be formed, and a sufficiently long driving life is obtained. It becomes possible.

本実施形態にかかる有機電界発光素子の一例を示す模式断面図である。It is a schematic cross section which shows an example of the organic electroluminescent element concerning this embodiment.

以下、必要に応じて図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一の符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

(有機電界発光素子用化合物)
本発明の好適な実施形態にかかる有機電界発光素子用化合物は、下記一般式(1)で表される特定の構造を有するアントラセン化合物である。
(Compound for organic electroluminescence device)
The compound for organic electroluminescent elements according to a preferred embodiment of the present invention is an anthracene compound having a specific structure represented by the following general formula (1).

Figure 2016150920
[式中、X〜X10のうち少なくとも1つは下記一般式(2)で表される。
Figure 2016150920
[Wherein, at least one of X 1 to X 10 is represented by the following general formula (2).

Figure 2016150920
(式中、Lは連結基であり、位置1〜14のいずれかの位置と連結する。なお、式中の番号は、連結基Lの連結位置を示すための番号である。連結されなかった位置1〜14は、水素原子、置換または無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基のいずれかで置換される。Lは、単結合、置換もしくは無置換のアルキリレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換の複素環骨格を有する2価の基のいずれかを示す。RおよびRは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基のいずれかを示す。)X〜X10のうち一般式(2)でないものは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基のいずれかを示す。]
Figure 2016150920
(In the formula, L is a linking group and is linked to any one of positions 1 to 14. The number in the formula is a number for indicating the linking position of the linking group L. Not linked. Positions 1 to 14 are substituted with any of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group, and L is a single bond, substituted or unsubstituted. R 1 and R 2 are each independently a hydrogen atom, substituted or unsubstituted, a substituted alkylylene group, a substituted or unsubstituted arylene group, or a divalent group having a substituted or unsubstituted heterocyclic skeleton. A substituted alkyl group or a substituted or unsubstituted aryl group.) Among X 1 to X 10 , those not represented by the general formula (2) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, Place Or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. ]

一般式(1)中のアルキル基としては、直鎖状もしくは分岐を有する炭素数1〜10のアルキル基が好ましく、具体例としては、メチル基、エチル基、n−またはi−プロピル基、n−、i−、s−またはt−ブチル基等が挙げられる。
また、前記アルキル基は置換基を有していてもよく、このような置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、ハロゲノ基、シリル基等が挙げられる。
The alkyl group in the general formula (1) is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n- or i-propyl group, n -, I-, s- or t-butyl group and the like can be mentioned.
The alkyl group may have a substituent, and examples of such a substituent include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a halogeno group, and a silyl group.

一般式(1)中のアリール基としては、単環もしくは多環のものであってよく、縮合環や環集合も含まれる。このようなアリール基としては、総炭素数6〜20のものが好ましく、具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ピレニル基、ペリレニル基、フルオレニル基、o−,m−またはp−ビフェニリル基等が挙げられ、特に好ましくはフェニル基、ナフチル基、ビフェニリル基が挙げられる。
また、前記アリール基はさらに置換されていてもよく、このような置換基としては、アルキル基、アルコキシ基、アリール基、複素環基、アリールオキシ基、ハロゲノ基、シリル基等が挙げられる。
The aryl group in the general formula (1) may be monocyclic or polycyclic, and includes condensed rings and ring assemblies. As such an aryl group, those having 6 to 20 carbon atoms are preferable, and specifically, phenyl group, naphthyl group, anthryl group, phenanthryl group, pyrenyl group, perylenyl group, fluorenyl group, o-, m- Or a p-biphenylyl group etc. are mentioned, Especially preferably, a phenyl group, a naphthyl group, and a biphenylyl group are mentioned.
The aryl group may be further substituted, and examples of such a substituent include an alkyl group, an alkoxy group, an aryl group, a heterocyclic group, an aryloxy group, a halogeno group, and a silyl group.

一般式(1)中の複素環基としては、ヘテロ原子としてO,N,Sを含有する5員または6員環の芳香族複素環基、および炭素数2〜20の縮合多環芳香複素環基等が挙げられる。芳香族複素環基および縮合多環芳香複素環基としては、例えば、チエニル基、フリル基、ピロリル基、ピリジル基、キノリル基、キノキサリル基等が挙げられる。これらの複素環基はさらに置換されていてもよく、このような置換基としては、アルキル基、アルコキシ基、アリール基、複素環基、アリールオキシ基、ハロゲノ基等が挙げられる。   As the heterocyclic group in the general formula (1), a 5- or 6-membered aromatic heterocyclic group containing O, N, S as a hetero atom, and a condensed polycyclic aromatic heterocyclic ring having 2 to 20 carbon atoms Groups and the like. Examples of the aromatic heterocyclic group and the condensed polycyclic aromatic heterocyclic group include a thienyl group, a furyl group, a pyrrolyl group, a pyridyl group, a quinolyl group, and a quinoxalyl group. These heterocyclic groups may be further substituted, and examples of such a substituent include an alkyl group, an alkoxy group, an aryl group, a heterocyclic group, an aryloxy group, and a halogeno group.

本実施形態にかかる有機電界発光素子用化合物においては、化合物の化学的安定性および発光効率を向上させることができる点から、一般式(1)中、X、X10が、それぞれ独立に、置換もしくは無置換のアリール基または、置換もしくは無置換の芳香族複素環基であることが好ましい。 In the compound for organic electroluminescence device according to the present embodiment, X 9 and X 10 are each independently represented by the following formula (1) because the chemical stability and luminous efficiency of the compound can be improved. It is preferably a substituted or unsubstituted aryl group or a substituted or unsubstituted aromatic heterocyclic group.

一般式(1)中、X〜X10のうち少なくとも1つは一般式(2)で表される基を示すが、昇華精製および蒸着プロセス時の熱安定性の点から、X〜X10のうち1〜3個が一般式(2)で表される基であることが好ましい。 In general formula (1), at least one of X 1 to X 10 represents a group represented by general formula (2). From the viewpoint of sublimation purification and thermal stability during the vapor deposition process, X 1 to X 10 it is preferable 1-3 of 10 is a group represented by the general formula (2).

一般式(1)中、X、X、X、X、X、X10うち少なくとも1つ以上が一般式(2)で表される基を示すことが好ましい。
一般式(1)中、X、Xが一般式(2)で表される基を示すことが好ましい。
一般式(1)中、X、X10が一般式(2)で表される基を示すことが好ましい。
一般式(1)中、Xが一般式(2)で表される基を示すことが好ましい。
これらの位置に一般式(2)で表される基が置換していることで、一般式(1)の化合物の化学的安定性を向上させることができ、また、分子の結晶性を低下させ、安定な非晶質膜を形成することができるためである。この結果、有機電界発光素子用化合物として用いた場合に、十分に長い駆動寿命を実現することが可能となる。
In general formula (1), it is preferable that at least one of X 2 , X 3 , X 6 , X 7 , X 9 and X 10 represents a group represented by general formula (2).
In general formula (1), X 2 and X 9 preferably represent a group represented by general formula (2).
In general formula (1), X 9 and X 10 preferably represent a group represented by general formula (2).
In general formula (1), X 9 preferably represents a group represented by general formula (2).
By substituting the group represented by the general formula (2) at these positions, the chemical stability of the compound of the general formula (1) can be improved, and the crystallinity of the molecule is reduced. This is because a stable amorphous film can be formed. As a result, when used as a compound for an organic electroluminescence device, a sufficiently long driving life can be realized.

有機電界発光素子の安定性の点から、一般式(1)中、X〜X10のうち一般式(2)でないものは、それぞれ独立に、水素原子、アルキル基、置換基もしくは無置換のアリール基、置換もしくは無置換の芳香族複素環基であることが好ましい。 From the viewpoint of the stability of the organic electroluminescent device, in general formula (1), those which are not general formula (2) among X 1 to X 10 are independently a hydrogen atom, an alkyl group, a substituent or an unsubstituted group. An aryl group, a substituted or unsubstituted aromatic heterocyclic group is preferable.

合成の容易さの点から、一般式(1)中、X、X、X、Xは水素原子であることが好ましい。 From the viewpoint of ease of synthesis, in general formula (1), X 1 , X 4 , X 5 and X 8 are preferably hydrogen atoms.

一般式(2)中、Lは置換もしくは無置換のアルキリレン基であってよい。このようなアルキリレン期の具体例としては、メチレン基、エチレン基等が挙げられる。   In general formula (2), L may be a substituted or unsubstituted alkylylene group. Specific examples of such an alkylylene period include a methylene group and an ethylene group.

一般式(2)中、Lは置換もしくは無置換のアリーレン基であってよい。このようなアリーレン基の具体例としては、フェニレン基、ビフェニレン基、アントリレン基等の通常のアリーレン基の他、2個ないしそれ以上のアリーレン基が直接連結したものが挙げられる。また、連結基Lのアリーレン基は、2個ないしそれ以上のアリーレン基が、アルキレン基、−O−または−S−が介在して連結するものであってもよい。
また、前記アリーレン基はさらに置換されていてもよく、このような置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、ハロゲノ基、シリル基等が挙げられる。
In general formula (2), L may be a substituted or unsubstituted arylene group. Specific examples of such an arylene group include those in which two or more arylene groups are directly linked in addition to a normal arylene group such as a phenylene group, a biphenylene group, and an anthrylene group. The arylene group of the linking group L may be one in which two or more arylene groups are linked via an alkylene group, —O— or —S—.
The arylene group may be further substituted, and examples of such a substituent include an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a halogeno group, and a silyl group.

一般式(2)中、Lは置換もしくは無置換の複素環骨格を有する二価の基であってよい。このような複素環骨格を有する二価の基としては、ヘテロ原子としてO,N,Sを含有する5員または6員環の芳香族複素環基、および炭素数2〜20の縮合多環芳香複素環基等が挙げられ、具体的には、チエニル基、フリル基、ピロリル基、ピリジル基、キノリル基、キノキサリル基等が挙げられる。
また、これらの複素環基はさらに置換されていてもよく、このような置換基としては、アルキル基、アルコキシ基、アリール基、アリールオキシ基、ハロゲノ基等が挙げられる。
In general formula (2), L may be a divalent group having a substituted or unsubstituted heterocyclic skeleton. Examples of the divalent group having such a heterocyclic skeleton include 5-membered or 6-membered aromatic heterocyclic groups containing O, N, and S as heteroatoms, and condensed polycyclic aromatics having 2 to 20 carbon atoms. Specific examples include a heterocyclic group, and specific examples include a thienyl group, a furyl group, a pyrrolyl group, a pyridyl group, a quinolyl group, and a quinoxalyl group.
These heterocyclic groups may be further substituted, and examples of such substituents include alkyl groups, alkoxy groups, aryl groups, aryloxy groups, and halogeno groups.

下記式(i−1)〜(i−33)に、Lの具体例を示すが、本実施形態はこれらに限定されるものではない。

Figure 2016150920
Specific examples of L are shown in the following formulas (i-1) to (i-33), but the present embodiment is not limited to these.
Figure 2016150920

化合物および有機電界発光素子の安定性の点から、一般式(2)中、連結基Lは、単結合または、置換もしくは無置換のアリーレン基であることが好ましい。   From the viewpoint of the stability of the compound and the organic electroluminescent device, in general formula (2), the linking group L is preferably a single bond or a substituted or unsubstituted arylene group.

合成の容易さの点から、一般式(2)中、連結基Lは、位置1、2、4のいずれかの位置と置換することが好ましく、Lと連結されなかった位置1〜14は、水素原子で置換されることが好ましい。   From the viewpoint of ease of synthesis, in the general formula (2), the linking group L is preferably substituted at any one of the positions 1, 2, and 4, and the positions 1 to 14 that are not linked to L are It is preferably substituted with a hydrogen atom.

合成の容易さおよび化合物の安定性の点から、一般式(2)中、R、Rは、それぞれ独立に、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基のいずれかであることが好ましい。 From the viewpoint of ease of synthesis and stability of the compound, in general formula (2), R 1 and R 2 are each independently a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Preferably there is.

本実施形態の化合物の分子量については特に限定は無いが、素子作成プロセスを考慮すると、分子量が1300以下であることが好ましい。分子量が1300以上の化合物は、溶解性が低下することで合成が困難になる他、塗布プロセスによる有機電界発光素子の作成が困難になるためである。また、蒸着プロセスによって有機電界発光素子を作成する場合においても、蒸着温度が450度以上の高温になり、材料の分解を生じる可能性があるためである。   There is no particular limitation on the molecular weight of the compound of the present embodiment, but it is preferable that the molecular weight is 1300 or less in consideration of the device preparation process. This is because a compound having a molecular weight of 1300 or more is difficult to synthesize due to a decrease in solubility, and it is difficult to produce an organic electroluminescent device by a coating process. In addition, even when an organic electroluminescent element is produced by a vapor deposition process, the vapor deposition temperature becomes a high temperature of 450 ° C. or more, which may cause decomposition of the material.

(有機電界発光素子用化合物の具体例)
本実施形態の有機電界発光素子用化合物の好適な例としては、下記式(I−1)〜(I−20)、(II−1)〜(II−20)、(III−1)〜(III−13)で表される化合物が挙げられる。
(Specific examples of compounds for organic electroluminescence devices)
As a suitable example of the compound for organic electroluminescent elements of this embodiment, following formula (I-1)-(I-20), (II-1)-(II-20), (III-1)-( And a compound represented by III-13).

Figure 2016150920
Figure 2016150920

Figure 2016150920
Figure 2016150920

Figure 2016150920
Figure 2016150920

(有機電界発光素子)
図1は、本実施形態にかかる有機電界発光素子の一例を示す模式断面図である。図1に示す有機電界発光素子1は互いに対向して配置されている2つの電極(第1の電極3および第2の電極9)により、ホール注入層4、ホール輸送層5、発光層6、電子輸送層7、電子注入層8が挟持された構造を有している。ホール注入層4、ホール輸送層5、発光層6、電子輸送層7、電子注入層8は、いずれも有機層であり、第1の電極3側からこの順に積層されている。なお、電子注入層8は無機層(金属層、金属化合物層等)とすることもできる。
(Organic electroluminescence device)
FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent element according to this embodiment. The organic electroluminescent element 1 shown in FIG. 1 includes a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, and two electrodes (first electrode 3 and second electrode 9) arranged to face each other. The electron transport layer 7 and the electron injection layer 8 are sandwiched. The hole injection layer 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7, and the electron injection layer 8 are all organic layers, and are stacked in this order from the first electrode 3 side. The electron injection layer 8 may be an inorganic layer (metal layer, metal compound layer, etc.).

なお、本実施形態において、第1の電極3は基板2上に形成されているが、基板2側からの積層の順番を逆にしてもよい。つまり、基板2側から、第2の電極9、電子注入層8、電子輸送層7、発光層6、ホール輸送層5、ホール注入層4、第1の電極3の順で積層されていてもよい。   In the present embodiment, the first electrode 3 is formed on the substrate 2, but the order of stacking from the substrate 2 side may be reversed. That is, even if the second electrode 9, the electron injection layer 8, the electron transport layer 7, the light emitting layer 6, the hole transport layer 5, the hole injection layer 4, and the first electrode 3 are stacked in this order from the substrate 2 side. Good.

また、本実施形態の有機電界発光素子用化合物は、上述したどの層に含まれていてもよいが、発光層、ホール注入層および電子輸送層に含まれていることが望ましい。   In addition, the organic electroluminescent element compound of this embodiment may be contained in any of the above-described layers, but is desirably contained in the light emitting layer, the hole injection layer, and the electron transport layer.

本実施形態においては、第1の電極3および第2の電極9が、それぞれホール注入電極(陽極)および電子注入電極(陰極)として機能し、電源Pによる電界の印加により、第1の電極3からホール(正孔)が注入されるとともに、第2の電極9から電子が注入され、これらの再結合に基づいて発光層中の有機電界発光素子用化合物が発光する。   In the present embodiment, the first electrode 3 and the second electrode 9 function as a hole injecting electrode (anode) and an electron injecting electrode (cathode), respectively. Then, holes are injected from the second electrode 9 and electrons are injected from the second electrode 9. Based on these recombination, the compound for an organic electroluminescent element in the light emitting layer emits light.

また、ホール注入層4、ホール輸送層5、発光層6、電子輸送層7、電子注入層8の好適な厚さは、いずれも1〜200nmである。   The preferred thicknesses of the hole injection layer 4, the hole transport layer 5, the light emitting layer 6, the electron transport layer 7 and the electron injection layer 8 are all 1 to 200 nm.

(基板)
基板2としては、従来の有機電界発光素子が備えているものであれば、特に限定されることなく用いることができ、ガラス、石英等の非晶質基板、Si、GaAs、ZnSe、ZnS、GaP、InP等の結晶基板、Mo、Al、Pt、Ir、Au、Pd、SUS等の金属基板等を用いることができる。また、結晶質または非晶質のセラミック、金属、有機物等の薄膜を所定基板上に形成したものを用いてもよい。
(substrate)
The substrate 2 can be used without particular limitation as long as it is provided in a conventional organic electroluminescence device, and is an amorphous substrate such as glass or quartz, Si, GaAs, ZnSe, ZnS, GaP. A crystal substrate such as InP or a metal substrate such as Mo, Al, Pt, Ir, Au, Pd, or SUS can be used. Alternatively, a thin film made of crystalline or amorphous ceramic, metal, organic material or the like formed on a predetermined substrate may be used.

基板2の側を光取り出し側とする場合には、基板2としてガラスや石英等の透明基板を用いることが好ましく、特に、安価なガラスの透明基板を用いることが好ましい。透明基板には、発光色の調整のために、色フィルター膜や蛍光物質を含む色変換膜、あるいは誘電体反射膜等を設けてもよい。   When the side of the substrate 2 is the light extraction side, it is preferable to use a transparent substrate such as glass or quartz as the substrate 2, and it is particularly preferable to use an inexpensive glass transparent substrate. The transparent substrate may be provided with a color filter film, a color conversion film containing a fluorescent material, a dielectric reflection film, or the like for adjusting the emission color.

(第1の電極)
第1の電極3はホール注入電極(陽極)として機能する。そのため、第1の電極3の材料としては、従来の有機電界発光素子が備えているものであれば、特に限定されることなく用いることができるが、その第1の電極3に効率よく且つ均一に電界を印加できる材料が好ましい。
(First electrode)
The first electrode 3 functions as a hole injection electrode (anode). Therefore, the material of the first electrode 3 can be used without particular limitation as long as it is provided in the conventional organic electroluminescent element, but it can be used efficiently and uniformly for the first electrode 3. A material capable of applying an electric field to is preferable.

また、基板2の側を光取り出し側とする場合、有機電界発光素子の発光波長領域である波長400nm〜700nmにおける透過率、特にRGB各色の波長における第1の電極3の透過率は、50%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。第1の電極3の透過率が50%未満であると、発光層6からの発光が減衰されて、画像表示に必要な輝度が得られなくなる。   Further, when the substrate 2 side is the light extraction side, the transmittance at a wavelength of 400 nm to 700 nm, which is the emission wavelength region of the organic electroluminescent element, in particular, the transmittance of the first electrode 3 at the wavelength of each RGB color is 50%. Preferably, it is 80% or more, more preferably 90% or more. When the transmittance of the first electrode 3 is less than 50%, the light emission from the light emitting layer 6 is attenuated, and the luminance necessary for image display cannot be obtained.

光透過率の高い第1の電極3は、各種酸化物で構成される透明導電膜を用いて構成することができる。かかる材料としては、酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、錫ドープ酸化インジウム(ITO)、亜鉛ドープ酸化インジウム(IZO)等が好ましく、中でも、ITOは、面内の比抵抗が均一な薄膜を容易に得ることができる点で特に好ましい。 The 1st electrode 3 with high light transmittance can be comprised using the transparent conductive film comprised with various oxides. As such a material, indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), zinc oxide (ZnO), tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), and the like are preferable. It is particularly preferable in that a thin film having a uniform in-plane specific resistance can be easily obtained.

第1の電極3の膜厚は、上述の光透過率を考慮して決定することが好ましい。例えば、酸化物透明電極を用いる場合、その膜厚は、好ましくは10〜500nm、より好ましくは30〜300nmである。第1の電極3の膜厚が500nmを超えると、光透過率が不十分になるとともに、基板2からの第1の電極3の剥離が発生する場合がある。また、膜厚の減少に伴い光透過率は向上するが、膜厚が10nm未満の場合、抵抗が大きくなり、有機電界発光素子の駆動電圧を上昇させる傾向がある。   The film thickness of the first electrode 3 is preferably determined in consideration of the above-described light transmittance. For example, when using an oxide transparent electrode, the film thickness is preferably 10 to 500 nm, more preferably 30 to 300 nm. When the film thickness of the first electrode 3 exceeds 500 nm, the light transmittance becomes insufficient and the first electrode 3 may be peeled off from the substrate 2 in some cases. In addition, the light transmittance is improved as the film thickness is decreased. However, when the film thickness is less than 10 nm, the resistance increases and the driving voltage of the organic electroluminescent element tends to increase.

(第2の電極)
第2の電極9は電子注入電極(陰極)として機能する。第2の電極9の材料としては、従来の有機電界発光素子が備えているものであれば、特に限定されることなく用いることができるが、金属材料、有機金属錯体もしくは金属化合物等が挙げられ、発光層6に効率的且つ確実に電子を注入できるように、仕事関数が比較的低い材料を用いると好ましく、また透明であってもよい。
(Second electrode)
The second electrode 9 functions as an electron injection electrode (cathode). The material of the second electrode 9 can be used without particular limitation as long as it is provided in a conventional organic electroluminescent device, and examples thereof include metal materials, organometallic complexes, and metal compounds. In order to efficiently and reliably inject electrons into the light emitting layer 6, it is preferable to use a material having a relatively low work function, and it may be transparent.

第2の電極9を構成する金属材料の具体例としては、Li、Na、KもしくはCs等のアルカリ金属、Mg、Ca、SrもしくはBa等のアルカリ土類金属、あるいはAl(アルミニウム)が挙げられる。また、La、Ce、Sn、ZnもしくはZr等のアルカリ金属またはアルカリ土類金属と特性が近い金属を用いることもできる。更には、上記金属材料の酸化物もしくはハロゲン化物を用いることもできる。更に、上記材料を含む混合物もしくは合金であってもよく、これらを複数積層してもよい。   Specific examples of the metal material constituting the second electrode 9 include alkali metals such as Li, Na, K or Cs, alkaline earth metals such as Mg, Ca, Sr or Ba, or Al (aluminum). . Alternatively, a metal having properties similar to those of an alkali metal or alkaline earth metal such as La, Ce, Sn, Zn, or Zr can be used. Furthermore, oxides or halides of the above metal materials can also be used. Further, it may be a mixture or alloy containing the above materials, and a plurality of these may be laminated.

第2の電極9の膜厚は、電子を均一に注入できる程度であればよく、0.1nm以上とすればよい。   The film thickness of the second electrode 9 may be such that electrons can be uniformly injected, and may be 0.1 nm or more.

なお、第2の電極9上には補助電極を設けてもよい。これにより、発光層6への電子注入効率を向上させることができ、また、電子注入層8や電子輸送層7、発光層6への水分または有機溶媒の浸入を防止することができる。補助電極の材料としては、仕事関数および電荷注入能力に関する制限がないため、一般的な金属を用いることができるが、導電率が高く、取り扱いが容易な金属を用いることが好ましい。また、特に第2の電極9が有機材料を含む場合には、有機材料の種類や密着性に応じて、適宜選択することが好ましい。   An auxiliary electrode may be provided on the second electrode 9. Thereby, the electron injection efficiency to the light emitting layer 6 can be improved, and the penetration | invasion of the water | moisture content or the organic solvent to the electron injection layer 8, the electron carrying layer 7, and the light emitting layer 6 can be prevented. As a material for the auxiliary electrode, a general metal can be used because there is no restriction on work function and charge injection capability. However, it is preferable to use a metal having high conductivity and easy handling. In particular, when the second electrode 9 includes an organic material, it is preferable to select appropriately according to the type and adhesion of the organic material.

補助電極に用いられる材料としては、Al、Ag、In、Ti、Cu、Au、Mo、W、Pt、Pd、Ni等が挙げられるが、中でもAlおよびAg等の低抵抗の金属を用いることにより電子注入効率を更に高めることができる。また、TiN等の金属化合物を用いることにより、一層高い封止性を得ることができる。これらの材料は、1種を単独で用いてもよく、2種以上を組み合わせてもよい。また、2種以上の金属を用いる場合は合金として用いてもよい。このような補助電極は、例えば、真空蒸着法等によって形成可能である。   Examples of the material used for the auxiliary electrode include Al, Ag, In, Ti, Cu, Au, Mo, W, Pt, Pd, and Ni. Among them, by using a low-resistance metal such as Al and Ag. Electron injection efficiency can be further increased. Further, by using a metal compound such as TiN, higher sealing properties can be obtained. These materials may be used alone or in combination of two or more. Moreover, when using 2 or more types of metals, you may use as an alloy. Such an auxiliary electrode can be formed by, for example, a vacuum deposition method or the like.

(ホール注入層)
ホール注入層4は、第1の電極3からのホール(正孔)の注入を容易にする機能を有する化合物を含有する層である。具体的には、アリールアミン、フタロシアニン、ポリアニリン/有機酸、ポリチオフェン/ポリマー酸等を少なくとも1種用いて形成することができる。本実施形態にかかる一般式(1)で表される化合物は仕事関数が第1の電極3に比べて大きいため、通常はホール注入層4には適さない材料である。しかしながら、塩化アンチモンや塩化鉄、酸化モリブデン等の電子アクセプターを用いて強制的にホール(正孔)を発生させた場合には、第1の電極3からのホール注入が容易になるため、本実施形態にかかる一般式(1)で表される化合物をホール注入層4として用いることができる。特に、一般式(1)で表される化合物は結晶性が低いために、電子アクセプター化合物との安定な非晶質の混合層を形成することができ、十分に長い輝度半減寿命を得ることが可能となる。
(Hole injection layer)
The hole injection layer 4 is a layer containing a compound having a function of facilitating the injection of holes from the first electrode 3. Specifically, it can be formed using at least one kind of arylamine, phthalocyanine, polyaniline / organic acid, polythiophene / polymer acid and the like. Since the compound represented by the general formula (1) according to the present embodiment has a work function larger than that of the first electrode 3, the compound is usually not suitable for the hole injection layer 4. However, when holes are forcibly generated using an electron acceptor such as antimony chloride, iron chloride, or molybdenum oxide, hole injection from the first electrode 3 becomes easy. The compound represented by the general formula (1) according to the form can be used as the hole injection layer 4. In particular, since the compound represented by the general formula (1) has low crystallinity, a stable amorphous mixed layer with an electron acceptor compound can be formed, and a sufficiently long luminance half-life can be obtained. It becomes possible.

(ホール輸送層)
ホール輸送層5は、注入されたホール(正孔)を発光層6に輸送する機能、および発光層6中の電子がホール輸送層5に注入されるのを妨げる機能を有する化合物を含有する層である。ホール輸送層5は、トリアリールメタン誘導体、トリアリールアミン誘導体、スチルベン誘導体、ポリシラン誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチオフェンおよびその誘導体、カルバゾール誘導体、もしくはアントラセン誘導体等の炭化水素化合物などを少なくとも1種用いて形成することができる。また本実施形態にかかる一般式(1)で表される化合物もホール輸送層5として用いることができる。
(Hall transport layer)
The hole transport layer 5 is a layer containing a compound having a function of transporting injected holes (holes) to the light emitting layer 6 and a function of preventing electrons in the light emitting layer 6 from being injected into the hole transport layer 5. It is. The hole transport layer 5 uses at least one kind of hydrocarbon compound such as triarylmethane derivative, triarylamine derivative, stilbene derivative, polysilane derivative, polyphenylene vinylene and derivative thereof, polythiophene and derivative thereof, carbazole derivative or anthracene derivative. Can be formed. Further, the compound represented by the general formula (1) according to this embodiment can also be used as the hole transport layer 5.

なお、ホール注入層4とホール輸送層5の機能を併せ持つ材料であれば、ホール注入輸送層として、単層で二層分の機能を果たす事が可能である。一方で、ホール注入層4やホール輸送層5を、更に複数の層に機能分離して使用することも可能である。   In addition, if it is a material which has the function of the hole injection layer 4 and the hole transport layer 5 as a hole injection transport layer, it can fulfill the function for two layers by a single layer. On the other hand, the hole injection layer 4 and the hole transport layer 5 can be further functionally separated into a plurality of layers.

(発光層)
発光層6は、注入されたホール(正孔)および電子の輸送機能とホール(正孔)と電子の再結合により励起子を生成させる機能を有する化合物を含有する層である。ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、フルオランテン誘導体、ナフタセン誘導体等の炭化水素系の化合物が好ましく用いられる。本実施形態にかかる一般式(1)で表される化合物は発光層6に用いられることが好ましく、通常はホスト材料として用いられる。一般式(1)で表される化合物は結晶性が低く、安定な非晶質膜を形成することができるために、従来の有機電界発光素子と比較して、十分に長い輝度半減寿命を得ることが可能となる。
(Light emitting layer)
The light emitting layer 6 is a layer containing a compound having a function of transporting injected holes and electrons and a function of generating excitons by recombination of holes and holes. Hydrocarbon compounds such as naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, fluoranthene derivatives and naphthacene derivatives are preferably used. The compound represented by the general formula (1) according to this embodiment is preferably used for the light emitting layer 6 and is usually used as a host material. Since the compound represented by the general formula (1) has low crystallinity and can form a stable amorphous film, a sufficiently long luminance half-life is obtained as compared with a conventional organic electroluminescent device. It becomes possible.

発光層6にはホスト材料の他に、発光ドーピング材料として、他の蛍光性物質を含有させてもよい。蛍光性物質としては、例えば、キナクリドン、ルブレン、スチリル系色素等の化合物、トリス(8−キノリノラト)アルミニウム等の8−キノリノールないしその誘導体を配位子とする金属錯体化合物、テトラフェニルブタジエン、アントラセン、フルオランテン、ピレン、ペリレン、コロネン、12−フタロペリノン誘導体、フェニルアントラセン誘導体、テトラアリールエテン誘導体、芳香族アミン誘導体等が挙げられる。特に、アミノナフタレン誘導体、アミノピレン誘導体、アミノフェナントレン誘導体、アミノフルオレン誘導体、アミノクリセン誘導体、アミノアントラセン誘導体、アミノペリレン誘導体等の芳香族アミン誘導体は非常に好ましい材料である。ドーパント材料の好適な含有量は、ホスト材料とドーパント材料の組み合わせにより異なるが、発光層の構成材料全体を基準として0.1〜30質量%であることが好ましく、1〜10質量%であることがより好ましい。   In addition to the host material, the light emitting layer 6 may contain another fluorescent substance as a light emitting doping material. Examples of the fluorescent substance include compounds such as quinacridone, rubrene, and styryl dyes, metal complex compounds having 8-quinolinol or a derivative thereof such as tris (8-quinolinolato) aluminum as a ligand, tetraphenylbutadiene, anthracene, Fluoranthene, pyrene, perylene, coronene, 12-phthaloperinone derivatives, phenylanthracene derivatives, tetraarylethene derivatives, aromatic amine derivatives, and the like can be given. In particular, aromatic amine derivatives such as aminonaphthalene derivatives, aminopyrene derivatives, aminophenanthrene derivatives, aminofluorene derivatives, aminochrysene derivatives, aminoanthracene derivatives, and aminoperylene derivatives are very preferable materials. Although suitable content of dopant material changes with combinations of host material and dopant material, it is preferable that it is 0.1-30 mass% on the basis of the whole constituent material of a light emitting layer, and it is 1-10 mass% Is more preferable.

発光層6にはホスト材料、発光ドーピング材料の他の化合物を含有させても良い。他の化合物を混合することによりキャリアの輸送を調整することができ、蛍光色素を混合することにより発光色を変換させて使用することができる。キャリアの輸送を調整する化合物としては、例えば、トリス(8−キノリノラト)アルミニウム等の8−キノリノールないしその誘導体を配位子とする金属錯体化合物、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、イミダゾピリジン誘導体、イミダゾピリミジン誘導体、フェナントロリン誘導体等の電子輸送性化合物、またはトリアリールアミン誘導体等のホール輸送性化合物等を好ましく用いることができる。本実施形態にかかる一般式(1)で表される化合物は、結晶性が低いために、電子輸送性化合物やホール輸送性化合物と安定な非晶質の混合層を形成することができ、十分に長い駆動寿命を得ることが可能となる。   The light emitting layer 6 may contain other compounds of the host material and the light emitting doping material. By mixing other compounds, carrier transport can be adjusted, and by mixing fluorescent dyes, the emission color can be converted and used. Examples of the compound for adjusting carrier transport include metal complex compounds having 8-quinolinol or a derivative thereof such as tris (8-quinolinolato) aluminum as a ligand, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, imidazopyridine derivatives, Electron transporting compounds such as imidazopyrimidine derivatives and phenanthroline derivatives, hole transporting compounds such as triarylamine derivatives, and the like can be preferably used. Since the compound represented by the general formula (1) according to the present embodiment has low crystallinity, it can form a stable amorphous mixed layer with an electron transporting compound or a hole transporting compound. It is possible to obtain a long driving life.

(電子輸送層)
電子輸送層7は、注入された電子を輸送する機能および発光層6から電子輸送層7中にホールが注入されるのを妨げる機能を有するものである。本実施形態の一般式(1)で表される化合物は電子輸送層7として用いることができ、特に発光層に一般式(1)で表される化合物を用いた場合には、発光層への電子注入効率が良いことから、発光層と同一の材料を電子輸送層に用いることが好ましい。
(Electron transport layer)
The electron transport layer 7 has a function of transporting injected electrons and a function of preventing holes from being injected into the electron transport layer 7 from the light emitting layer 6. The compound represented by the general formula (1) of the present embodiment can be used as the electron transport layer 7, and particularly when the compound represented by the general formula (1) is used for the light emitting layer, Since the electron injection efficiency is good, it is preferable to use the same material as the light emitting layer for the electron transport layer.

(電子注入層)
電子注入層8は、第2の電極9からの電子の注入を容易にする機能の他、第2の電極9との密着性を高める機能を有するものである。電子注入層8は、トリス(8−キノリノラト)アルミニウム等の8−キノリノールなしいその誘導体を配位子とする金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ピリジン誘導体、ピリミジン誘導体、イミダゾピリジン誘導体、イミダゾピリミジン誘導体、フェナントロリン誘導体等を少なくとも1種用いて形成することができる。
(Electron injection layer)
The electron injection layer 8 has a function of facilitating injection of electrons from the second electrode 9 and a function of improving adhesion with the second electrode 9. The electron injection layer 8 is composed of a metal complex, an oxadiazole derivative, a triazole derivative, a triazine derivative, a quinoline derivative, a quinoxaline derivative, diphenylquinone having an 8-quinolinol or its derivative such as tris (8-quinolinolato) aluminum as a ligand. Derivatives, nitro-substituted fluorenone derivatives, thiopyrandioxide derivatives, pyridine derivatives, pyrimidine derivatives, imidazopyridine derivatives, imidazopyrimidine derivatives, phenanthroline derivatives, and the like can be used.

本実施形態にかかる有機電界発光素子1は、発光層6、ホール注入層4、ホール輸送層5、電子輸送層7に本実施形態にかかる有機電界発光素子用化合物を含有させること以外は、公知の方法で製造できる。そのような発光層6、ホール注入層4、ホール輸送層5、電子輸送層7を含めて各有機層を形成する方法としては、真空蒸着法、イオン化蒸着法、塗布法等を、有機層を構成する材料に応じて、適宜選択して採用することができる。   The organic electroluminescence device 1 according to this embodiment is known except that the light emitting layer 6, the hole injection layer 4, the hole transport layer 5, and the electron transport layer 7 contain the compound for an organic electroluminescence device according to this embodiment. It can manufacture by the method of. As a method of forming each organic layer including the light emitting layer 6, the hole injection layer 4, the hole transport layer 5, and the electron transport layer 7, a vacuum deposition method, an ionization deposition method, a coating method, etc. are used. Depending on the material to be configured, it can be selected and adopted as appropriate.

塗布法の具体例としては、スピンコート法や、グラビア印刷等の各種印刷方法、インクジェット法等が挙げられる。この塗布法に用いられる溶媒としては、例えば、トルエン、キシレンなどの炭化水素系の溶媒や、ジクロロエタン等のハロゲン系の溶媒が挙げられる。本実施形態にかかる一般式(1)で表される化合物は、対称性が低いことから溶解性が高く、塗布プロセスによっても十分に成膜が可能である。スピンコート法であれば、通常は1〜3%程度の濃度の溶液とすることで、50nmから200nm程度の薄膜が形成可能である。   Specific examples of the coating method include spin coating methods, various printing methods such as gravure printing, and ink jet methods. Examples of the solvent used in this coating method include hydrocarbon solvents such as toluene and xylene, and halogen solvents such as dichloroethane. The compound represented by the general formula (1) according to this embodiment has high solubility because of low symmetry, and can be sufficiently formed even by a coating process. In the case of the spin coating method, a thin film of about 50 nm to 200 nm can be formed by using a solution having a concentration of about 1 to 3%.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited to the following Example.

<合成例1>
下記化合物(11)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 1>
The following compound (11) was synthesized by the following method. The reaction formula is shown below.

Figure 2016150920
Figure 2016150920

(化合物(1−1)の合成)
アルゴン気流下、1−ブロモナフタレン−2−カルボン酸メチル16.28g(61.4mmol)、9−フェナントレンボロン酸15.00g(67.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)1.42g(1.23mmol)をトルエン110mlとエタノール40mlに溶解させた。次いで、炭酸ナトリウム184.0mmolを含む水溶液92mlを加え、加熱還流下で19時間攪拌した。室温まで冷却後、反応溶液に水を加え、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の化合物(1−1)の白色固体(収量22.03g、収率99%)を得た。
(Synthesis of Compound (1-1))
Under argon stream, methyl 1-bromonaphthalene-2-carboxylate 16.28 g (61.4 mmol), 9-phenanthreneboronic acid 15.00 g (67.5 mmol), tetrakis (triphenylphosphine) palladium (0) 1.42 g (1.23 mmol) was dissolved in 110 ml of toluene and 40 ml of ethanol. Next, 92 ml of an aqueous solution containing 184.0 mmol of sodium carbonate was added, and the mixture was stirred for 19 hours under reflux with heating. After cooling to room temperature, water was added to the reaction solution and extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain the target compound (1-1) white solid (yield 22.03 g, yield 99%).

(化合物(1−2)の合成)
アルゴン気流下、メチルヨウ化マグネシウム180.0mmolを含む脱水ジエチルエーテル溶液90mlに、上記の反応により合成した化合物(1−1)22.03g(61.0mmol)を含む脱水テトラヒドロフラン溶液180mlを30分かけて滴下し、室温で22時間攪拌した。反応溶液に飽和塩化アンモニウム水溶液を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の化合物(1−2)の白色固体(収量17.25g、収率78%)を得た。
(Synthesis of Compound (1-2))
Under an argon stream, 180 ml of a dehydrated tetrahydrofuran solution containing 22.03 g (61.0 mmol) of the compound (1-1) synthesized by the above reaction was added to 90 ml of a dehydrated diethyl ether solution containing 180.0 mmol of methyl magnesium iodide over 30 minutes. The solution was added dropwise and stirred at room temperature for 22 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with diethyl ether. The organic layer was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain a white solid (yield 17.25 g, yield 78%) of the target compound (1-2).

(化合物(1−3)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−2)17.25g(50.0mmol)を脱水ジクロロメタン150mlに溶解し、氷浴にて冷却した。三フッ化ホウ素ジエチルエーテル錯体9.3ml(75.0mmol)を10分かけて滴下し、その後室温で17時間攪拌した。反応溶液に水を加え、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の化合物(1−3)の白色固体(収量16.71g、収率97%)を得た。
(Synthesis of Compound (1-3))
Under an argon stream, 17.25 g (50.0 mmol) of the compound (1-2) synthesized by the above reaction was dissolved in 150 ml of dehydrated dichloromethane and cooled in an ice bath. 9.3 ml (75.0 mmol) of boron trifluoride diethyl ether complex was added dropwise over 10 minutes, and then stirred at room temperature for 17 hours. Water was added to the reaction solution and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain the target compound (1-3) as a white solid (yield 16.71 g, yield 97%).

(化合物(1−4)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−3)16.71g(48.5mmol)を脱水ジクロロメタン300mlに溶解し、氷浴にて冷却した。N−ブロモスクシンイミド8.63g(48.5mmol)をゆっくり加え、その後室温で16時間攪拌した。反応溶液に水を加え、ジクロロメタンで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の化合物(1−4)の白色粉末(収量18.48g、収率90%)を得た。
(Synthesis of Compound (1-4))
Under an argon stream, 16.71 g (48.5 mmol) of the compound (1-3) synthesized by the above reaction was dissolved in 300 ml of dehydrated dichloromethane and cooled in an ice bath. N-bromosuccinimide (8.63 g, 48.5 mmol) was slowly added, followed by stirring at room temperature for 16 hours. Water was added to the reaction solution and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain a white powder (yield 18.48 g, yield 90%) of the target compound (1-4).

(化合物(1−5)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−4)4.23g(10.0mmol)、ビス(ピナコラト)ジボロン3.81g(15.0mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.092g(0.10mmol)、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル0.095g(0.20mmol)、酢酸カリウム2.94g(30.0mmol)を脱水1,4−ジオキサン30mlに溶解させ、加熱還流下で21時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、クロロホルムで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン−ヘキサンで再結晶し、目的の化合物(1−5)の白色粉末(収量4.33g、収率92%)を得た。
(Synthesis of Compound (1-5))
4.23 g (10.0 mmol) of compound (1-4) synthesized by the above reaction under an argon stream, 3.81 g (15.0 mmol) of bis (pinacolato) diboron, tris (dibenzylideneacetone) dipalladium (0) 0.092 g (0.10 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 0.095 g (0.20 mmol), potassium acetate 2.94 g (30.0 mmol) were dehydrated 1, The mixture was dissolved in 30 ml of 4-dioxane and stirred for 21 hours while heating under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and then recrystallized from dichloromethane-hexane to obtain a white powder (4.33 g, yield 92%) of the desired compound (1-5).

(化合物(1−6)の合成)
アルゴン気流下、9−ブロモアントラセン5.43g(21.0mmol)、4−ビフェニルボロン酸4.75g(24.0mmol)、酢酸パラジウム(0)0.090g(0.40mmol)、トリフェニルホスフィン0.21g(0.80mmol)をエチレングリコールジメチルエーテル80mlに溶解させた。次いで、炭酸カリウム60.0mmolを含む水溶液30mlを加え、加熱還流下で17時間攪拌した。室温まで冷却後、減圧下で濃縮し、メタノールと水を加え、析出した固体をろ過した。得られた固体をカラムクロマトグラフィーで精製後、ジクロロメタン−メタノールで再結晶し、目的の化合物(1−6)の白色固体(収量7.00g、収率99%)を得た。
(Synthesis of Compound (1-6))
Under an argon stream, 9.43 g (21.0 mmol) of 9-bromoanthracene, 4.75 g (24.0 mmol) of 4-biphenylboronic acid, 0.090 g (0.40 mmol) of palladium (0) acetate, 0.03 g of triphenylphosphine. 21 g (0.80 mmol) was dissolved in 80 ml of ethylene glycol dimethyl ether. Next, 30 ml of an aqueous solution containing 60.0 mmol of potassium carbonate was added, and the mixture was stirred for 17 hours while heating under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, methanol and water were added, and the precipitated solid was filtered. The obtained solid was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the target compound (1-6) as a white solid (yield 7.00 g, yield 99%).

(化合物(1−7)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−6)7.00g(21.0mmol)を脱水ジメチルホルムアミド150mlに溶解し、氷浴にて冷却した。N−ブロモスクシンイミド25.4mmolを含む脱水ジメチルホルムアミド溶液20mlを10分かけて滴下し、その後室温で16時間攪拌した。反応溶液に水とメタノールを加え、析出した固体をろ過し、メタノールで洗浄した。得られた固体を減圧乾燥し、目的の化合物(1−7)の白色粉末(収量8.25g、収率95%)を得た。
(Synthesis of Compound (1-7))
Under an argon stream, 7.00 g (21.0 mmol) of the compound (1-6) synthesized by the above reaction was dissolved in 150 ml of dehydrated dimethylformamide and cooled in an ice bath. 20 ml of a dehydrated dimethylformamide solution containing 25.4 mmol of N-bromosuccinimide was added dropwise over 10 minutes, and then stirred at room temperature for 16 hours. Water and methanol were added to the reaction solution, and the precipitated solid was filtered and washed with methanol. The obtained solid was dried under reduced pressure to obtain a white powder (yield: 8.25 g, yield: 95%) of the target compound (1-7).

(化合物(11)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−5)1.110g(2.36mmol)、化合物(1−7)0.819g(2.00mmol)、酢酸パラジウム(0)0.009g(0.04mmol)、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル0.033g(0.08mmol)、リン酸カリウム三塩基酸0.849g(4.00mmol)をトルエン20mlと水0.5mlに溶解させ、加熱還流下で22時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、クロロホルムで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン−メタノールで再結晶し、目的の化合物(11)の白色粉末(収量1.00g、収率74%)を得た。更に、昇華精製を行い、純度99.8%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of Compound (11))
1.10 g (2.36 mmol) of compound (1-5) synthesized by the above reaction under an argon stream, 0.819 g (2.00 mmol) of compound (1-7), 0.009 g (0) of palladium acetate (0) 0.04 g), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl 0.033 g (0.08 mmol), and potassium phosphate tribasic acid 0.849 g (4.00 mmol) in 20 ml toluene and 0.5 ml water. It was dissolved and stirred for 22 hours under heating to reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with chloroform. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and then recrystallized from dichloromethane / methanol to obtain the target compound (11) as a white powder (yield 1.00 g, yield 74%). Furthermore, sublimation purification was performed to obtain a product having a purity of 99.8% (confirmed by high performance liquid chromatography (HPLC)).

なお、得られた化合物の質量分析を行ったところ、化合物(11)の分子量672に対し、m/z=672(M)にピークが確認され、合成例1で得られた化合物が化合物(11)であることが同定された。 Note that, when mass analysis of the obtained compound was performed, a peak was confirmed at m / z = 672 (M + ) with respect to the molecular weight 672 of the compound (11), and the compound obtained in Synthesis Example 1 was found to be the compound ( 11).

<合成例2>
下記化合物(12)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 2>
The following compound (12) was synthesized by the following method. The reaction formula is shown below.

Figure 2016150920
Figure 2016150920

(化合物(1−8)の合成)
アルゴン気流下、9−ブロモアントラセン25.53g(99.3mmol)、フェニルボロン酸14.51g(119.0mmol)、酢酸パラジウム(0)0.45g(2.0mmol)、トリフェニルホスフィン1.05g(4.0mmol)をエチレングリコールジメチルエーテル400mlに溶解させた。次いで、炭酸カリウム300.0mmolを含む水溶液150mlを加え、加熱還流下で17時間攪拌した。室温まで冷却後、減圧下で濃縮し、メタノールと水を加え、析出した固体をろ過した。得られた固体をカラムクロマトグラフィーで精製後、ジクロロメタン−メタノールで再結晶し、目的の化合物(1−8)の白色固体(収量24.58g、収率97%)を得た。
(Synthesis of Compound (1-8))
Under an argon stream, 9-bromoanthracene 25.53 g (99.3 mmol), phenylboronic acid 14.51 g (119.0 mmol), palladium acetate (0) 0.45 g (2.0 mmol), triphenylphosphine 1.05 g ( 4.0 mmol) was dissolved in 400 ml of ethylene glycol dimethyl ether. Next, 150 ml of an aqueous solution containing 300.0 mmol of potassium carbonate was added, and the mixture was stirred for 17 hours while heating under reflux. After cooling to room temperature, the mixture was concentrated under reduced pressure, methanol and water were added, and the precipitated solid was filtered. The obtained solid was purified by column chromatography and recrystallized from dichloromethane-methanol to obtain the target compound (1-8) as a white solid (yield 24.58 g, yield 97%).

(化合物(1−9)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−8)24.58g(96.7mmol)を脱水ジメチルホルムアミド500mlに溶解し、氷浴にて冷却した。N−ブロモスクシンイミド106.4mmolを含む脱水ジメチルホルムアミド溶液100mlを1時間かけて滴下し、その後室温で18時間攪拌した。反応溶液に水とメタノールを加え、析出した固体をろ過し、メタノールで洗浄した。得られた固体を減圧乾燥し、目的の化合物(1−9)の白色粉末(収量30.26g、収率94%)を得た。
(Synthesis of Compound (1-9))
Under an argon stream, 24.58 g (96.7 mmol) of the compound (1-8) synthesized by the above reaction was dissolved in 500 ml of dehydrated dimethylformamide and cooled in an ice bath. 100 ml of a dehydrated dimethylformamide solution containing 106.4 mmol of N-bromosuccinimide was added dropwise over 1 hour, followed by stirring at room temperature for 18 hours. Water and methanol were added to the reaction solution, and the precipitated solid was filtered and washed with methanol. The obtained solid was dried under reduced pressure to obtain a white powder (yield 30.26 g, yield 94%) of the target compound (1-9).

(化合物(1−10)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−9)9.99g(30.0mmol)を脱水テトラヒドロフラン200mlに溶解し、−78℃に冷却した。n−ブチルリチウム33.0mmolを含む脱水ヘキサン溶液21mlを20分間かけて滴下し、その後−78℃で1時間攪拌した。ホウ酸トリイソプロピル9.0ml(39.0mmol)を5分間かけて滴下し、−78℃で1時間攪拌後、室温で2時間攪拌した。反応溶液を氷浴で冷却し、希塩酸を加え、30分間攪拌後、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた組成生物をジエチルエーテルで洗浄し、目的の化合物(1−10)の白色粉末(収量7.04g、収率79%)を得た。
(Synthesis of Compound (1-10))
Under an argon stream, 9.99 g (30.0 mmol) of the compound (1-9) synthesized by the above reaction was dissolved in 200 ml of dehydrated tetrahydrofuran and cooled to -78 ° C. 21 ml of dehydrated hexane solution containing 33.0 mmol of n-butyllithium was added dropwise over 20 minutes, and then stirred at -78 ° C for 1 hour. 9.0 ml (39.0 mmol) of triisopropyl borate was added dropwise over 5 minutes, stirred at −78 ° C. for 1 hour, and then stirred at room temperature for 2 hours. The reaction solution was cooled in an ice bath, diluted hydrochloric acid was added, and the mixture was stirred for 30 minutes and extracted with diethyl ether. The organic layer was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The resulting compositional organism was washed with diethyl ether to obtain the target compound (1-10) white powder (yield 7.04 g, yield 79%).

(化合物(1−11)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−10)3.58g(12.0mmol)、1,4−ジブロモベンゼン11.32g(48.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.28g(0.24mmol)をトルエン80mlとエタノール10mlに溶解させた。次いで、炭酸ナトリウム36.0mmolを含む水溶液18mlを加え、加熱還流下で18時間攪拌した。室温まで冷却後、反応溶液に水を加え、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の化合物(1−11)の白色固体(収量2.50g、収率51%)を得た。
(Synthesis of Compound (1-11))
3.58 g (12.0 mmol) of compound (1-10) synthesized by the above reaction under an argon stream, 11.32 g (48.0 mmol) of 1,4-dibromobenzene, tetrakis (triphenylphosphine) palladium (0) 0.28 g (0.24 mmol) was dissolved in 80 ml of toluene and 10 ml of ethanol. Next, 18 ml of an aqueous solution containing 36.0 mmol of sodium carbonate was added, and the mixture was stirred for 18 hours while heating under reflux. After cooling to room temperature, water was added to the reaction solution and extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain the target compound (1-11) as a white solid (yield 2.50 g, yield 51%).

(化合物(12)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−5)1.087g(2.31mmol)、化合物(1−11)0.818g(2.00mmol)、酢酸パラジウム(0)0.009g(0.04mmol)、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル0.033g(0.08mmol)、リン酸カリウム三塩基酸0.849g(4.00mmol)をトルエン15mlと水0.5mlに溶解させ、加熱還流下で16時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、クロロホルムで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン−メタノールおよびトルエンで再結晶し、目的の化合物(12)の白色粉末(収量1.21g、収率90%)を得た。更に、昇華精製を行い、純度99.8%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of Compound (12))
1.087 g (2.31 mmol) of the compound (1-5) synthesized by the above reaction under an argon stream, 0.818 g (2.00 mmol) of the compound (1-11), 0.009 g (0) of palladium acetate (0) 0.04 g), 0.033 g (0.08 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl and 0.849 g (4.00 mmol) of potassium phosphate tribasic acid in 15 ml of toluene and 0.5 ml of water. Dissolved and stirred for 16 hours under reflux with heating. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with chloroform. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and recrystallized from dichloromethane-methanol and toluene to obtain a white powder (yield 1.21 g, yield 90%) of the target compound (12). Furthermore, sublimation purification was performed to obtain a product having a purity of 99.8% (confirmed by high performance liquid chromatography (HPLC)).

なお、得られた化合物の質量分析を行ったところ、化合物(12)の分子量672に対し、m/z=672(M)にピークが確認され、合成例2で得られた化合物が化合物(12)であることが同定された。 Note that, when mass analysis of the obtained compound was performed, a peak was confirmed at m / z = 672 (M + ) with respect to the molecular weight 672 of the compound (12), and the compound obtained in Synthesis Example 2 was found to be the compound ( 12).

<合成例3>
下記化合物(13)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 3>
The following compound (13) was synthesized by the following method. The reaction formula is shown below.

Figure 2016150920
Figure 2016150920

(化合物(1−12)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−10)3.26g(10.9mmol)、1,3−ジブロモベンゼン6.6ml(54.8mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)0.25g(0.22mmol)をトルエン60mlとエタノール8mlに溶解させた。次いで、炭酸ナトリウム34.0mmolを含む水溶液17mlを加え、加熱還流下で16時間攪拌した。室温まで冷却後、反応溶液に水を加え、トルエンで抽出した。有機層を硫酸マグネシウムで乾燥後、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製し、目的の化合物(1−12)の白色固体(収量2.92g、収率65%)を得た。
(Synthesis of Compound (1-12))
3.26 g (10.9 mmol) of compound (1-10) synthesized by the above reaction under an argon stream, 6.6 ml (54.8 mmol) of 1,3-dibromobenzene, tetrakis (triphenylphosphine) palladium (0) 0.25 g (0.22 mmol) was dissolved in 60 ml of toluene and 8 ml of ethanol. Next, 17 ml of an aqueous solution containing 34.0 mmol of sodium carbonate was added, and the mixture was stirred for 16 hours under reflux with heating. After cooling to room temperature, water was added to the reaction solution and extracted with toluene. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography to obtain the target compound (1-12) as a white solid (yield 2.92 g, yield 65%).

(化合物(13)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−5)1.76g(3.75mmol)、化合物(1−12)1.28g(3.13mmol)、酢酸パラジウム(0)0.014g(0.06mmol)、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル0.049g(0.12mmol)、リン酸カリウム三塩基酸1.32g(6.26mmol)をトルエン15mlと水0.5mlに溶解させ、加熱還流下で16時間攪拌した。室温まで冷却後、減圧下で濃縮し、水を加えた後、クロロホルムで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をカラムクロマトグラフィーで精製後、ジクロロメタン−メタノールおよびトルエン−メタノールで再結晶し、目的の化合物(13)の白色粉末(収量1.56g、収率74%)を得た。更に、昇華精製を行い、純度99.9%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of Compound (13))
1.76 g (3.75 mmol) of compound (1-5) synthesized by the above reaction under argon stream, 1.28 g (3.13 mmol) of compound (1-12), 0.014 g (0) of palladium acetate (0) 0.06 mmol), 0.049 g (0.12 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl and 1.32 g (6.26 mmol) of potassium phosphate tribasic acid in 15 ml of toluene and 0.5 ml of water. Dissolved and stirred for 16 hours under reflux with heating. After cooling to room temperature, the mixture was concentrated under reduced pressure, water was added, and the mixture was extracted with chloroform. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The obtained crude product was purified by column chromatography and then recrystallized from dichloromethane-methanol and toluene-methanol to obtain a white powder (yield 1.56 g, yield 74%) of the desired compound (13). Furthermore, sublimation purification was performed to obtain a product having a purity of 99.9% (purity confirmed by high performance liquid chromatography (HPLC)).

なお、得られた化合物の質量分析を行ったところ、化合物(13)の分子量672に対し、m/z=672(M)にピークが確認され、合成例3で得られた化合物が化合物(13)であることが同定された。 Note that, when mass analysis of the obtained compound was performed, a peak was confirmed at m / z = 672 (M + ) with respect to the molecular weight 672 of the compound (13), and the compound obtained in Synthesis Example 3 was found to be the compound ( 13).

<合成例4>
下記化合物(14)を以下の方法で合成した。その反応式を以下に示す。
<Synthesis Example 4>
The following compound (14) was synthesized by the following method. The reaction formula is shown below.

Figure 2016150920
Figure 2016150920

(化合物(14)の合成)
アルゴン気流下、上記の反応により合成した化合物(1−5)2.07g(4.40mmol)、9,10−ジブロモアントラセン0.67g(2.00mmol)、酢酸パラジウム(0)0.018g(0.08mmol)、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル0.066g(0.16mmol)、リン酸カリウム三塩基酸1.69g(8.00mmol)をトルエン20mlと水0.5mlに溶解させ、加熱還流下で53時間攪拌した。室温まで冷却後、ソックスレー抽出器を用いて、クロロホルムで抽出した。得られた粗生成物をクロロホルムで洗浄し、目的の化合物(14)の白色粉末(収量0.83g、収率48%)を得た。更に、昇華精製を行い、純度99.6%品(高速液体クロマトグラフィー(HPLC)により純度確認)を得た。
(Synthesis of Compound (14))
2.07 g (4.40 mmol) of the compound (1-5) synthesized by the above reaction under an argon stream, 0.67 g (2.00 mmol) of 9,10-dibromoanthracene, 0.018 g (0) of palladium acetate (0) 0.08 mmol), 0.066 g (0.16 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl, 1.69 g (8.00 mmol) of potassium phosphate tribasic acid in 20 ml of toluene and 0.5 ml of water. It was dissolved and stirred for 53 hours under heating to reflux. After cooling to room temperature, the mixture was extracted with chloroform using a Soxhlet extractor. The obtained crude product was washed with chloroform to obtain a white powder (yield 0.83 g, yield 48%) of the target compound (14). Furthermore, sublimation purification was performed to obtain a 99.6% pure product (purity confirmed by high performance liquid chromatography (HPLC)).

なお、得られた化合物の質量分析を行ったところ、化合物(14)の分子量863に対し、m/z=863(M)にピークが確認され、合成例4で得られた化合物が化合物(14)であることが同定された。 Note that, when mass analysis of the obtained compound was performed, a peak was confirmed at m / z = 863 (M + ) with respect to the molecular weight 863 of the compound (14), and the compound obtained in Synthesis Example 4 was found to be the compound ( 14).

<実施例1>
ガラス基板上にRFスパッタ法で、ITO透明電極を100nmの厚さに成膜し、パターニングした。このITO透明電極付きガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄し、煮沸エタノール中から引き上げて乾燥した。透明電極表面をUV/O洗浄した後、真空蒸着装置の基板ホルダーに固定して、層内を1×10−4Pa以下まで減圧した。
<Example 1>
An ITO transparent electrode having a thickness of 100 nm was formed on a glass substrate by RF sputtering and patterned. This glass substrate with an ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then pulled up from boiling ethanol and dried. After the surface of the transparent electrode was washed with UV / O 3, it was fixed to a substrate holder of a vacuum deposition apparatus, and the inside of the layer was depressurized to 1 × 10 −4 Pa or less.

次いで減圧状態を保ったまま、下記の構造を有するN,N’−ジフェニル−N,N’−
ビス[N−(4−メチルフェニル)−N−フェニル−(4−アミノフェニル)]−1,1
’−ビフェニル−4,4’−ジアミン(21)を蒸着速度0.1nm/secで50nm
の厚さに蒸着し、ホール注入層とした。

Figure 2016150920
Next, while maintaining the reduced pressure state, N, N′-diphenyl-N, N′— having the following structure:
Bis [N- (4-methylphenyl) -N-phenyl- (4-aminophenyl)]-1,1
50 nm of '-biphenyl-4,4'-diamine (21) at a deposition rate of 0.1 nm / sec.
The hole injection layer was formed as a hole injection layer.
Figure 2016150920

次いで、減圧状態を保ったまま、下記の構造を有するN,N,N’,N’−テトラキス(3−ビフェニリル)−1,1’−ビフェニル−4,4’−ジアミン(22)を蒸着速度0.1nm/secで80nmの厚さに蒸着し、ホール輸送層とした。   Next, N, N, N ′, N′-tetrakis (3-biphenylyl) -1,1′-biphenyl-4,4′-diamine (22) having the following structure was deposited while maintaining the reduced pressure state. Vapor deposition was performed at a thickness of 80 nm at 0.1 nm / sec to form a hole transport layer.

Figure 2016150920
Figure 2016150920

更に、減圧状態を保ったまま、ホスト材料として本実施形態の化合物(11)と、ドーパントとして下記の構造の化合物(23)とを、質量比97:3で、全体の蒸着速度0.1nm/secとして40nmの厚さに蒸着し発光層とした。   Further, while maintaining the reduced pressure state, the compound (11) of the present embodiment as a host material and the compound (23) having the following structure as a dopant at a mass ratio of 97: 3 and an overall deposition rate of 0.1 nm / The light emitting layer was formed by vapor deposition to a thickness of 40 nm as sec.

Figure 2016150920
Figure 2016150920

更に、減圧状態を保ったまま、本実施形態の化合物(11)を蒸着速度0.1nm/secで20nmの厚さに、Alqを蒸着速度0.1nm/secで10nmの厚さに相次いで蒸着し、電子注入輸送層とした。 Further, while maintaining the reduced pressure state, the compound (11) of this embodiment is successively deposited to a thickness of 20 nm at a deposition rate of 0.1 nm / sec, and Alq 3 is successively deposited to a thickness of 10 nm at a deposition rate of 0.1 nm / sec. It vapor-deposited and was set as the electron injection transport layer.

次いで、LiFを蒸着速度0.1nm/secで0.5nmの厚さに蒸着し、電子注入電極とし、保護電極としてAlを100nmの厚さに蒸着し、最後にガラス封止して有機電界発光素子を得た。なお、化合物(11)の昇華精製は、蒸着前であれば、任意の段階で行うことができる。   Next, LiF is deposited at a deposition rate of 0.1 nm / sec to a thickness of 0.5 nm, used as an electron injection electrode, Al is deposited as a protective electrode to a thickness of 100 nm, and finally glass sealed to organic electroluminescence. An element was obtained. The sublimation purification of the compound (11) can be performed at any stage as long as it is before vapor deposition.

この有機電界発光素子に直流電圧を印加したところ、10mA/cmの電流密度で、初期輝度が680cd/m、輝度半減寿命が5000時間の発光ドーパント由来の青色発光が得られた。 When a direct current voltage was applied to the organic electroluminescence device, blue light emission derived from a light emitting dopant having an initial luminance of 680 cd / m 2 and a luminance half life of 5000 hours was obtained at a current density of 10 mA / cm 2 .

<実施例2〜28、比較例1〜3>
化合物(11)の代わりに表1に記載した化合物を用いた以外は実施例1と同様に有機電界発光素子を作製した。これらの素子の輝度半減時間と初期輝度を表1に示す。比較例に用いる化合物は下記に示す構造である。
<Examples 2-28 and Comparative Examples 1-3>
An organic electroluminescent device was produced in the same manner as in Example 1 except that the compounds listed in Table 1 were used instead of the compound (11). Table 1 shows the luminance half-life time and initial luminance of these elements. The compound used for the comparative example has the structure shown below.

Figure 2016150920
Figure 2016150920

Figure 2016150920
Figure 2016150920

実施例1〜28および比較例1〜3により、実施例1〜28で用いられた化合物が有機層に含まれた有機電界発光素子は、比較化合物(31)、(32)、(33)が含まれた有機電界発光素子と比較して、十分に長い駆動寿命を得ることが可能であることが示された。   According to Examples 1 to 28 and Comparative Examples 1 to 3, the organic electroluminescent elements in which the compounds used in Examples 1 to 28 are contained in the organic layer are the comparative compounds (31), (32), and (33). It has been shown that a sufficiently long drive life can be obtained compared to the included organic electroluminescent device.

<実施例29>
ガラス基板上にRFスパッタ法で、ITO透明電極を100nmの厚さに成膜し、パターニングした。このITO透明電極付きガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄し、煮沸エタノール中から引き上げて乾燥した。透明電極表面をUV/O洗浄した後、真空蒸着装置の基板ホルダーに固定して、層内を1×10−4Pa以下まで減圧した。
<Example 29>
An ITO transparent electrode having a thickness of 100 nm was formed on a glass substrate by RF sputtering and patterned. This glass substrate with an ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then pulled up from boiling ethanol and dried. After the surface of the transparent electrode was washed with UV / O 3, it was fixed to a substrate holder of a vacuum deposition apparatus, and the inside of the layer was depressurized to 1 × 10 −4 Pa or less.

次いで減圧状態を保ったまま、化合物(21)を蒸着速度0.1nm/secで50nmの厚さに蒸着し、ホール注入層とした。   Next, while maintaining the reduced pressure state, the compound (21) was deposited at a deposition rate of 0.1 nm / sec to a thickness of 50 nm to form a hole injection layer.

次いで、減圧状態を保ったまま、化合物(22)を蒸着速度0.1nm/secで80nmの厚さに蒸着し、ホール輸送層とした。   Next, while maintaining the reduced pressure state, the compound (22) was deposited to a thickness of 80 nm at a deposition rate of 0.1 nm / sec to form a hole transport layer.

更に、減圧状態を保ったまま、ホスト材料として本実施形態の化合物(11)と、化合物(22)と、ドーパントとして化合物(23)を体積比87:10:3で、全体の蒸着速度0.1nm/secで40nmの厚さに蒸着し、発光層とした。   Furthermore, while maintaining the reduced pressure state, the compound (11), the compound (22) of the present embodiment as the host material, and the compound (23) as the dopant in a volume ratio of 87: 10: 3, with an overall deposition rate of 0.8. Vapor deposition was performed at a thickness of 40 nm at 1 nm / sec to obtain a light emitting layer.

更に、減圧状態を保ったまま、本実施形態の化合物(11)を蒸着速度0.1nm/secで20nmの厚さに、Alqを蒸着速度0.1nm/secで10nmの厚さに相次いで蒸着し、電子注入輸送層とした。 Further, while maintaining the reduced pressure state, the compound (11) of this embodiment is successively deposited to a thickness of 20 nm at a deposition rate of 0.1 nm / sec, and Alq 3 is successively deposited to a thickness of 10 nm at a deposition rate of 0.1 nm / sec. It vapor-deposited and was set as the electron injection transport layer.

次いで、LiFを蒸着速度0.1nm/secで0.5nmの厚さに蒸着し、電子注入電極とし、保護電極としてAlを100nmの厚さに蒸着し、最後にガラス封止して有機電界発光素子を得た。   Next, LiF is deposited at a deposition rate of 0.1 nm / sec to a thickness of 0.5 nm, used as an electron injection electrode, Al is deposited as a protective electrode to a thickness of 100 nm, and finally glass sealed to organic electroluminescence. An element was obtained.

この電界発光素子に直流電圧を印加したところ、10mA/cmの電流密度で、初期輝度が640cd/m、輝度半減寿命が5400時間の発光ドーパント由来の青色発光が得られた。 When a direct current voltage was applied to the electroluminescent element, blue light emission derived from a light emitting dopant having an initial luminance of 640 cd / m 2 and a luminance half life of 5400 hours was obtained at a current density of 10 mA / cm 2 .

<実施例30〜36、比較例4〜6>
化合物(11)の代わりに表2に記載した化合物を用いた以外は実施例29と同様に電界発光素子を作製した。これらの素子の輝度半減時間と初期輝度を表2に示す。
<Examples 30 to 36, Comparative Examples 4 to 6>
An electroluminescent device was produced in the same manner as in Example 29 except that the compounds listed in Table 2 were used instead of the compound (11). Table 2 shows the luminance half-life time and initial luminance of these elements.

Figure 2016150920
Figure 2016150920

実施例29〜36および比較例4〜6により、実施例29〜36で用いられた化合物が有機層に含まれた有機電界発光素子は、比較化合物(31)、(32)、(33)が含まれた有機電界発光素子と比較して、十分に長い駆動寿命を得ることが可能であることが示された。   According to Examples 29 to 36 and Comparative Examples 4 to 6, the organic electroluminescent elements in which the compounds used in Examples 29 to 36 were included in the organic layer were obtained by comparing the comparative compounds (31), (32), and (33). It has been shown that a sufficiently long drive life can be obtained compared to the included organic electroluminescent device.

<実施例37>
ガラス基板上にRFスパッタ法で、ITO透明電極を100nmの厚さに成膜し、パターニングした。このITO透明電極付きガラス基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄し、煮沸エタノール中から引き上げて乾燥した。透明電極表面をUV/O洗浄した後、真空蒸着装置の基板ホルダーに固定して、層内を1×10−4Pa以下まで減圧した。
<Example 37>
An ITO transparent electrode having a thickness of 100 nm was formed on a glass substrate by RF sputtering and patterned. This glass substrate with an ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then pulled up from boiling ethanol and dried. After the surface of the transparent electrode was washed with UV / O 3, it was fixed to a substrate holder of a vacuum deposition apparatus, and the inside of the layer was depressurized to 1 × 10 −4 Pa or less.

次いで、減圧状態を保ったまま、本実施形態の化合物(11)と、酸化モリブデンを体積比95:5で、全体の蒸着速度0.1nm/secで50nmの膜厚に蒸着し、ホール注入層とした。   Next, while maintaining the reduced pressure state, the compound (11) of the present embodiment and molybdenum oxide were vapor-deposited at a volume ratio of 95: 5 to a film thickness of 50 nm at an overall vapor deposition rate of 0.1 nm / sec. It was.

次いで、減圧状態を保ったまま、本実施形態の化合物(11)を蒸着速度0.1nm/secで80nmの厚さに蒸着し、ホール輸送層とした。   Next, while maintaining the reduced pressure state, the compound (11) of the present embodiment was deposited to a thickness of 80 nm at a deposition rate of 0.1 nm / sec to form a hole transport layer.

更に、減圧状態を保ったまま、ホスト材料として本実施形態の化合物(11)と、ドーパントとして化合物(23)を体積比97:3で、全体の蒸着速度0.1nm/secで40nmの厚さに蒸着し、発光層とした。   Furthermore, while maintaining the reduced pressure state, the compound (11) of the present embodiment as the host material and the compound (23) as the dopant in a volume ratio of 97: 3 and a thickness of 40 nm at an overall deposition rate of 0.1 nm / sec. The light emitting layer was formed by vapor deposition.

更に、減圧状態を保ったまま、本実施形態の化合物(11)を蒸着速度0.1nm/secで20nmの厚さに、Alqを蒸着速度0.1nm/secで10nmの厚さに相次いで蒸着し、電子注入輸送層とした。 Further, while maintaining the reduced pressure state, the compound (11) of this embodiment is successively deposited to a thickness of 20 nm at a deposition rate of 0.1 nm / sec, and Alq 3 is successively deposited to a thickness of 10 nm at a deposition rate of 0.1 nm / sec. It vapor-deposited and was set as the electron injection transport layer.

次いで、LiFを蒸着速度0.1nm/secで0.5nmの厚さに蒸着し、電子注入電極とし、保護電極としてAlを100nmの厚さに蒸着し、最後にガラス封止して有機電界発光素6子を得た。   Next, LiF is deposited at a deposition rate of 0.1 nm / sec to a thickness of 0.5 nm, used as an electron injection electrode, Al is deposited as a protective electrode to a thickness of 100 nm, and finally glass sealed to organic electroluminescence. I got 6 children.

この電界発光素子に直流電圧を印加したところ、10mA/cmの電流密度で、初期輝度が550cd/m、輝度半減寿命が4500時間の発光ドーパント由来の青色発光が得られた。 When a direct current voltage was applied to the electroluminescent element, blue light emission derived from a light emitting dopant having an initial luminance of 550 cd / m 2 and a luminance half life of 4500 hours was obtained at a current density of 10 mA / cm 2 .

<実施例38〜44、比較例7〜9>
化合物(11)の代わりに表3に記載した化合物を用いた以外は実施例37と同様に電界発光素子を作製した。これらの素子の輝度半減時間と初期輝度を表3に示す。
<Examples 38 to 44, Comparative Examples 7 to 9>
An electroluminescent device was produced in the same manner as in Example 37 except that the compounds listed in Table 3 were used instead of the compound (11). Table 3 shows the luminance half-life time and initial luminance of these elements.

Figure 2016150920
Figure 2016150920

実施例37〜44および比較例7〜9により、実施例37〜44で用いられた化合物が有機層に含まれた有機電界発光素子は、比較化合物(31)、(32)、(33)が含まれた有機電界発光素子と比較して、十分に長い駆動寿命を得ることが可能であることが示された。   According to Examples 37 to 44 and Comparative Examples 7 to 9, the organic electroluminescent devices in which the compounds used in Examples 37 to 44 were included in the organic layer were obtained by comparing the comparative compounds (31), (32), and (33). It has been shown that a sufficiently long drive life can be obtained compared to the included organic electroluminescent device.

<実施例45>
実施例1で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 45>
When the organic electroluminescent element produced in Example 1 was stored at 85 ° C. and the light emission state after 300 hours was confirmed, it showed blue-green uniform light emission, and no change was seen in the uniformity of the light emitting surface before and after heating. It was.

<実施例46>
実施例2で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 46>
When the organic electroluminescent element produced in Example 2 was stored at 85 ° C. and the light emission state after 300 hours was confirmed, it showed blue-green uniform light emission, and no change was seen in the uniformity of the light emitting surface before and after heating. It was.

<実施例47>
実施例3で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 47>
When the organic electroluminescent element produced in Example 3 was stored at 85 ° C. and the light emission state after 300 hours was confirmed, it showed blue-green uniform light emission, and no change was seen in the uniformity of the light emitting surface before and after heating. It was.

<実施例48>
実施例4で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 48>
When the organic electroluminescent element produced in Example 4 was stored at 85 ° C. and the light emitting state after 300 hours was confirmed, it showed blue-green uniform light emission, and no change was seen in the uniformity of the light emitting surface before and after heating. It was.

<実施例49>
実施例37で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 49>
The organic electroluminescent element produced in Example 37 was stored at 85 ° C., and the light emission state after 300 hours was confirmed. As a result, blue-green uniform light emission was shown, and there was no change in the uniformity of the light emitting surface before and after heating. It was.

<実施例50>
実施例38で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 50>
The organic electroluminescent element produced in Example 38 was stored at 85 ° C., and the light emission state after 300 hours was confirmed. As a result, blue-green uniform light emission was shown, and there was no change in the uniformity of the light emitting surface before and after heating. It was.

<実施例51>
実施例39で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 51>
The organic electroluminescent element produced in Example 39 was stored at 85 ° C., and the light emission state after 300 hours was confirmed. As a result, blue-green uniform light emission was shown, and there was no change in the uniformity of the light emitting surface before and after heating. It was.

<実施例52>
実施例40で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、青緑色均一発光を示し、加熱前後で発光面の均一性に変化は見られなかった。
<Example 52>
When the organic electroluminescent element produced in Example 40 was stored at 85 ° C. and the light emission state after 300 hours was confirmed, it showed blue-green uniform light emission, and there was no change in the uniformity of the light emitting surface before and after heating. It was.

<比較例10>
比較例1で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、不均一な発光面が観察された。
<Comparative Example 10>
When the organic electroluminescent element produced in Comparative Example 1 was stored at 85 ° C. and the light emitting state after 300 hours was confirmed, a non-uniform light emitting surface was observed.

<比較例11>
比較例2で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、不均一な発光面が観察された。
<Comparative Example 11>
When the organic electroluminescent element produced in Comparative Example 2 was stored at 85 ° C. and the light emitting state after 300 hours was confirmed, a non-uniform light emitting surface was observed.

<比較例12>
比較例3で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、不均一な発光面が観察された。
<Comparative Example 12>
When the organic electroluminescent element produced in Comparative Example 3 was stored at 85 ° C. and the light emitting state after 300 hours was confirmed, a non-uniform light emitting surface was observed.

<比較例13>
比較例7で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、不均一な発光面が観察された。
<Comparative Example 13>
When the organic electroluminescent element produced in Comparative Example 7 was stored at 85 ° C. and the light emitting state after 300 hours was confirmed, a non-uniform light emitting surface was observed.

<比較例14>
比較例8で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、不均一な発光面が観察された。
<Comparative example 14>
When the organic electroluminescent element produced in Comparative Example 8 was stored at 85 ° C. and the light emitting state after 300 hours was confirmed, a non-uniform light emitting surface was observed.

<比較例15>
比較例9で作製した有機電界発光素子を85℃にて保存し、300時間後の発光状態を確認したところ、不均一な発光面が観察された。
<Comparative Example 15>
When the organic electroluminescent element produced in Comparative Example 9 was stored at 85 ° C. and the light emitting state after 300 hours was confirmed, a non-uniform light emitting surface was observed.

実施例45〜52および比較例11〜15により、実施例45〜52で用いられた化合物は、比較化合物(31)、(32)、(33)と比較して、結晶性が低いために、安定な非晶質膜を形成し、有機電界発光素子用材料として用いた場合に、高温保存下においても安定で均一な発光面を維持することができることが示された。すなわち、実施例45〜52で用いられた化合物を有機層に含む有機電界発光素子は、駆動による発熱や時間経過に伴う有機層の結晶化を抑制することができるために、十分に長い駆動寿命が得られる。   According to Examples 45 to 52 and Comparative Examples 11 to 15, the compounds used in Examples 45 to 52 are low in crystallinity as compared with Comparative Compounds (31), (32), and (33). It has been shown that when a stable amorphous film is formed and used as a material for an organic electroluminescence device, a stable and uniform light emitting surface can be maintained even under high temperature storage. That is, since the organic electroluminescent element containing the compound used in Examples 45 to 52 in the organic layer can suppress heat generation due to driving and crystallization of the organic layer with time, the driving life is sufficiently long. Is obtained.

以上詳細に説明したように、本発明の有機電界発光素子用化合物は、これを有機層に含有させることによって、十分に長い駆動寿命が得られる有機電界発光素子を実現することができる。   As described in detail above, the compound for organic electroluminescence device of the present invention can realize an organic electroluminescence device having a sufficiently long driving life by containing it in the organic layer.

1…本実施形態にかかる有機電界発光素子、2…基板、3…第1の電極、4…ホール注入層、5…ホール輸送層、6…発光層、7…電子輸送層、8…電子注入層、9…第2の電極、P…電源。   DESCRIPTION OF SYMBOLS 1 ... Organic electroluminescent element concerning this embodiment, 2 ... Substrate, 3 ... 1st electrode, 4 ... Hole injection layer, 5 ... Hole transport layer, 6 ... Light emitting layer, 7 ... Electron transport layer, 8 ... Electron injection Layer, 9 ... second electrode, P ... power source.

Claims (5)

下記一般式(1)で表される有機電界発光素子用化合物。
Figure 2016150920
[式中、X〜X10のうち少なくとも1つは下記一般式(2)で表される。
Figure 2016150920
(式中、Lは連結基であり、位置1〜14のいずれかの位置と連結する。なお、式中の番号は、連結基Lの連結位置を示すための番号である。連結されなかった位置1〜14は、水素原子、置換または無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基のいずれかで置換される。Lは、単結合、置換もしくは無置換のアルキリレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換の複素環骨格を有する2価の基のいずれかを示す。RおよびRは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基のいずれかを示す。)X〜X10のうち一般式(2)でないものは、それぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基のいずれかを示す。]
The compound for organic electroluminescent elements represented by following General formula (1).
Figure 2016150920
[Wherein, at least one of X 1 to X 10 is represented by the following general formula (2).
Figure 2016150920
(In the formula, L is a linking group and is linked to any one of positions 1 to 14. The number in the formula is a number for indicating the linking position of the linking group L. Not linked. Positions 1 to 14 are substituted with any of a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted heterocyclic group, and L is a single bond, substituted or unsubstituted. R 1 and R 2 are each independently a hydrogen atom, substituted or unsubstituted, a substituted alkylylene group, a substituted or unsubstituted arylene group, or a divalent group having a substituted or unsubstituted heterocyclic skeleton. A substituted alkyl group or a substituted or unsubstituted aryl group.) Among X 1 to X 10 , those not represented by the general formula (2) are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, Place Or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. ]
陽極と陰極からなる一対の電極の間に、発光層を含む少なくとも1層の有機層が挟持された有機電界発光素子において、前記有機層の少なくとも1層が、請求項1に記載の化合物を単独もしくは混合物の成分として含有することを特徴とする有機電界発光素子。   In the organic electroluminescent element in which at least one organic layer including a light emitting layer is sandwiched between a pair of electrodes composed of an anode and a cathode, at least one layer of the organic layer is a compound of claim 1 alone. Or it contains as a component of a mixture, The organic electroluminescent element characterized by the above-mentioned. 陽極と陰極からなる一対の電極の間に、発光層を含む少なくとも1層の有機層が挟持された有機電界発光素子において、前記発光層が請求項1に記載の化合物とトリアリールアミン誘導体との混合層からなることを特徴とする有機電界発光素子。   In the organic electroluminescence device in which at least one organic layer including a light emitting layer is sandwiched between a pair of electrodes composed of an anode and a cathode, the light emitting layer is formed by combining the compound according to claim 1 and a triarylamine derivative. An organic electroluminescent device comprising a mixed layer. 陽極と陰極からなる一対の電極の間に、ホール注入層を含む複数の有機層が挟持された有機電界発光素子において、前記ホール注入層が請求項1に記載の化合物と電子アクセプター化合物との混合層からなることを特徴とする有機電界発光素子。   In the organic electroluminescent element in which a plurality of organic layers including a hole injection layer are sandwiched between a pair of electrodes composed of an anode and a cathode, the hole injection layer is a mixture of the compound according to claim 1 and an electron acceptor compound. An organic electroluminescence device comprising a layer. 陽極と陰極からなる一対の電極の間に、発光層およびホール注入層を含む複数の有機層が挟持された有機電界発光素子において、前記発光層は請求項1に記載の化合物からなり、前記ホール注入層は請求項1に記載の化合物および電子アクセプター化合物との混合層からなることを特徴とする有機電界発光素子。   In the organic electroluminescent element in which a plurality of organic layers including a light emitting layer and a hole injection layer are sandwiched between a pair of electrodes consisting of an anode and a cathode, the light emitting layer is made of the compound according to claim 1, and the hole 2. An organic electroluminescent device, wherein the injection layer comprises a mixed layer of the compound according to claim 1 and an electron acceptor compound.
JP2015029527A 2015-02-18 2015-02-18 Compound for organic electroluminescent element and organic electroluminescent element using the same Pending JP2016150920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029527A JP2016150920A (en) 2015-02-18 2015-02-18 Compound for organic electroluminescent element and organic electroluminescent element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029527A JP2016150920A (en) 2015-02-18 2015-02-18 Compound for organic electroluminescent element and organic electroluminescent element using the same

Publications (1)

Publication Number Publication Date
JP2016150920A true JP2016150920A (en) 2016-08-22

Family

ID=56696101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029527A Pending JP2016150920A (en) 2015-02-18 2015-02-18 Compound for organic electroluminescent element and organic electroluminescent element using the same

Country Status (1)

Country Link
JP (1) JP2016150920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104767A1 (en) * 2015-12-16 2017-06-22 Tdk株式会社 Compound for organic electroluminescent element and organic electroluminescent element using same
KR20190103997A (en) * 2018-02-28 2019-09-05 주식회사 엘지화학 Heterocyclic compound and organic light emitting device comprising the same
WO2022191299A1 (en) * 2021-03-10 2022-09-15 出光興産株式会社 Organic electroluminescent element and electronic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104767A1 (en) * 2015-12-16 2017-06-22 Tdk株式会社 Compound for organic electroluminescent element and organic electroluminescent element using same
JPWO2017104767A1 (en) * 2015-12-16 2018-08-23 Tdk株式会社 Compound for organic electroluminescent device and organic electroluminescent device using the same
KR20190103997A (en) * 2018-02-28 2019-09-05 주식회사 엘지화학 Heterocyclic compound and organic light emitting device comprising the same
WO2019168378A1 (en) * 2018-02-28 2019-09-06 주식회사 엘지화학 Heterocyclic compound and organic light emitting device comprising same
CN111225904A (en) * 2018-02-28 2020-06-02 株式会社Lg化学 Heterocyclic compound and organic light-emitting device comprising the same
KR102280866B1 (en) 2018-02-28 2021-07-23 주식회사 엘지화학 Heterocyclic compound and organic light emitting device comprising the same
CN111225904B (en) * 2018-02-28 2023-07-18 株式会社Lg化学 Heterocyclic compound and organic light-emitting device comprising same
WO2022191299A1 (en) * 2021-03-10 2022-09-15 出光興産株式会社 Organic electroluminescent element and electronic device

Similar Documents

Publication Publication Date Title
KR101565200B1 (en) New compound and organic light emitting device using the same
JP3816969B2 (en) Organic EL device
JP5252481B2 (en) Light emitting element
KR101063940B1 (en) Novel organic compound and organic light emitting device using same
JP5252482B2 (en) Light emitting element
JP3838816B2 (en) Compound for organic EL device and organic EL device
CN104193738B (en) A kind of electric transmission compound based on benzimidazole
CN102449109A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20120027180A (en) Light-emitting element material and light-emitting element
JP2013526014A (en) Novel organic electroluminescent compound and organic electroluminescent device using the same
KR20100119077A (en) New compounds and organic electronic device using the same
KR20110121147A (en) Novel organic light emitting compound and organic light emitting device comprising the same
KR20120020901A (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
JP2011506564A (en) Naphthyl-substituted anthracene derivatives and their use in organic light-emitting diodes
JP2003264086A (en) Organic electroluminescence element
CN112979709B (en) Metal complex and application thereof
JP2015216245A (en) Compound for organic electroluminescent element and organic electroluminescent element using the same
JP5669539B2 (en) Quinolino [3,2,1-kl] phenoxazine compound and organic light emitting device using the same
JP2003026616A (en) Compound for organic el(electroluminescent) device and organic el device using it
WO2018179482A1 (en) Compound for organic electroluminescence element and organic electroluminescence element
JP5441348B2 (en) Benzo [a] fluoranthene compound and organic light-emitting device using the same
KR20120044517A (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
JPWO2016133058A1 (en) Electroluminescent device
WO2017104767A1 (en) Compound for organic electroluminescent element and organic electroluminescent element using same
JP5575547B2 (en) Organic EL device