JP2519420B2 - Ferroelectric liquid crystal electro-optical device - Google Patents

Ferroelectric liquid crystal electro-optical device

Info

Publication number
JP2519420B2
JP2519420B2 JP61111955A JP11195586A JP2519420B2 JP 2519420 B2 JP2519420 B2 JP 2519420B2 JP 61111955 A JP61111955 A JP 61111955A JP 11195586 A JP11195586 A JP 11195586A JP 2519420 B2 JP2519420 B2 JP 2519420B2
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
bistable
ferroelectric liquid
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61111955A
Other languages
Japanese (ja)
Other versions
JPS62269122A (en
Inventor
貞之 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP61111955A priority Critical patent/JP2519420B2/en
Publication of JPS62269122A publication Critical patent/JPS62269122A/en
Application granted granted Critical
Publication of JP2519420B2 publication Critical patent/JP2519420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強誘電性液晶の双安定状態を相互に切り換
えて駆動する電気光学変換装置に関し、特に温度補償す
ることによって良好な電気光学変換装置を得ることを目
的とする。
Description: FIELD OF THE INVENTION The present invention relates to an electro-optical conversion device that drives bistable states of ferroelectric liquid crystals by switching them from each other, and particularly good electro-optical conversion by temperature compensation. The purpose is to obtain the device.

〔発明の概要〕[Outline of Invention]

本発明は強誘電性液晶の双安定状態を閾値電圧以上の
波高値を有するパルスで切り換え駆動し、かつ双安定状
態を交流パルスで保持する駆動方式の強誘電性液晶電気
光学装置において、温度によりバイアス値を切り換える
ことにより、双安定保持状態における光透過光量を調節
して常によりよい表示コントラストを得ることができ
た。
The present invention relates to a driving type ferroelectric liquid crystal electro-optical device that switches and drives a bistable state of a ferroelectric liquid crystal with a pulse having a peak value equal to or higher than a threshold voltage, and holds the bistable state with an AC pulse. By switching the bias value, the amount of light transmitted in the bistable state was adjusted, and a better display contrast could always be obtained.

〔従来の技術〕[Conventional technology]

従来から強誘電性液晶の双安定状態を閾値電圧以上の
波高値を有するパルスで切り換え駆動し、かつ切り換え
た後の安定状態を交流パルスで保持する駆動方式の強誘
電性液晶電気光学装置は知られていた。
Conventionally, there is known a driving type ferroelectric liquid crystal electro-optical device in which a bistable state of a ferroelectric liquid crystal is switched by a pulse having a peak value equal to or higher than a threshold voltage, and a stable state after the switching is maintained by an AC pulse. Had been.

まず、第2図に従来の強誘電性液晶セル(以下液晶セ
ルという)の構造を示す。1−1は対向配置された一対
の基板である。2は基板1−1間に挟持された強誘電性
液晶例えばカイラルスメクチックC液晶(以下SmC*とい
う)薄膜である。3−3は基板1−1とSmC*薄膜2の界
面に存在する一軸性及びランダム性の水平配向膜であ
り、液晶分子の双安定状態を実現する。液晶分子の長軸
(以下分子軸という)は基板1に対して水平に配向しか
つ層をなす。これを上部から観察すると液晶分子は2つ
のドメインに区分される。第1のドメインでは分子軸は
層の法線4に対して+θ傾いている。これが第1の安定
状態5である。液晶分子の自発分極7は上方を向いてい
る。第2のドメインでは分子軸は層の法線に対して−θ
傾いている。これが第2の安定状態6である。この時自
発分極7は下を向いている。両安定状態で自発分極7の
方向が互いに逆であることを利用して正負直流パルスに
より双安定状態のいずれか一方を選択するのである。8
−8は偏光軸を直交させて対向配置された一対の偏光板
であって複屈折により第1の安定状態と第2の安定状態
を光学的に識別するものである。例えば第1の安定状態
を光遮断状態(以下黒という)に、又第2の安定状態を
光通過状態(以下白という)に変換する。9及び10はSm
C*薄膜2に駆動電圧を印加するためのマトリクス電極で
第3図に示すように9は走査電極(以下コモンとい
う)、10は信号電極(以下セグメントという)である。
First, FIG. 2 shows a structure of a conventional ferroelectric liquid crystal cell (hereinafter, referred to as a liquid crystal cell). 1-1 is a pair of substrates arranged opposite to each other. Reference numeral 2 denotes a ferroelectric liquid crystal sandwiched between the substrates 1-1, for example, a chiral smectic C liquid crystal (hereinafter referred to as SmC * ) thin film. 3-3 is a uniaxial and random horizontal alignment film existing at the interface between the substrate 1-1 and the SmC * thin film 2, and realizes a bistable state of liquid crystal molecules. The major axis of the liquid crystal molecules (hereinafter referred to as molecular axis) is oriented horizontally with respect to the substrate 1 and forms a layer. Observing this from above, the liquid crystal molecules are divided into two domains. In the first domain, the molecular axis is tilted by + θ with respect to the layer normal 4. This is the first stable state 5. The spontaneous polarization 7 of the liquid crystal molecules points upward. In the second domain, the molecular axis is -θ with respect to the layer normal.
Leaning. This is the second stable state 6. At this time, the spontaneous polarization 7 faces downward. By utilizing the fact that the directions of the spontaneous polarization 7 are opposite to each other in the both stable states, one of the bistable states is selected by positive and negative DC pulses. 8
Reference numeral -8 is a pair of polarizing plates arranged so as to face each other with their polarization axes orthogonal to each other, and optically distinguish between the first stable state and the second stable state by birefringence. For example, the first stable state is converted into a light blocking state (hereinafter referred to as black), and the second stable state is converted into a light passing state (hereinafter referred to as white). 9 and 10 are Sm
Matrix electrodes for applying a driving voltage to the C * thin film 2 are scan electrodes (hereinafter referred to as common) 9 and signal electrodes (hereinafter referred to as segments) 10 as shown in FIG.

第4図の(a)は交流バイアス平均化法を用いた線順
次駆動において1つのマトリクス画素(以下ドットとい
う)に印加される駆動波形を示す。第1フレームにおい
て選択期間中閾値以上の波高値を有する正負(コモン9
基準)のパルスP1及びP2が連続して加えられる。正パル
スP1により液晶分子は第2の安定状態に整列し続く負パ
ルスP2でスイッチングし第1の安定状態に整列する。こ
の状態が非選択期間中交流パルス印加により持続する。
交流パルスの波高値は閾値以下だからである。よって第
1フレームでは第1の安定状態の黒が書き込まれる。続
いて第2フレームではパルスの極性が逆であるから白が
書き込まれる。ただし本図では、P4及びP5は閾値以下な
ので白は書き込まれず第1フレームで書き込まれた黒が
保持される。
FIG. 4A shows a drive waveform applied to one matrix pixel (hereinafter referred to as a dot) in line-sequential driving using the AC bias averaging method. In the first frame, a positive or negative signal having a peak value equal to or larger than the threshold value during the selection period (common 9)
Pulses P 1 and P 2 of the reference) are added sequentially. Liquid crystal molecules by the positive pulse P 1 is aligned to the first stable state and switched by the negative pulse P 2 to Tsuzuku aligned to the second stable state. This state is maintained by the AC pulse application during the non-selection period.
This is because the peak value of the AC pulse is equal to or less than the threshold. Therefore, black in the first stable state is written in the first frame. Subsequently, in the second frame, white is written because the polarity of the pulse is reversed. However, in this figure, since P 4 and P 5 are less than the threshold value, white is not written and black written in the first frame is retained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来の駆動方式であると、非選択期間
中に印加される交流パルスに同期して第4図(b)の如
く液晶セルを透過する光強度がゆれてしまう。このゆれ
ΔIと交流パルスの波高値の関係を測定した結果を第5
図に示す。波高値が大きくなるとゆれΔIも大きくなる
ことがわかる。このゆれΔIは、コントラストの低下を
導くものでありその値が大きい程、コントラストも低下
する。従って交流パルスの波高値はできるだけ小さくし
なければならない。一方この非選択交流パルスの波高値
と前述の書き込みパルスP1及びP2,そして半選択パルス
P4及びP5の波高値との関係は、P1及びP2の波高値を基準
(すなわちN/N)とすると半選択パルスP4,P5は(N−
2)/N、非選択交流パルスは1/Nとなる。これがいわゆ
る交流バイアス平均化法と一般に呼ばれるものである。
ここでNはバイアス値と呼ばれるものである。
However, in the conventional driving method, the light intensity transmitted through the liquid crystal cell fluctuates as shown in FIG. 4B in synchronization with the AC pulse applied during the non-selection period. The result of measuring the relationship between this fluctuation ΔI and the peak value of the AC pulse is
Shown in the figure. It can be seen that the fluctuation ΔI increases as the peak value increases. This fluctuation ΔI leads to a decrease in contrast, and the larger the value, the lower the contrast. Therefore, the peak value of the AC pulse must be made as small as possible. On the other hand, the peak value of this non-selective AC pulse, the above-mentioned write pulses P 1 and P 2 , and the half-select pulse
Relationship between the peak value of P 4 and P 5, the half-selection pulse P 4, P 5 If based on the peak value of P 1 and P 2 (i.e. N / N) (N-
2) / N, non-selective AC pulse is 1 / N. This is generally called the so-called AC bias averaging method.
Here, N is called a bias value.

ところで、前述のゆれΔIとバイアス値との関係を見
ると、コントラストの低下を防ぐためには非選択交流パ
ルスの波高値を小さくすれば良いためバイアス値Nを大
きくすれば良いことがわかる。
By the way, looking at the relationship between the above-mentioned fluctuation ΔI and the bias value, it can be seen that the peak value of the non-selective AC pulse can be made small so that the bias value N can be made large in order to prevent the deterioration of the contrast.

しかしここで次の様な問題が生じる。すなわち、バイ
アス値Nを大きくすると半選択パルスP4及びP5の波高値
は(N−2)/Nであるために大きくなってしまい閾値を
超える可能性が出てくる。この現象は、高温側になれば
なるほど顕著になり、実際にはバイアス値を小さくしな
ければ全温度範囲に渡って駆動できない。これによりコ
ントラストが低下してしまうという問題点が生じる。
However, the following problems occur here. That is, when the bias value N is increased, the peak values of the half-selection pulses P 4 and P 5 are (N−2) / N, so that the peak values are increased and may exceed the threshold value. This phenomenon becomes more remarkable as the temperature becomes higher, and in practice, driving cannot be performed over the entire temperature range unless the bias value is reduced. This causes a problem that the contrast is lowered.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前述した従来技術の問題点を解決することを
目的とし、そのために温度によってバイアス値を切り換
えることによってコントラストの低下を防いだ。実際に
は、高温側では閾値を超える可能性があるためバイアス
値を小さくし、低温側では、その可能性が小さくなるた
めバイアス値を大きくするというものである。
The present invention has an object to solve the above-mentioned problems of the prior art, and therefore, the contrast value is prevented from being lowered by switching the bias value depending on the temperature. Actually, the bias value may be decreased on the high temperature side because it may exceed the threshold value, and the bias value may be increased on the low temperature side because the possibility decreases.

〔実施例〕〔Example〕

第1図はバイアス値を温度によって切り換えるための
回路である。温度検出器例えばサーミスタ12は定電流源
11に接続され動作する。サーミスタ12で発生した電圧は
オペアンプ13の負側に入力される。オペアンプ13の正側
入力は抵抗R1,R2を介して、それぞれ直流電源E及び出
力に接続されており、これによりヒステリシスがあるコ
ンパレータが形成される。一方オペアンプ13の出力は、
トランジスタ14,15,16に入力され、液晶に印加されるバ
イアス電圧を発生するための抵抗群17とトランジスタ1
4,15,16は並列に接続されている。抵抗群17の出力VDD
V1,V2,V3,V4,VLCは第4図(a)の波形を作り出す
ために、コモン及びセグメントの駆動回路に入力され
る。この部分の回路は公知であるため説明は省略する。
FIG. 1 shows a circuit for switching the bias value depending on the temperature. Temperature detector For example, thermistor 12 is a constant current source
11 is connected and works. The voltage generated by the thermistor 12 is input to the negative side of the operational amplifier 13. The positive input of the operational amplifier 13 is connected to the DC power source E and the output via the resistors R 1 and R 2 , respectively, thereby forming a hysteresis comparator. On the other hand, the output of the operational amplifier 13 is
A resistor group 17 and a transistor 1 for generating a bias voltage input to the transistors 14, 15 and 16 and applied to the liquid crystal.
4,15,16 are connected in parallel. Output V DD of resistor group 17,
V 1, V 2, V 3 , V 4, V LC in order to produce a waveform of 4 (a), is input to the drive circuit of the common and segment. Since the circuit of this part is known, the description thereof is omitted.

次に動作を説明する。サーミスタ12は例えば正特性の
温特を持つとすれば、温度の上昇と共にその出力電圧V1
は上昇する。この電圧値V1が直流電圧E(説明を明解に
するためここではヒステリシスによる電圧分を省略す
る)を超えない時はオペアンプ13の出力電圧はVDD電圧
である。このVDD電圧によりトランジスタ14と16はオフ
状態でトランジスタ15のみがオン状態になる。従って、
抵抗R3の両端がショートされバイアス電圧はVDD,V1,V
2=V3,V4VLCの5種類となり、N=4のバイアス値にな
る。ここで温度が上昇しサーミスタ12の両端電圧V1が上
昇し直流電圧Eを超えるとオペアンプ13の出力は反転し
VSS電圧となる。従って、トランジスタ15はオフにな
り、かわってトランジスタ14,16がオンになる。これに
よってバイアス電圧の出力はVDD,V1=V2,V3=V4,VLC
の4種類となりN=3のバイアス値になる。
Next, the operation will be described. For example, if the thermistor 12 has a positive temperature characteristic, its output voltage V 1
Rises. When the voltage value V 1 does not exceed the DC voltage E (the voltage component due to hysteresis is omitted here for clarity of explanation), the output voltage of the operational amplifier 13 is the V DD voltage. This V DD voltage turns off transistors 14 and 16 and turns on only transistor 15. Therefore,
Both ends of the resistor R3 are shorted and the bias voltage is V DD , V 1 , V
There are 5 types, 2 = V 3 and V 4 V LC , and the bias value is N = 4. When the temperature rises and the voltage V 1 across the thermistor 12 rises and exceeds the DC voltage E, the output of the operational amplifier 13 is inverted.
It becomes the V SS voltage. Therefore, the transistor 15 is turned off and the transistors 14 and 16 are turned on instead. As a result, the bias voltage output is V DD , V 1 = V 2 , V 3 = V 4 , V LC
There are four types, and the bias value is N = 3.

ここで直流電圧Eは次のようにして決めればよい。図
6はチッソ社製強誘電性液晶組成物を用いて実験したバ
イアス値が選択できる温度範囲を示した図であるが、34
℃を境にして、それより低温側はN=4バイアス、それ
より高温側はN=3バイアスを適用しなければならない
ことがわかる。従って、サーミスタ12が34℃で出力され
る電圧値V1に直流電圧Eを合わせれば良い。
Here, the DC voltage E may be determined as follows. FIG. 6 is a diagram showing the temperature range in which the bias value can be selected, which was tested by using the ferroelectric liquid crystal composition manufactured by Chisso.
It can be seen that, with a boundary of C, N = 4 bias must be applied on the lower temperature side and N = 3 bias on the higher temperature side. Therefore, the DC voltage E should be adjusted to the voltage value V 1 output by the thermistor 12 at 34 ° C.

なお、液晶材料により切り換えるべき温度及びバイア
ス値は異なるので、本発明は第1図で示したバイアス値
N=3と4の間の切り換えに限定されるものではないこ
とは明白である。
It should be noted that the present invention is not limited to the switching between the bias values N = 3 and 4 shown in FIG. 1 since the temperature and the bias value to be switched differ depending on the liquid crystal material.

〔発明の効果〕 本発明によれば、温度によって強誘電性液晶へのバイ
アス電圧のバイアス値を変えることによって、低温側で
もコントラストの高い表示を得ることができるという効
果がある。
[Advantages of the Invention] According to the present invention, by changing the bias value of the bias voltage applied to the ferroelectric liquid crystal depending on the temperature, it is possible to obtain a display with high contrast even at low temperatures.

【図面の簡単な説明】[Brief description of drawings]

第1図はバイアス値を温度によって変えるための回路
図、第2図は従来の液晶セルの斜視図、第3図は従来の
液晶セルの電極配置図、第4図(a),(b)は従来の
液晶セルの駆動波形及び透過光特性を示す図、第5図は
交流パルスの波高値とそれによって誘起される透過光の
ゆれ強度の関係を示す図、第6図はバイアス値の選択さ
れるべき温度範囲を示す図である。 1−1…基板、2−2…配向膜 3…カイラルスメクチックC液晶 8−8…偏光板、9…操作電極 10…信号電極、11…定電流源 12…サーミスタ、13…オペアンプ 14,15,16…トランジスタ 17…抵抗群
FIG. 1 is a circuit diagram for changing the bias value according to temperature, FIG. 2 is a perspective view of a conventional liquid crystal cell, FIG. 3 is an electrode arrangement diagram of the conventional liquid crystal cell, and FIGS. 4 (a) and 4 (b). Is a diagram showing a driving waveform and a transmitted light characteristic of a conventional liquid crystal cell, FIG. 5 is a diagram showing a relationship between a peak value of an AC pulse and a fluctuation intensity of transmitted light induced thereby, and FIG. 6 is a selection of a bias value. It is a figure which shows the temperature range which should be performed. 1-1 ... Substrate, 2-2 ... Alignment film 3 ... Chiral smectic C liquid crystal 8-8 ... Polarizing plate, 9 ... Operation electrode 10 ... Signal electrode, 11 ... Constant current source 12 ... Thermistor, 13 ... Opamp 14,15, 16 ... Transistor 17 ... Resistor group

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強誘電性液晶薄膜と、該薄膜に接し液晶分
子の双安定整列を実現する配向膜と、双安定整列状態を
光学的明暗に変換する部材と、双安定状態を切り換える
ための電圧を該薄膜に印加するマトリクス電極よりなる
液晶セルと、選択画素に対して双安定状態のいずれか一
方を書き込む電圧を印加し、非選択画素に対しては双安
定状態を保持する交流パルスを印加する駆動回路よりな
る強誘電性液晶電気光学装置において、前記選択画素に
対して双安定状態のいずれか一方を書き込む時に印加さ
れる電圧の波高値に対する、前記非選択画素に対して双
安定状態を保持する時に印加される交流パルスの波高値
(以下、バイアス電圧という)の比であるバイアス値
を、温度によって切り換えるものであって、前記バイア
ス値は、バイアス電圧を発生する抵抗群に並列にトラン
ジスタを接続することにより切り換えられることを特徴
とする強誘電性液晶電気光学装置。
1. A ferroelectric liquid crystal thin film, an alignment film which is in contact with the thin film and realizes bistable alignment of liquid crystal molecules, a member which converts a bistable aligned state into optical brightness and darkness, and a bistable state switching device. A liquid crystal cell composed of a matrix electrode for applying a voltage to the thin film and a voltage for writing one of bistable states to a selected pixel are applied, and an AC pulse for maintaining a bistable state is applied to a non-selected pixel. In a ferroelectric liquid crystal electro-optical device including a driving circuit for applying, a bistable state for the non-selected pixel with respect to a peak value of a voltage applied when writing one of the bistable states for the selected pixel. The bias value, which is the ratio of the peak value (hereinafter referred to as the bias voltage) of the AC pulse applied when the voltage is held, is switched depending on the temperature. Ferroelectric liquid crystal electro-optical device, characterized by being switched by connecting the transistors in parallel to the resistance group that generates.
JP61111955A 1986-05-16 1986-05-16 Ferroelectric liquid crystal electro-optical device Expired - Fee Related JP2519420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61111955A JP2519420B2 (en) 1986-05-16 1986-05-16 Ferroelectric liquid crystal electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61111955A JP2519420B2 (en) 1986-05-16 1986-05-16 Ferroelectric liquid crystal electro-optical device

Publications (2)

Publication Number Publication Date
JPS62269122A JPS62269122A (en) 1987-11-21
JP2519420B2 true JP2519420B2 (en) 1996-07-31

Family

ID=14574343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61111955A Expired - Fee Related JP2519420B2 (en) 1986-05-16 1986-05-16 Ferroelectric liquid crystal electro-optical device

Country Status (1)

Country Link
JP (1) JP2519420B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525453B2 (en) * 1988-05-06 1996-08-21 キヤノン株式会社 Liquid crystal device and driving method thereof
JP2507784B2 (en) * 1988-06-28 1996-06-19 キヤノン株式会社 Liquid crystal device and driving method thereof
JP2733344B2 (en) * 1989-10-27 1998-03-30 キヤノン株式会社 Display device
CN110796989A (en) * 2019-11-08 2020-02-14 广州小鹏汽车科技有限公司 Control circuit of display screen, display screen and vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5741691A (en) * 1980-08-25 1982-03-08 Sharp Kk Liquid crystal driving device
JPS6118929A (en) * 1984-07-05 1986-01-27 Seiko Instr & Electronics Ltd Liquid-crystal display device

Also Published As

Publication number Publication date
JPS62269122A (en) 1987-11-21

Similar Documents

Publication Publication Date Title
US6535191B1 (en) Liquid crystal display device
JPS63249897A (en) Display device and driving thereof
JP2915104B2 (en) Liquid crystal element and liquid crystal driving method
JP2849740B2 (en) Ferroelectric liquid crystal electro-optical device
JP2519420B2 (en) Ferroelectric liquid crystal electro-optical device
JPH04249290A (en) Driving method of liquid crystal electro-optical element
US4762400A (en) Ferroelectric liquid crystal electro-optical device having half-select voltage to maximize contrast
JP2673805B2 (en) Ferroelectric liquid crystal electro-optical device
JP2593657B2 (en) Ferroelectric liquid crystal electro-optical device
JP2000019485A (en) Method for driving liquid crystal device
JPH06194625A (en) Driving method for ferroelectric liquid crystal display element
JP2628156B2 (en) Ferroelectric liquid crystal electro-optical device
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JP2626973B2 (en) Ferroelectric liquid crystal electro-optical device
JPH0695179B2 (en) Driving method of liquid crystal matrix display panel
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP2650286B2 (en) Driving method of liquid crystal element
JP3233925B2 (en) Driving method of ferroelectric liquid crystal device
JPH09222592A (en) Driving method for antiferroelectric liquid crystal element
JPS61223828A (en) Method for driving optical switching element
JPH0651280A (en) Driving method for ferroelectric liquid crystal element
JPH09265077A (en) Anti-ferroelectric liquid crystal element drive method
JPH11311773A (en) Method for driving liquid crystal element
JPH06175101A (en) Driving method for ferroelectric liquid crystal display element
JPH03240023A (en) Driving method for liquid crystal element

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees