JP2551025B2 - Liquid crystal light modulator - Google Patents

Liquid crystal light modulator

Info

Publication number
JP2551025B2
JP2551025B2 JP62232883A JP23288387A JP2551025B2 JP 2551025 B2 JP2551025 B2 JP 2551025B2 JP 62232883 A JP62232883 A JP 62232883A JP 23288387 A JP23288387 A JP 23288387A JP 2551025 B2 JP2551025 B2 JP 2551025B2
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
light
grating
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62232883A
Other languages
Japanese (ja)
Other versions
JPS6476028A (en
Inventor
幸俊 大久保
薫央 堀田
修 浜本
悦朗 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62232883A priority Critical patent/JP2551025B2/en
Publication of JPS6476028A publication Critical patent/JPS6476028A/en
Application granted granted Critical
Publication of JP2551025B2 publication Critical patent/JP2551025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液晶分子の配向制御を行うことにより光変調
を行った液晶光変調器に関し、特に透過型光変調に好適
な液晶光変調器に関するものである。
Description: TECHNICAL FIELD The present invention relates to a liquid crystal optical modulator that performs optical modulation by controlling the alignment of liquid crystal molecules, and more particularly to a liquid crystal optical modulator suitable for transmissive optical modulation. It is a thing.

(従来の技術) 従来より回析格子と液晶を組み合わせる技術はいくつ
かの異なる目的において知られている。
(Prior Art) Conventionally, a technology of combining a diffraction grating and a liquid crystal is known for several different purposes.

その一つとして、基板表面に周期的規則性のある溝を
形成し、該溝の上に液晶を配置したものが、溝に沿って
液晶分子が配向するという配向能力を示す現象を利用し
た技術がある。
As one of them, a technique utilizing a phenomenon in which a groove having periodic regularity is formed on a substrate surface and a liquid crystal is arranged on the groove shows an alignment ability that liquid crystal molecules are aligned along the groove. There is.

該配向処理としての溝形成は、特に回折格子として機
能することを主目的としていないので、極めて浅い溝が
作られれば良く、特に溝を形成する材料と液晶の屈折率
差(Δn)とその厚みd、即ち位相差Δndについて考慮
したものではなかった。
Since the groove formation as the alignment treatment is not mainly intended to function as a diffraction grating, an extremely shallow groove may be formed. In particular, the difference in refractive index (Δn) between the material forming the groove and the liquid crystal and the thickness thereof. d, that is, the phase difference Δnd was not taken into consideration.

又、反射特性の異なる材質で、微少な格子を形成さ
せ、該格子の偏光機能を利用した格子部材と液晶とを組
み合わせる方法が知られている。該方法も偏光特性を常
時発揮する為の構成として、金属等の反射率の大きな材
料で格子を形成するもので液晶材との屈折率差や格子材
の厚み等を考慮した技術ではない。
Further, a method is known in which a minute grating is formed of materials having different reflection characteristics, and a grating member utilizing the polarization function of the grating and a liquid crystal are combined. This method also forms a grating with a material having a large reflectance, such as a metal, as a configuration for constantly exhibiting polarization characteristics, and is not a technique that considers the difference in refractive index from the liquid crystal material, the thickness of the grating material, and the like.

一方、透明部材で格子を形成し、該格子間の溝に液晶
を配置した位相回折格子が知られている。
On the other hand, there is known a phase diffraction grating in which a grating is formed by a transparent member and a liquid crystal is arranged in a groove between the gratings.

更に、特公昭53−3928号公報に開示されている表示素
子は単なる装飾効果を示す為のものであり、文字や画像
の表示を行う為、あるいは光束の透過、遮断を制御する
光変調素子としての機能は有していなかった。
Further, the display element disclosed in Japanese Patent Publication No. 53-3928 is for merely displaying a decorative effect, and is used as a light modulation element for displaying characters and images, or for controlling transmission and blocking of light flux. It did not have the function of.

又、USP4,251,137に開示されている可変減色フィルタ
ー素子あ回折格子間に配列した液晶を電界によりそのダ
イレクタ(液晶の分子の長軸方向の向き)を変え、一定
角度で液晶セルを透過する光について格子と液晶間の屈
折率差を変化させ、これにより回折効果が変化すること
を利用するものである。
In addition, the variable subtractive filter element disclosed in USP 4,251,137 changes the director (direction of the long axis direction of liquid crystal molecules) of liquid crystal arranged between diffraction gratings by an electric field, and transmits light through the liquid crystal cell at a constant angle. Is used to change the refractive index difference between the grating and the liquid crystal, which changes the diffraction effect.

しかしながら、該可変減色フィルター素子は回折格子
の作成と液晶の封入に関して技術的困難を有し、かつ動
作特性が不充分であるという欠点を有していた。即ち、
実際に使用可能な液晶材料で、比較的大きな屈折率差
(Δn)を用いていても充分な回折効果を得る為には格
子ピッチに対し溝の深さが大である格子を形成しなけれ
ばならない。
However, the variable subtractive color filter element has technical drawbacks regarding the production of the diffraction grating and the encapsulation of the liquid crystal, and has the drawback that the operating characteristics are insufficient. That is,
With a liquid crystal material that can be actually used, even if a relatively large refractive index difference (Δn) is used, in order to obtain a sufficient diffraction effect, it is necessary to form a grating having a large groove depth with respect to the grating pitch. I won't.

特に3μm以下のピッチと同等の深さを有する格子が
光学的に有効で、この様な大きさの加工技術は半導体デ
バイスの最先端技術を用いなければならなかった。
In particular, a grating having a depth equivalent to a pitch of 3 μm or less is optically effective, and the processing technology of such a size has to use the latest technology of semiconductor devices.

他方、動作特性の問題としては、この様に深い溝中に
入った液晶が基板上下面から拘束力に加えて、格子の左
右壁面からの拘束を同等以上の力で受けるということで
ある。
On the other hand, the problem of the operating characteristics is that the liquid crystal entered in such a deep groove is restrained by the upper and lower surfaces of the substrate and is restrained by the left and right wall surfaces of the lattice with an equal force or more.

その為、液晶分子の長軸が溝方向に安定して配列する
が、逆に外力によって異なる配向状態に変化させようと
する時に大きな抵抗力を持つことになる。
Therefore, the long axes of the liquid crystal molecules are stably aligned in the groove direction, but on the contrary, a large resistance force is exerted when the liquid crystal molecules are changed into different alignment states by an external force.

このことは外力、即ちセル内に印加される電界によっ
て容易に初期の配向が壊れないこと、又、時分割特性で
必要とする急峻な電圧透過率特性(闘値特性)が得難く
なることを意味している。
This means that the initial orientation is not easily broken by the external force, that is, the electric field applied in the cell, and it is difficult to obtain the steep voltage transmittance characteristic (the threshold value characteristic) required for the time division characteristic. I mean.

又、別の技術として従来より液晶セルに直流電圧を加
え、闘値電圧を越す電圧で、均一な幅を持つ平行な光学
的異方性領域を形成し、該異方性領域が回折現象を示す
ことが知られている。これは'Optical computing with
variable grating motde liquid crytal devices'Proc.
SPIE.1980.218等に示されている。
As another technique, a DC voltage is conventionally applied to a liquid crystal cell to form a parallel optically anisotropic region having a uniform width with a voltage exceeding a threshold voltage, and the anisotropic region causes a diffraction phenomenon. It is known to show. This is'Optical computing with
variable grating motde liquid crytal devices'Proc.
It is shown in SPIE.1980.218 etc.

該回折現象を生じさせる回折格子は、電圧の大小変化
に伴って格子ピッチが変化し、従って回折光の分光特性
が変化する。
In the diffraction grating that causes the diffraction phenomenon, the grating pitch changes as the voltage changes, and the spectral characteristics of the diffracted light change accordingly.

このことは一定の回折条件を維持することを難しくす
ると同時にアナログ的変化である為、前述の闘値特性に
対しても不利益となる。
This makes it difficult to maintain a constant diffraction condition, and at the same time, since it is an analog change, it is also disadvantageous to the threshold value characteristic described above.

(発明が解決しようとする問題点) 本発明は加工性及び生産性が高く、電圧印加に対する
配向部の急峻性が大きく時分割駆動に適しており、又種
々の入射光に対して一定の回折条件を維持することがで
き、しかも表示色は無彩色で色ムラの少ない液晶光変調
器の提供を目的とする。
(Problems to be Solved by the Invention) The present invention has high workability and productivity, has a large steepness of the alignment portion with respect to voltage application, and is suitable for time-division driving. It is an object of the present invention to provide a liquid crystal light modulator that can maintain the conditions, has an achromatic display color, and has less color unevenness.

(問題点を解決するための手段) 液晶を挟持する2枚の基板の少なくとも一方の基板に
少なくとも2種の相異なる液晶配向能を有する微細領域
を複数種の周期で交互に配列して液晶より成る回折格子
を形成し、前記液晶の配向状態を変えることにより入射
光が回折する回折状態から入射光が透過する透過状態へ
変化させることである。
(Means for Solving the Problems) At least two kinds of fine regions having different liquid crystal alignment ability are alternately arranged in a plurality of kinds of cycles on at least one of the two substrates holding the liquid crystal, and Is to form a diffraction grating and change the alignment state of the liquid crystal to change the diffraction state in which the incident light is diffracted to the transmission state in which the incident light is transmitted.

(実施例) 第1図(A)は微細化して配列されてなる相異なる2
種の配向領域の平面図で、ここでは従来のパターンを示
している。
(Embodiment) FIG. 1 (A) shows different 2 which are arranged in a fine structure.
A plan view of the seed alignment region, here showing a conventional pattern.

第1図(B)は本発明の一実施例の液晶光変調器を示
す断面図で、同図(A)の一点鎖線A1,A2における断面
構成を示している。
FIG. 1 (B) is a sectional view showing a liquid crystal light modulator of one embodiment of the present invention, and shows a sectional structure taken along one-dot chain lines A1 and A2 in FIG. 1 (A).

同図(A)においてP0は配向領域のピッチを示し、a
及びbは夫々異った配向領域を示しており、例えばaを
ホメオトロピック、bをホモジニアスな配向領域とす
る。
In the figure (A), P0 represents the pitch of the alignment region, and
Reference numerals b and b indicate different alignment regions, for example, a is a homeotropic region and b is a homogeneous alignment region.

同図(B)において110,111は透明基板でガラス等を
用いる。130,131は透明電極、140,141はホモジニアスな
配向能を示す処理面、150はホメオトロピックな配向能
を示す処理面、160,161,162は液晶分子でダイレクタの
方向を長楕円で示し、円形に近いもの(161)は紙面に
垂直な方向にある分子を示している。170は液晶層、18
は入射光、dはセルギャップである。
In FIG. 1B, 110 and 111 are transparent substrates made of glass or the like. 130 and 131 are transparent electrodes, 140 and 141 are treated surfaces showing a homogeneous alignment ability, 150 is a treated surface showing a homeotropic alignment ability, 160, 161, and 162 are liquid crystal molecules, and the direction of the director is a long ellipse, which is close to a circle (161). It shows the molecules in the direction perpendicular to the plane of the paper. 170 is a liquid crystal layer, 18
Is incident light and d is a cell gap.

同図(A)に示す配向領域を片面に持つ透明基板110
を上基板とし、透明基板111を下基板として該下基板111
には液晶層170側の全面にホモジニアス配向処理面141を
設けている。
A transparent substrate 110 having the alignment region shown in FIG.
As the upper substrate and the transparent substrate 111 as the lower substrate.
In this case, a homogeneous alignment treated surface 141 is provided on the entire surface on the liquid crystal layer 170 side.

本液晶光変調器に対し、上基板110のストライプ方向
に沿う直線偏光(入射光18)が入射されると、ホモジニ
アス配向領域bでは異常屈折率neを感知し、ホメオトロ
ピック配向領域では常屈折率noを感知する。該異常屈折
率neを感知した入射光は厚み方向において下基板111に
向かって回転しつつ異常屈折率neを感知しつづける。
When linearly polarized light (incident light 18) along the stripe direction of the upper substrate 110 is incident on the present liquid crystal light modulator, the extraordinary refractive index n e is sensed in the homogeneous alignment region b and the ordinary refraction in the homeotropic alignment region. sensing the rate n o. The heterologous incident light sensing ordinary refractive index n e continues to sense the extraordinary refractive index n e while rotating toward the lower substrate 111 in the thickness direction.

一方、ホメオトロピック配向領域aに入射した光は常
屈折率noを感知したまま下基板111に向かって進む。
Meanwhile, light incident on the homeotropic region a proceeds toward the lower substrate 111 while sensing the ordinary refractive index n o.

従ってホモジニアスとホメオトロピックと夫々の配向
領域a及びbの間ではne−no=Δnなる屈折率差があ
り、同図(B)に示す厚みdとの積でΔndなる位相差を
生じる。該位相差を図示したピッチP0で持つ時に所定の
回折が得られる。
Therefore, there is a refractive index difference of n e −n o = Δn between the homogeneous and homeotropic regions and the respective alignment regions a and b, and a phase difference Δnd is produced by the product of the thickness d shown in FIG. Predetermined diffraction is obtained when the phase difference is held at the illustrated pitch P0.

第2図(A),(B),(C)は本発明に係る配向領
域のパターン例を示す説明図である。同図(A),
(B),(C)においてa(及び添字付きのa)とb
(及び添字付きb)とは夫々異った配向領域を示してお
り、例えば第1図の如くaをホメオトロピック、bをホ
モジニアス配向領域とする。
FIGS. 2 (A), (B) and (C) are explanatory views showing pattern examples of the alignment region according to the present invention. The same figure (A),
In (B) and (C), a (and a with a subscript) and b
(And subscript b) respectively indicate different alignment regions. For example, a is homeotropic and b is homogeneous alignment region as shown in FIG.

同図(A)は従来のパターン例で配向領域a及びbが
ピッチP0で規則的に配列されている。同図(B)及び
(C)は本発明に係るもので配向領域のパターンのピッ
チを複数個設けた例である。
FIG. 1A shows a conventional pattern example in which the alignment regions a and b are regularly arranged at the pitch P0. FIGS. 9B and 9C relate to the present invention and show an example in which a plurality of pattern pitches in the alignment region are provided.

同図(B)は配向領域a,bとa1,b1とではピッチを異な
らせており、以後配向領域a,bとa1,b1の組み合わせは同
じで、その繰り返しピッチをPcとして規則的に配置して
いる。
In the same figure (B), the pitch is different between the alignment regions a and b and a1 and b1, and the combination of the alignment regions a and b and a1 and b1 is the same thereafter, and the repeating pitch is regularly arranged as Pc. are doing.

同図(C)は2つの配向領域のピッチがP1,P2,P3,P4
の異った4種(順に大きくなる)で、その夫々をl1,l2,
l3,l4の間隔で設けた例で、その時の配向領域を夫々a,b
とa1,b1とa2,b2とa3,b3で示している。
In the same figure (C), the pitch of the two alignment regions is P1, P2, P3, P4.
4 different species (increasing in order), each of which l1, l2,
In the example provided at intervals of l3 and l4, the orientation regions at that time are a and b, respectively.
And a1, b1 and a2, b2 and a3, b3.

第3図(A),(B),(C)は本発明の液晶光変調
器における0次光の分光透過特性を示す説明図である。
同図(A),(B),(C)は後述する2つの数値実施
例を実施した結果得られたものである。
FIGS. 3 (A), (B), and (C) are explanatory views showing the spectral transmission characteristics of the 0th-order light in the liquid crystal light modulator of the present invention.
The figures (A), (B), and (C) are obtained as a result of carrying out two numerical examples described later.

同図(A),(B),(C)において縦軸は透過率T
を表わし、それを任意スケールで示している。横軸は波
長を表わしており、400nmから700nmの可視域を示してい
る。
In FIGS. 9A, 9B and 9C, the vertical axis indicates the transmittance T.
And is shown on an arbitrary scale. The horizontal axis represents the wavelength, which is the visible region from 400 nm to 700 nm.

又、実線は透明電極間に電圧を印加しない時に示す0
次光の分光透過特性を示し、点線は一定の闘値電圧に対
して充分な電圧を印加した場合の透過状態を示してい
る。
The solid line shows 0 when no voltage is applied between the transparent electrodes.
The spectral transmission characteristics of the next light are shown, and the dotted line shows the transmission state when a sufficient voltage is applied to a constant threshold voltage.

同図(A)は従来の第2図(A)に示す異なる2種の
配向領域が等ピッチの液晶光変調器の分光透過特性を示
している。同図から明らかなように最大の回折が生じる
のは分光透過率が最も低くなる特定の波長の時である。
FIG. 2A shows the spectral transmission characteristics of the liquid crystal light modulator in which two different kinds of alignment regions shown in FIG. As is clear from the figure, the maximum diffraction occurs at a specific wavelength where the spectral transmittance becomes the lowest.

従って、充分な回折を得る為には使用する光源が特定
波長付近のものに限られてしまい、種々の光に対して所
定の視認性が要求される表示用途においては好ましくな
い。
Therefore, in order to obtain sufficient diffraction, the light source used is limited to a light source near a specific wavelength, which is not preferable in a display application in which predetermined visibility is required for various lights.

同図(B)及び(C)は本発明の液晶光変調器の分光
透過特性を示したもので、同図(A)の場合とは異なり
光源の使用波長による分光透過特性の変動はわずかであ
る。
FIGS. 9B and 9C show the spectral transmission characteristics of the liquid crystal optical modulator of the present invention. Unlike the case of FIG. 9A, the spectral transmission characteristics vary slightly depending on the operating wavelength of the light source. is there.

従って、本液晶光変調器は種々の光環境(光源)に対
して所定の充分な視認性が得られる利点を有している。
Therefore, the present liquid crystal light modulator has an advantage that a predetermined sufficient visibility can be obtained in various light environments (light sources).

本発明の有効な利用目的は電圧を印加しない時の回折
状態と電圧を印加した時の透過状態を表示器や光変調器
として用いる点にある。
The effective purpose of the present invention is to use the diffraction state when no voltage is applied and the transmission state when a voltage is applied as a display or an optical modulator.

又、従来回折格子のピッチやストライプパターンの幅
が常に一定に高精度に製造できれば表示色は一定の色相
を呈するが、実際は多少の誤差を生じる為、それが色ム
ラとして視認されていた。
Moreover, if the pitch of the diffraction grating and the width of the stripe pattern are always constant and can be manufactured with high precision, the display color exhibits a constant hue, but in reality, some errors occur, which are visually recognized as color unevenness.

しかし、本発明においては回折格子の代わりに相異な
る2種の配向領域をストライプ状に複数のピッチで形成
する為、印刷等の表面パターニングを行うだけで良いの
で、作製精度が高くなり表示色の色ムラが最小減に抑え
ることができる。
However, in the present invention, since two different types of orientation regions are formed in stripes at a plurality of pitches instead of the diffraction grating, it suffices to perform surface patterning such as printing, resulting in high manufacturing accuracy and display color. Color unevenness can be minimized.

次に2つの数値実施例を示す。 Next, two numerical examples will be shown.

(数値実施例1) 厚さ1.1mmで300×300mmの青板ガラス面にIn2O3を主成
分とする厚さ300Åから500Åの透明導電膜を形成し、こ
の上に厚さ300Åから800Åのポリイミドを順次積層した
基板上にフォトレジストAZ−1350J(シュプレー社製)
又はOFR−77(東京応化製)等のポジタイプレジスタを
スピン塗布し、80℃で10分間加熱してから第2図(B)
に示すパターンで、ピッチPcが4.5μm、4種のストラ
イプ幅が各々0.3,0.6,1.2,2.4μmを露光焼き付けし、
所定の現像液にて現像、乾燥し、この表面をFS−116の
0.5wt%ダイフロン溶液で浸漬塗布し、100℃で20分間乾
燥した。この後、残されたフォトレジスト部をその表面
に塗布されていたFS−116と共にアセトン、MEK等の剥離
液を用いて溶解除去し、更に150℃から200℃で1時間加
熱して焼き付ける。このようにしてできた基板に対しス
トライプ方向へラビングを行って上基板とし、他方全面
にポリイミド処理を行い、上基板と直交する方向にラビ
ングした下基板をセルギャップが2.0μmとなるように
スペーサ材を介して配置た。該上下基板間にネマティッ
ク液晶RO−TN403(ロッシュ製)を充填し、周囲を密閉
して液晶セルを構成した。該液晶セルは電圧無印加で回
折し、2.6Vで回折が略消滅し、透過状態となった。この
時の回折状態での分光透過率特性を第3図(B)に示し
ている。
(Numerical Example 1) A transparent conductive film having a thickness of 300 Å to 500 Å, which has In 2 O 3 as a main component, is formed on a blue glass plate having a thickness of 1.1 mm and a size of 300 x 300 mm, and a thickness of 300 Å to 800 Å is formed on the transparent conductive film. Photoresist AZ-1350J (manufactured by Spree) on a substrate in which polyimide is sequentially laminated.
Alternatively, spin-coat a positive type resistor such as OFR-77 (manufactured by Tokyo Ohka Co., Ltd.) and heat at 80 ° C for 10 minutes.
In the pattern shown in, the pitch Pc is 4.5 μm, and four kinds of stripe widths are 0.3, 0.6, 1.2, and 2.4 μm, respectively.
Develop with a prescribed developer and dry, and then clean this surface with FS-116.
It was dip coated with a 0.5 wt% diflon solution and dried at 100 ° C. for 20 minutes. After that, the remaining photoresist portion is dissolved and removed together with FS-116 applied on the surface thereof using a stripping solution such as acetone or MEK, and is further heated and baked at 150 to 200 ° C. for 1 hour. The substrate thus obtained is rubbed in the stripe direction to form an upper substrate, the other surface is subjected to polyimide treatment, and the lower substrate rubbed in a direction orthogonal to the upper substrate is provided with a spacer so that the cell gap becomes 2.0 μm. Placed through the material. A nematic liquid crystal RO-TN403 (made by Roche) was filled between the upper and lower substrates, and the periphery was sealed to form a liquid crystal cell. The liquid crystal cell was diffracted without applying a voltage, and the diffraction was substantially extinguished at 2.6 V, and the liquid crystal cell was in a transmissive state. The spectral transmittance characteristic in the diffracted state at this time is shown in FIG.

(数値実施例2) 数値実施例1と同様の材料構成で第2図(C)に示す
配向領域パターンを構成する。ピッチP1,P2,P3,P4は夫
々0.6μm,1.2μm,2.4μm,4.8μmで各々約10μmずつ形
成し、a,a1,a2,a3にホメオトロピック、b,b1,b2,b3のホ
ロジニアスな配向を付与し、セルギャップ2μmのセル
を作成した。このセルの電圧無印加時の分光透過率特性
を第3図(C)に示す。
(Numerical Example 2) The alignment region pattern shown in FIG. 2 (C) is formed with the same material configuration as that of Numerical Example 1. The pitches P1, P2, P3, P4 are 0.6 μm, 1.2 μm, 2.4 μm, and 4.8 μm, respectively, and each is formed with about 10 μm. A cell having a cell gap of 2 μm was prepared by giving orientation. The spectral transmittance characteristic of this cell when no voltage is applied is shown in FIG.

次に比較の為に第2図(A)に示す従来のパターンを
数値実施例1と同様の材料構成でピッチP0=2μmにて
作成し、前記同様の液晶セルをセルギャップ2μmで構
成した。この時の0次光の分光透過率特性は第3図
(A)に示している。
Next, for comparison, a conventional pattern shown in FIG. 2 (A) was formed with the same material configuration as in Numerical Example 1 with a pitch P0 of 2 μm, and the same liquid crystal cell was formed with a cell gap of 2 μm. The spectral transmittance characteristic of the 0th-order light at this time is shown in FIG.

本構成例と前記2つの本発明の数値実施例を比較する
と従来の等ピッチのパターンを有する本液晶セルは第3
図(A)から明らかなように分光透過率を最も小さくす
る波長では前記2つの数値実施例より低い透過特性を示
すが強い青色を呈していた。又、本液晶セルは表示色に
紫の色ムラが表われていた。
Comparing the present configuration example with the two numerical embodiments of the present invention, the present liquid crystal cell having a pattern of equal pitch is the third one.
As is clear from FIG. 6A, at the wavelength that minimizes the spectral transmittance, the transmission characteristics are lower than those of the two numerical examples, but a strong blue color is exhibited. Further, the liquid crystal cell of the present invention showed purple color unevenness in the display color.

一方、第3図(B),(C)に示す本発明の液晶セル
の場合は最低透過率は同図(A)の場合と比較してやや
大きくなっているが、全体として無彩色化され、やや濁
った暗色を呈していた。しかし、色ムラはほとんど視認
されなかった。
On the other hand, in the case of the liquid crystal cell of the present invention shown in FIGS. 3B and 3C, the minimum transmittance is slightly higher than that in the case of FIG. 3A, but it is achromatic as a whole, It had a slightly cloudy dark color. However, color unevenness was hardly visible.

(発明の効果) 本発明によれば格子形成による回折格子ではなく、配
向処理領域を微細化して配列し、しかも配列ピッチを複
数設けている為、加工性、生産性、信頼性が高く、又液
晶自身の屈折率差を利用する為、小さなΔn値でも有効
であり従来と比較してセルギャップ大で所定の光学特性
が得られ、低い闘値電圧で急峻性が得られる為、時分割
駆動に適しており、又印刷等の表面パターニング形成の
みで良い為、大面積処理や一枚の基板での多面採りが可
能であり、又無彩色化された色ムラの少ない液晶光変調
器を達成することができる。
(Effects of the Invention) According to the present invention, not the diffraction grating formed by the grating, but the alignment treatment regions are arranged in a finely arranged manner and a plurality of arrangement pitches are provided. Therefore, the processability, the productivity, and the reliability are high. Since the difference in the refractive index of the liquid crystal itself is used, even a small Δn value is effective, the prescribed optical characteristics can be obtained with a large cell gap, and steepness can be obtained at a low threshold voltage compared to the conventional method, so time-division driving It is suitable for large area processing and can be applied to multiple surfaces on a single substrate because it only requires surface patterning such as printing. In addition, an achromatic liquid crystal light modulator with less color unevenness is achieved. can do.

【図面の簡単な説明】 第1図(A),(B)は本発明の一実施例を示す説明
図、第2図(A),(B),(C)は本発明の液晶光変
調器における配向領域のパターン例を示す説明図、第3
図(A),(B),(C)は本発明の液晶光変調器にお
ける0次光の分光透過特性を示す説明図である。 図中、110,111は透明基板、130,131は透明電極、140,14
1はホモジニアスな配向処理面、150はホメオトロピック
な配向処理面、160,161,162は液晶分子、170は液晶層、
18は入射光である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (A) and (B) are explanatory views showing an embodiment of the present invention, and FIGS. 2 (A), (B) and (C) are liquid crystal light modulations of the present invention. Explanatory drawing which shows the pattern example of the orientation area | region in a container, 3rd
(A), (B) and (C) are explanatory views showing the spectral transmission characteristics of the 0th order light in the liquid crystal light modulator of the present invention. In the figure, 110 and 111 are transparent substrates, 130 and 131 are transparent electrodes, and 140 and 14
1 is a homogeneous alignment treated surface, 150 is a homeotropic alignment treated surface, 160, 161, 162 are liquid crystal molecules, 170 is a liquid crystal layer,
18 is incident light.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 貴志 悦朗 神奈川県川崎市高津区下野毛770番地 キヤノン株式会社玉川事業所内 (56)参考文献 特開 昭53−94955(JP,A) 特開 昭52−21845(JP,A) 特開 昭56−38329(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Etsuro Takashi 770, Shimonoge, Takatsu-ku, Kawasaki City, Kanagawa Canon Inc. Tamagawa Plant (56) Reference JP-A-53-94955 (JP, A) JP-A-52- 21845 (JP, A) JP-A-56-38329 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液晶を挟持する2枚の基板の少なくとも一
方の基板に少なくとも2種の相異なる液晶配向能を有す
る微細領域を複数種の周期で交互に配列して液晶より成
る回折格子を形成し、前記液晶の配向状態を変えること
により入射光が回折する回折状態から入射光が透過する
透過状態へ変化させることを特徴とする液晶光変調器。
1. A diffraction grating made of liquid crystal is formed by alternately arranging at least two kinds of fine regions having different liquid crystal aligning ability on at least one of the two substrates sandwiching the liquid crystal with a plurality of kinds of periods. Then, the liquid crystal light modulator is characterized in that by changing the alignment state of the liquid crystal, a diffractive state in which incident light is diffracted is changed to a transmissive state in which incident light is transmitted.
JP62232883A 1987-09-17 1987-09-17 Liquid crystal light modulator Expired - Fee Related JP2551025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62232883A JP2551025B2 (en) 1987-09-17 1987-09-17 Liquid crystal light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62232883A JP2551025B2 (en) 1987-09-17 1987-09-17 Liquid crystal light modulator

Publications (2)

Publication Number Publication Date
JPS6476028A JPS6476028A (en) 1989-03-22
JP2551025B2 true JP2551025B2 (en) 1996-11-06

Family

ID=16946334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62232883A Expired - Fee Related JP2551025B2 (en) 1987-09-17 1987-09-17 Liquid crystal light modulator

Country Status (1)

Country Link
JP (1) JP2551025B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210627A (en) * 1990-05-31 1993-05-11 Mitsubishi Denki Kabushiki Kaisha Optical record and reproduction apparatus with liquid crystal panel that rotates light followed by a polarizer or birefringent plate
JP2801102B2 (en) * 1991-02-01 1998-09-21 富士通株式会社 Liquid crystal display
US6525860B1 (en) * 2000-05-18 2003-02-25 Raytheon Company Electronically variable light attenuator
CN107589566B (en) * 2017-07-28 2020-09-15 深圳吉迪思电子科技有限公司 Photosensitive assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843723B2 (en) * 1975-08-13 1983-09-28 大日本塗料株式会社 Exiyososhi
JPS5394955A (en) * 1977-01-28 1978-08-19 Seiko Epson Corp Liquid crystal display device
JPS595848Y2 (en) * 1979-08-29 1984-02-22 大日本印刷株式会社 liquid crystal display element

Also Published As

Publication number Publication date
JPS6476028A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
US4878742A (en) Liquid crystal optical modulator
US5148302A (en) Optical modulation element having two-dimensional phase type diffraction grating
US4850681A (en) Optical modulation device
US6172792B1 (en) Method and apparatus for forming optical gratings
US7557979B2 (en) Electro-optic crystal, diffraction-based, beam-steering element
US5610743A (en) Liquid crystal display including concentric shapes and radial spokes which has an improved viewing angle
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
KR100336886B1 (en) Reflective liquid crystal display device with high opening rate and high transmittance and its manufacturing method
Murai et al. Electro-optic properties for liquid crystal phase gratings
US4822146A (en) Optical modulation element
JP2551025B2 (en) Liquid crystal light modulator
JP3156303B2 (en) Manufacturing method of liquid crystal phase diffraction grating
JP3144011B2 (en) Liquid crystal phase grating
JPH0652351B2 (en) Light modulator
JP3412775B2 (en) Liquid crystal element
JPH0616139B2 (en) Liquid crystal light modulator
JPH0652350B2 (en) Light modulator
JPS62238594A (en) Display element
JPS6338918A (en) Liquid crystal optical modulator
JPH1062798A (en) Diffraction type liquid crystal display panel
JP2629544B2 (en) Liquid crystal element and manufacturing method thereof
JPS62237424A (en) Light modulating element
JPH0776815B2 (en) Light modulator
JPH0646273B2 (en) Color liquid crystal display element
JPS62237427A (en) Light modulating element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees