JP2581165B2 - Organic thin film EL device - Google Patents

Organic thin film EL device

Info

Publication number
JP2581165B2
JP2581165B2 JP14298788A JP14298788A JP2581165B2 JP 2581165 B2 JP2581165 B2 JP 2581165B2 JP 14298788 A JP14298788 A JP 14298788A JP 14298788 A JP14298788 A JP 14298788A JP 2581165 B2 JP2581165 B2 JP 2581165B2
Authority
JP
Japan
Prior art keywords
thin film
organic
layer
film layer
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14298788A
Other languages
Japanese (ja)
Other versions
JPH01312874A (en
Inventor
雅康 石子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14298788A priority Critical patent/JP2581165B2/en
Publication of JPH01312874A publication Critical patent/JPH01312874A/en
Application granted granted Critical
Publication of JP2581165B2 publication Critical patent/JP2581165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/832Electrodes characterised by their material
    • H10H20/833Transparent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は平面光源やディスプレイに利用される有機薄
膜EL(電界発光)素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an organic thin film EL (electroluminescence) element used for a flat light source and a display.

〔従来の技術〕[Conventional technology]

有機物質を原料としてEL素子は、安価な大面積フルカ
ラー表示素子を実現するものとして注目を集め、一時期
活発に研究されたものの、ZnS:Mn系の無機薄膜EL素子に
比べ輝度が低く、特性劣化も激しかったため、実用には
到らなかった。また駆動電圧がDC100V程度と高かった事
も実用化への障害になっていた。
EL devices using organic materials as raw materials have attracted attention as realizing inexpensive large-area full-color display devices, and have been actively researched for a while, but have lower brightness than ZnS: Mn-based inorganic thin-film EL devices and have deteriorated characteristics. And it was not practical. In addition, the fact that the drive voltage was as high as DC 100V was an obstacle to practical application.

ところが、最近有機薄膜を2層構造にした新しいタイ
プの有機薄膜EL素子が報告され、この素子に強い関心が
集められている。(参考文献:アプライド・フィジック
ス・レターズ,51巻,913ページ,1987年)。この文献によ
れば螢光性金属キレート錯体を有機螢光体薄膜層に、ア
ミン系材料を正孔伝導層に使用して明るい緑色発光が得
られ、6〜7Vの直流電圧印加で数100cd/m2の輝度を有
し、最大螢光効率は1.51m/Wと、実用レベルに近い性能
を持っていることが報告されている。
However, recently, a new type of organic thin film EL device in which an organic thin film has a two-layer structure has been reported, and this device has attracted strong interest. (Reference: Applied Physics Letters, vol. 51, p. 913, 1987). According to this document, bright green light emission can be obtained by using a fluorescent metal chelate complex in an organic phosphor thin film layer and an amine-based material in a hole conduction layer, and a few hundred cd / d by applying a DC voltage of 6 to 7 V. It has a luminance of m 2 and a maximum fluorescence efficiency of 1.51 m / W, which is reported to be close to practical levels.

この2層有機薄膜EL素子は、第3図に示すようにガラ
ス基板21上に透明電極22を形成し、その上に正孔注入層
23と有機薄膜発光層24とをそれぞれ500Å程度積層し、
最上層に背面電極25を形成してシール用カバー26で覆っ
たものである。
In this two-layer organic thin film EL device, a transparent electrode 22 is formed on a glass substrate 21 as shown in FIG.
23 and the organic thin film light emitting layer 24 are each laminated about 500 mm,
The back electrode 25 is formed on the uppermost layer and is covered with a sealing cover 26.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、前述した従来の2層構造の有機薄膜EL素子
は、初期特性としては実用レベルの発光特性を持ってい
る。しかし、問題は発光特性の劣化が非常に速いことで
ある。例えば、乾燥アルゴン中で5mA/cm2の一定電流で
駆動したところ、初期50cd/m2であった輝度が100時間後
15〜20cd/m2に低下した。この間、印加電圧は約5.5Vよ
り14Vに上昇している。また、素子製造過程に充分注意
を払い、さらに素子にシールをしても、この劣化を防止
することが困難であった。EL素子として実用化のために
は、少なくとも一定電圧印加のもとで輝度半減時間が10
00時間であることが必要である。
By the way, the above-mentioned conventional organic thin-film EL element having a two-layer structure has a practical level of emission characteristics as initial characteristics. However, the problem is that the light emission characteristics deteriorate very quickly. For example, was driven at a constant current of 5 mA / cm 2 with dry argon during the initial 50 cd / m 2 at a luminance is after 100 hours
It decreased to 15-20 cd / m 2 . During this time, the applied voltage has increased from about 5.5V to 14V. In addition, it has been difficult to prevent the deterioration even if the element manufacturing process is paid sufficient attention and the element is sealed. For practical use as an EL element, at least a luminance half-life of 10
It must be 00 hours.

本発明の目的は上記課題を解決した有機薄膜EL素子を
提供することにある。
An object of the present invention is to provide an organic thin-film EL device that solves the above-mentioned problems.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明による有機薄膜EL素
子においては、少なくとも一方が透明である一対の電極
間に、有機螢光体薄膜層と、該層の一面に接して積層さ
れた正孔伝導性を示す無機半導体薄膜層と、前記有機螢
光体薄膜層の他方の面に接して積層された電子伝導性を
示す無機半導体薄膜層との三層の積層構造を有するもの
である。
In order to achieve the above object, in an organic thin film EL device according to the present invention, an organic phosphor thin film layer and a hole conduction layer stacked in contact with one surface of the layer are provided between a pair of electrodes at least one of which is transparent. It has a three-layer structure of an inorganic semiconductor thin film layer exhibiting electrical conductivity and an inorganic semiconductor thin film layer exhibiting electron conductivity laminated in contact with the other surface of the organic phosphor thin film layer.

〔作用〕[Action]

第3図に示す従来の2層有機薄膜EL素子をガラスで充
分にシールをし、その素子を乾燥アルゴン中でエージン
グ試験をしたところ、さきに述べたように輝度低下・発
光闘値電圧の上昇という劣化が生じた。この劣化原因を
詳細に調査した結果、以下に示す2点が主な原因であっ
た。一つは正孔注入層からの正孔注入効率が低下してい
ること、他の一つは背面電極界面の劣化であった。正孔
注入効率の低下は、素子駆動時に発生する0.2W/cm2
後のジュール熱で、一般に耐熱性の劣る有機正孔注入層
材の変質と、通電自体による正孔注入層の高抵抗化に
より生じている。背面電極界面の劣化は、背面電極及
びガラスシール形成時に有機螢光体薄膜層が大気に触
れ、このとき酸素や湿気を吸着すること、高い電子注
入効率を持つマグネシウム等化学的活性の高い金属を使
用しているため、電極界面で電気化学反応が生じること
による。
The conventional two-layer organic thin-film EL device shown in FIG. 3 was sufficiently sealed with glass, and the device was subjected to an aging test in dry argon. As described above, the brightness decreased and the emission threshold voltage increased. Degradation occurred. As a result of investigating the cause of this deterioration in detail, the following two points were the main causes. One was that the hole injection efficiency from the hole injection layer was reduced, and the other was the deterioration of the back electrode interface. Reduction in hole injection efficiency is a 0.2 W / cm 2 before and after the Joule heat generated during device operation, generally the alteration of the organic hole injection layer material having low heat resistance, a high resistance of the hole injection layer by energization itself Caused by Deterioration of the back electrode interface is caused by the organic phosphor thin film layer touching the atmosphere when the back electrode and the glass seal are formed, adsorbing oxygen and moisture at this time, and removing highly chemically active metals such as magnesium, which has high electron injection efficiency. Due to the use, an electrochemical reaction occurs at the electrode interface.

上記、及びは使用材料そのものに由来した問題
であり、プロセスの改善や素子構造の改造では解決でき
ない。更にを解決するためにはシール工程に多くの時
間が必要になり、経済的に不都合である。
The above and are problems originating in the material used, and cannot be solved by improving the process or modifying the element structure. In order to solve the above problem, much time is required for the sealing process, which is economically disadvantageous.

そこで、上記、の問題を解決する手段として従来
の有機正孔注入材料に比べ格段に安定性が優れていると
ともに、高い正孔濃度・移動度を有している正孔伝導
(P)型無機半導体に注目した。さらに背面電極界面の
問題解決の手段として、電子注入効率の高い無機半導体
薄膜を電子注入材料として試みた。本発明は、従来の有
機正孔注入層材料及び電子注入材料の代わりに正孔及び
電子伝導性の無機半導体を正孔注入層及び電子注入層と
して使用した結果、安定な発光特性を有する素子が得ら
れたことに因っている。
Therefore, as a means for solving the above-mentioned problem, a hole-conducting (P) -type inorganic material having much higher stability and higher hole concentration and mobility than conventional organic hole injection materials. I paid attention to semiconductors. Furthermore, as a means for solving the problem of the back electrode interface, an inorganic semiconductor thin film having a high electron injection efficiency was tried as an electron injection material. The present invention uses a hole- and electron-conducting inorganic semiconductor as the hole-injection layer and the electron-injection layer instead of the conventional organic hole-injection layer material and the electron-injection material. It depends on what you got.

正孔及び電子伝導性無機半導体材料としては、Si1-xC
x(0≦X≦1)が実用的に優れていた。非晶質あるい
は微結晶のSi1-xCx薄膜は大面積成膜も容易であり、ド
ーピングによりPN制御することも簡単である。また、通
電や温度により電気特性の劣化も少なく、電極材料との
電気化学的反応もない。従来の素子は電子注入金属材料
に依存していたが、本発明による素子はそのような依存
性が無いためアルミニウム等の金属も使用できるように
なった。更に透光性も優れている。有機螢光体薄膜を形
成後、真空中で連続して電子あるいは正孔注入層を形成
することができるため素子形成後のシール工程を大幅に
短縮できた。
As hole and electron conductive inorganic semiconductor materials, Si 1-x C
x (0 ≦ X ≦ 1) was practically excellent. The amorphous or microcrystalline Si 1-x C x thin film can be easily formed in a large area, and the PN can be easily controlled by doping. In addition, there is little deterioration in electrical characteristics due to energization or temperature, and there is no electrochemical reaction with the electrode material. Conventional devices have relied on electron-injection metal materials, but devices according to the present invention do not have such a dependency, so metals such as aluminum have become available. Furthermore, the translucency is also excellent. After the formation of the organic phosphor thin film, the electron or hole injection layer can be continuously formed in a vacuum, so that the sealing step after forming the element can be greatly reduced.

Si1-xCx以外にCul,CuSやGaAs,ZnTeなどのIII−V族,I
I−VI族化合物をはじめとする各種P型あるいはN型無
機半導体を組み合わせて使用することができる。
In addition to Si 1-x C x , III-V group such as Cul, CuS, GaAs, ZnTe, I
Various P-type or N-type inorganic semiconductors including the I-VI compound can be used in combination.

従来の有機薄膜EL素子は直流低駆動電圧という特徴が
あった。また、有機螢光体材料を使用しているため多色
発光が容易であると期待されていた。しかし、信頼性・
寿命が充分でなかった。これに対し、本発明ではP型お
よびN型無機半導体薄膜より安定にキャリアを注入する
ことにより有機薄膜EL素子の特徴を生かしたまま、従来
より大幅に信頼性が高い素子を提供できる。
The conventional organic thin-film EL element has a feature of a low DC drive voltage. Further, since an organic phosphor material is used, it was expected that multicolor light emission would be easy. However, reliability
The life was not enough. On the other hand, in the present invention, by injecting carriers more stably than the P-type and N-type inorganic semiconductor thin films, it is possible to provide an element having much higher reliability than the conventional one while keeping the characteristics of the organic thin film EL element.

〔実施例〕〔Example〕

以下実施例にしたがって本発明の有機薄膜EL素子を詳
細に説明する。
Hereinafter, the organic thin film EL device of the present invention will be described in detail with reference to Examples.

第1図において、ガラス基板1上に順に透明電極(IT
O)2,P型Si1-xCxによる正孔注入層3,有機螢光体薄膜層
4,N型Si1-xCxによる電子注入層5及び背面電極6が順次
積層されている。すなわち、一対の電極2,6間に、有機
螢光体薄膜層4と、その両面にそれぞれ接して積層され
たP型Si1-xCx薄膜およびN型Si1-xCx薄膜による正孔注
入層3と電子注入層5との三層の積層構造を有するもの
である。なお、その全体はシール用カバー7で覆われて
いる。前記Si1-xCx(0≦X≦1)による正孔注入層3
及び電子注入層5はECRプラズマCVD法で形成した。電気
伝導率は10-3〜101Scm-1程度のP型あるいはN型半導体
薄膜である。薄膜は100〜1000Åであり、ほとんど透明
である。有機螢光体薄膜4の膜厚は50〜1000Å形成し
た。ここに使用した材料は螢光性金属キノリンキレート
錯体である。その化学式を第2図に示す。
In FIG. 1, a transparent electrode (IT
O) 2, P-type Si 1-x C x hole injection layer 3, organic phosphor thin film layer
4, an electron injection layer 5 of N-type Si 1-x C x and a back electrode 6 are sequentially laminated. That is, the organic phosphor thin film layer 4 is provided between the pair of electrodes 2 and 6, and the P-type Si 1-x C x thin film and the N-type Si 1-x C x thin film laminated on and in contact with both surfaces thereof, respectively. It has a three-layer structure of a hole injection layer 3 and an electron injection layer 5. The whole is covered with a seal cover 7. Hole injection layer 3 made of Si 1-x C x (0 ≦ X ≦ 1)
The electron injection layer 5 was formed by an ECR plasma CVD method. It is a P-type or N-type semiconductor thin film having an electric conductivity of about 10 -3 to 10 1 Scm -1 . The film is 100-1000mm and is almost transparent. The thickness of the organic phosphor thin film 4 was formed in the range of 50 to 1000 °. The material used here is a fluorescent metal quinoline chelate complex. The chemical formula is shown in FIG.

背面電極6の材料は、銀マグネシウム合金で、電子ビ
ーム蒸着で約2000Å形成した。
The material of the back electrode 6 was a silver-magnesium alloy, which was formed by electron beam evaporation to about 2000 °.

この素子にITO2側を正、銀マグネシウムによる背面電
極6側を負として約10Vの直流電圧を印加することによ
り、約500cd/m2の明るい緑色発光を得ることができた。
また定電圧印加の状態で100時間エージングを行なった
ところ、輝度低下は10%程度であり、格段に安定性が向
上した。また、周囲温度が70℃、温度が60%RHであって
も劣化は非常に少なかった。
By applying a DC voltage of about 10 V to this device with the ITO2 side being positive and the silver magnesium back electrode 6 side being negative, bright green light emission of about 500 cd / m 2 could be obtained.
When aging was performed for 100 hours with a constant voltage applied, the luminance was reduced by about 10%, and the stability was remarkably improved. Even when the ambient temperature was 70 ° C. and the temperature was 60% RH, the deterioration was very small.

尚、有機螢光体薄膜層4を形成する材料は強い螢光を
示す有機化合物であれば一般に使用することができる。
例えば、本実施例に示したアルミニウムのキノリンキレ
ート錯体を始め、銅,カドニウム,マグネシウム等のキ
ノリン錯体や、金属フタロシアニン錯体等や、アントラ
セン、テトラセン、ナフタセン等の縮合多環化合物全般
とその誘導体が使用できる。本発明は使用される有機螢
光体材料を制限するものではない。
The material for forming the organic phosphor thin film layer 4 can be generally used as long as it is an organic compound exhibiting strong fluorescence.
For example, in addition to the quinoline chelate complex of aluminum shown in this example, quinoline complexes such as copper, cadmium and magnesium, metal phthalocyanine complexes and the like, and condensed polycyclic compounds such as anthracene, tetracene and naphthacene and their derivatives are generally used. it can. The present invention does not limit the organic phosphor materials used.

また、無機正孔あるいは電子注入層3,5もSi1-xCxに限
定するものではなく、他にCuI,CuSあるいはP型のIII−
V,II−VIあるいはIV族半導体薄膜が使用できる。電極は
銀・マグネシウム合金のほか、マグネシウム、インジウ
ム、アルミニウム、スズ、金、白金や銀が使用できた。
ただし、電極が金の場合にはEL発光が弱くなった。
The inorganic hole or electron injection layers 3 and 5 is also not limited to the Si 1-x C x, other CuI, CuS or P-type III-
V, II-VI or IV group semiconductor thin films can be used. Electrodes could be magnesium, indium, aluminum, tin, gold, platinum and silver, as well as silver and magnesium alloys.
However, when the electrode was gold, the EL emission was weak.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の有機薄膜EL素子によれば
次のような効果がある。すなわち、 1)従来の有機薄膜EL素子に比べ、エージングによる輝
度低下が少なくなった。
As described above, according to the organic thin film EL device of the present invention, the following effects can be obtained. That is: 1) The decrease in luminance due to aging was reduced as compared with the conventional organic thin film EL device.

2)従来の有機薄膜EL素子に比べ、周囲温度および湿度
による特性変化が少なくなった。
2) Characteristic changes due to ambient temperature and humidity are reduced as compared to conventional organic thin film EL devices.

3)従来の有機薄膜EL素子に比べ、駆動電圧が低くする
ことができた。これは、低電圧で有効に正孔および電子
を注入できるようになったためである。例えば、DC6Vで
も実用レベルの輝度が得られた。
3) The driving voltage can be reduced as compared with the conventional organic thin film EL device. This is because holes and electrons can be effectively injected at a low voltage. For example, a practical level of luminance was obtained even with 6 VDC.

このように本発明により有機薄膜EL素子を実用レベル
まで引き上げることができ、その工業的価値は高い。
As described above, the present invention can raise the organic thin film EL element to a practical level, and its industrial value is high.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る有機薄膜EL素子の断面構
造を示す図、第2図は本発明に用いた螢光性金属キノリ
ンキレート錯体の化学式を示す図、第3図は従来の有機
薄膜EL素子の断面構造を示す図である。 1……ガラス基板、2……透明電極 3……P型Si1-xCx薄膜(正孔伝導性を示す無機半導体
薄膜層) 4……有機螢光体薄膜層 5……N型Si1-xCx薄膜(電子伝導性を示す無機半導体
薄膜層) 6……背面電極
FIG. 1 is a diagram showing a cross-sectional structure of an organic thin film EL device according to an embodiment of the present invention, FIG. 2 is a diagram showing a chemical formula of a fluorescent metal quinoline chelate complex used in the present invention, and FIG. FIG. 2 is a diagram showing a cross-sectional structure of an organic thin film EL device. DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Transparent electrode 3 ... P-type Si1 - xCx thin film (inorganic semiconductor thin film layer showing hole conductivity) 4 ... Organic phosphor thin film layer 5 ... N-type Si 1-x C x thin film (inorganic semiconductor thin film layer showing electron conductivity) 6 ... Back electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一方が透明である一対の電極間
に、有機螢光体薄膜層と、該層の一面に接して積層され
た正孔伝導性を示す無機半導体薄膜層と、前記有機螢光
体薄膜層の他方の面に接して積層された電子伝導性を示
す無機半導体薄膜層との三層の積層構造を有することを
特徴とする有機薄膜EL素子。
1. An organic phosphor thin film layer between a pair of electrodes, at least one of which is transparent, a hole conductive inorganic semiconductor thin film layer laminated on one surface of said organic phosphor thin film layer, and said organic phosphor thin film layer. An organic thin-film EL device having a three-layer structure including an inorganic semiconductor thin film layer exhibiting electron conductivity, which is stacked in contact with the other surface of the optical thin film layer.
JP14298788A 1988-06-09 1988-06-09 Organic thin film EL device Expired - Lifetime JP2581165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14298788A JP2581165B2 (en) 1988-06-09 1988-06-09 Organic thin film EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14298788A JP2581165B2 (en) 1988-06-09 1988-06-09 Organic thin film EL device

Publications (2)

Publication Number Publication Date
JPH01312874A JPH01312874A (en) 1989-12-18
JP2581165B2 true JP2581165B2 (en) 1997-02-12

Family

ID=15328298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14298788A Expired - Lifetime JP2581165B2 (en) 1988-06-09 1988-06-09 Organic thin film EL device

Country Status (1)

Country Link
JP (1) JP2581165B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207488A (en) * 1989-02-07 1990-08-17 Mitsui Toatsu Chem Inc Thin film type luminescent element
JP2895868B2 (en) * 1989-08-21 1999-05-24 出光興産株式会社 Organic electroluminescence device
JPH03107861U (en) * 1990-02-21 1991-11-06
JPH03262170A (en) * 1990-03-13 1991-11-21 Toshiba Corp Organic/inorganic junction type semiconductor element
US6433355B1 (en) 1996-06-05 2002-08-13 International Business Machines Corporation Non-degenerate wide bandgap semiconductors as injection layers and/or contact electrodes for organic electroluminescent devices
EP1009198A4 (en) * 1998-06-26 2006-08-23 Idemitsu Kosan Co LUMINESCENT DEVICE
JP2000315581A (en) * 1999-04-30 2000-11-14 Idemitsu Kosan Co Ltd Organic electroluminescence device and method of manufacturing the same
WO2008075615A1 (en) 2006-12-21 2008-06-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
CN113036043B (en) * 2019-12-24 2022-05-27 Tcl科技集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276576A (en) * 1985-09-30 1987-04-08 Toshiba Corp Injection type light emitting element

Also Published As

Publication number Publication date
JPH01312874A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
JP2636341B2 (en) Organic thin film EL device
US7358538B2 (en) Organic light-emitting devices with multiple hole injection layers containing fullerene
JP2701738B2 (en) Organic thin film EL device
KR100718765B1 (en) Organic electroluminescent divice comprising a buffer layer and method for fabricating the same
JP4138912B2 (en) Double-layer electron injection electrode for use in electroluminescent devices
US6483236B1 (en) Low-voltage organic light-emitting device
CN100592515C (en) OLED devices with reduced short circuits
JP4951626B2 (en) Organic component
US20060228543A1 (en) Metal/fullerene anode structure and application of same
US20050012448A1 (en) Organic light emitting diode (oled)
JPH03152184A (en) El element of organic thin film
JP2009521110A (en) Electronic device having a layer structure of an organic layer
JP2008533735A (en) Quantum dot light-emitting diodes containing inorganic electron transport layers
KR101003232B1 (en) Organic light emitting device and manufacturing method thereof
JP2666428B2 (en) Organic thin film EL device
JP2581165B2 (en) Organic thin film EL device
Saikia et al. Organic light-emitting diodes with a perylene interlayer between the electrode–organic interface
CN100420066C (en) Organic electroluminescent element and display device comprising same
JPH07166160A (en) Organic thin film el element
US8102114B2 (en) Method of manufacturing an inverted bottom-emitting OLED device
JPH0210693A (en) Organic thin film el device
US7009749B2 (en) Optical element and manufacturing method therefor
US9755177B2 (en) Organic electroluminescent display panel
JP3253368B2 (en) EL device
JPH1126164A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371