JP2607409B2 - Oxidation-resistant treatment of carbon fiber reinforced carbon composites. - Google Patents

Oxidation-resistant treatment of carbon fiber reinforced carbon composites.

Info

Publication number
JP2607409B2
JP2607409B2 JP3323807A JP32380791A JP2607409B2 JP 2607409 B2 JP2607409 B2 JP 2607409B2 JP 3323807 A JP3323807 A JP 3323807A JP 32380791 A JP32380791 A JP 32380791A JP 2607409 B2 JP2607409 B2 JP 2607409B2
Authority
JP
Japan
Prior art keywords
silicon carbide
oxidation
powder
carbon
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3323807A
Other languages
Japanese (ja)
Other versions
JPH05132384A (en
Inventor
邦彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3323807A priority Critical patent/JP2607409B2/en
Publication of JPH05132384A publication Critical patent/JPH05132384A/en
Application granted granted Critical
Publication of JP2607409B2 publication Critical patent/JP2607409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維強化炭素複合
材(以下「C/C材」という。)の基材面に高温下の酸
化抵抗性に優れる炭化珪素を被覆形成する方法におい
て、所定の部位を除いて被覆層を形成するC/C材の耐
酸化処理法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for coating a substrate surface of a carbon fiber reinforced carbon composite material (hereinafter referred to as "C / C material") with silicon carbide having excellent oxidation resistance at high temperatures. The present invention relates to an oxidation-resistant treatment method for a C / C material that forms a coating layer except for a predetermined portion.

【0002】[0002]

【従来の技術】C/C材は、卓越した比強度、比弾性率
を有するうえに優れた耐熱性および化学的安定性を備え
ているため、航空宇宙用をはじめ多くの分野で構造材料
として有用されている。ところが、この材料には大気中
において 500℃付近から材質酸化を受けるという炭素材
固有の材質的な欠点があり、これが汎用性を阻害する最
大のネックとなっている。このため、C/C材の表面に
耐酸化性の被覆を施して改質化する試みがなされてお
り、例えば炭化珪素、窒化珪素、ジルコニヤ、アルミナ
等の耐熱セラミックス系物質によって被覆処理する方法
が開発されている。このうち、被覆層の形成操作、性状
特性など技術的、経済的の面から炭化珪素の皮膜形成が
最も工業性に適合している。
2. Description of the Related Art C / C materials have excellent specific strength and specific elastic modulus and excellent heat resistance and chemical stability. Therefore, C / C materials are used as structural materials in many fields including aerospace. Have been useful. However, this material has a material defect inherent to carbon material that is oxidized in the atmosphere at around 500 ° C., and this is the biggest bottleneck that hinders versatility. For this reason, attempts have been made to modify the surface of the C / C material by applying an oxidation-resistant coating thereon. For example, a method of coating with a heat-resistant ceramic material such as silicon carbide, silicon nitride, zirconia, or alumina has been proposed. Is being developed. Among them, the formation of a silicon carbide film is most suitable for industrial applications from the technical and economical aspects such as the coating layer forming operation and properties.

【0003】従来、C/C基材の表面に炭化珪素の被覆
を施す方法として、気相反応により生成するSiCを直
接沈着させるCVD法(化学的気相蒸着法)と、基材の
炭素を反応源に利用してSiOガスと反応させることに
よりSiCに転化させるコンバージョン法が知られてい
る。このうち、前者のCVD法を適用して形成した炭化
珪素被覆層は、基材との界面が明確に分離している関係
で熱衝撃を与えると相互の熱膨張差によって層間剥離現
象が起こり易く、高温域での十分な耐酸化性は望めな
い。これに対し、後者のコンバージョン法による場合に
は基材の表層部が連続組織として炭化珪素層を形成する
傾斜機能材質となるため界面剥離を生じることがない。
Conventionally, as a method of coating silicon carbide on the surface of a C / C substrate, a CVD method (chemical vapor deposition method) in which SiC generated by a gas phase reaction is directly deposited, There is known a conversion method of converting SiC by reacting with SiO gas by using it as a reaction source. Among them, the silicon carbide coating layer formed by applying the former CVD method is liable to cause delamination due to a mutual thermal expansion difference when a thermal shock is applied because the interface with the substrate is clearly separated. However, sufficient oxidation resistance in a high temperature range cannot be expected. On the other hand, in the case of the latter conversion method, since the surface layer portion of the base material is a functionally graded material forming a silicon carbide layer as a continuous structure, no interface separation occurs.

【0004】コンバージョン法の改良方法としては、例
えばC/C基材の原料フィラー中に予め炭化珪素の微粉
末を混入しておき熱処理時に耐酸化膜を形成する方法
(特開平2−271963号公報) や、C/C基材を炭化珪素
被覆用の材料中に埋没させて加熱することにより耐酸化
膜を形成する方法(特開平1−179714号公報) 等が提案
されているが、このほかに喰われや反り等の材質欠陥を
伴わずに大型材に対しても容易かつ均一に炭化珪素被覆
層を形成できるC/C材の耐酸化処理手段として、炭素
繊維強化炭素複合材の基材面を多孔炭素質物で被包した
状態で珪素源と炭材からなる組成の被覆材料粉末中に埋
没し、非酸化性雰囲気下で1800〜2000℃に加熱処理して
基材面に炭化珪素の被覆層を形成する方法が本出願人に
より開発されている(特願平3−124694号) 。
[0004] As an improvement method of the conversion method, for example, a method of previously mixing fine powder of silicon carbide in a raw material filler of a C / C base material and forming an oxidation resistant film at the time of heat treatment (JP-A-2-271963) ) And a method of forming an oxidation-resistant film by burying a C / C base material in a material for coating silicon carbide and heating the same (JP-A-1-179714). A carbon fiber reinforced carbon composite material as an oxidation-resistant treatment means for a C / C material capable of easily and uniformly forming a silicon carbide coating layer even on a large material without causing material defects such as erosion and warpage. The surface is buried in a coating material powder of a composition comprising a silicon source and a carbon material in a state of being covered with a porous carbonaceous material, and heat-treated at 1800 to 2000 ° C. in a non-oxidizing atmosphere to form a silicon carbide film on the substrate surface. A method for forming a coating layer has been developed by the present applicant (Japanese Patent Application No. -124,694).

【0005】[0005]

【発明が解決しようとする課題】このように耐酸化処理
を施したC/C材は各種の分野で実用されているが、用
途によっては部材のうち所定部位を耐酸化被覆層の形成
から除外しないと不都合が生じることがある。例えば炭
化珪素被覆を施したC/C材を航空宇宙用部材として使
用する際いは、通常、ボルト等で組み立てられるが、こ
の際ボルトやボルト穴を含めて炭化珪素の被覆層を形成
すると体積増加により螺着や嵌合などの結合作業が困難
となる。このような事態は、比較的体積の増大が少ない
コンバージョン法による炭化珪素被覆を施しても避けら
れない。ボルトのネジ部やボルト穴等は、結合時に相手
部材と密着して大気と接触することはないから本質的に
は耐酸化処理を施す必要なない。
The C / C material subjected to the oxidation-resistant treatment as described above is used in various fields, but depending on the use, a predetermined portion of the member is excluded from the formation of the oxidation-resistant coating layer. Failure to do so may cause inconvenience. For example, when a C / C material coated with silicon carbide is used as an aerospace member, it is usually assembled with bolts or the like. At this time, when a silicon carbide coating layer including bolts and bolt holes is formed, the volume is increased. Due to the increase, the joining operation such as screwing and fitting becomes difficult. Such a situation is unavoidable even when silicon carbide coating is performed by a conversion method in which the volume is relatively small. At the time of connection, the screw portion of the bolt, the bolt hole, and the like do not need to be subjected to oxidation-resistant treatment because they do not come into close contact with the mating member and come into contact with the atmosphere.

【0006】従来、前記の対応として所定部位における
炭化珪素被覆層の形成を防止したり薄膜化するために、
所定部位にカーボン材を当接して珪化反応を抑制するマ
スク法が採られている。しかし、この方法は平板のよう
な単純形状の場合には有効であるが、ボルト穴のような
複雑形状を有する部材には適用が困難であった。
Conventionally, in order to prevent the formation of a silicon carbide coating layer at a predetermined portion or to reduce the thickness,
A mask method has been adopted in which a carbon material is brought into contact with a predetermined portion to suppress a silicidation reaction. However, this method is effective for a simple shape such as a flat plate, but is difficult to apply to a member having a complicated shape such as a bolt hole.

【0007】本発明の目的は、複雑形状の部位であって
もその特定部位に対する炭化珪素の生成を効果的に抑制
し、その他の部分に均一で緻密組織の炭化珪素被覆層を
形成することができるC/C材の耐酸化処理法を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to effectively suppress the formation of silicon carbide in a specific portion even in a portion having a complicated shape, and to form a silicon carbide coating layer having a uniform and dense structure in other portions. It is an object of the present invention to provide a method of oxidizing a C / C material which is possible.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるC/C材の耐酸化処理法は、炭素繊維
強化炭素複合基材の所定部位を熱分解性の熱硬化性樹脂
と炭素質粉末の混合物で被覆してガス遮断膜を形成し、
ついで珪素源と炭材とからなる組成の粉末中に埋没した
状態で非酸化性雰囲気下1600〜2000℃の温度に
加熱して基材面に炭化珪素層の被覆処理を施すことを構
成上の特徴とする。
According to the present invention, there is provided a method for oxidizing a C / C material according to the present invention. To form a gas barrier film by coating with a mixture of
Then, the substrate is coated with a silicon carbide layer by heating to a temperature of 1600 to 2000 ° C. in a non-oxidizing atmosphere while being buried in a powder having a composition comprising a silicon source and a carbon material. Features.

【0009】C/C基材を構成する炭素繊維には、ポリ
アクリロニトリル系、レーヨン系、ピッチ系など各種原
料から製造された平織、朱子織、綾織などの織布を一次
元または多次元方向に配向した繊維体、フェルト、トウ
等が使用され、マトリックス樹脂としてはフェノール
系、フラン系など高炭化性の液状熱硬化性樹脂、タール
ピッチのような熱可塑性物質が用いられる。炭素繊維
は、含浸、塗布などの手段によりマトリックス樹脂で十
分に濡らしたのち半硬化してプリプレグを形成し、つい
で積層加圧成形する。成形体は加熱して樹脂成分を完全
に硬化し、引き続き常法に従って焼成炭化または更に黒
鉛化してC/C基材を得る。また、用途によってはマト
リックス樹脂の含浸、硬化、炭化の処理を反復したり、
CVD法を用いてメタン、プロパン等を原料とする熱分
解炭素を沈着させて組織の緻密化を図ることもできる。
なお、前記焼成炭化時の温度は炭化珪素膜を形成する際
の処理温度よりも高く設定しておくことが望ましい。
The carbon fibers constituting the C / C base material include woven fabrics such as plain weave, satin weave and twill weave made of various materials such as polyacrylonitrile, rayon, pitch, etc. in one-dimensional or multi-dimensional directions. Oriented fibrous bodies, felts, tows and the like are used. As the matrix resin, a phenol-based or furan-based highly carbonizable liquid thermosetting resin, or a thermoplastic material such as tar pitch is used. The carbon fiber is sufficiently wetted with a matrix resin by means of impregnation, coating, or the like, then semi-cured to form a prepreg, and then laminated and pressed. The molded body is heated to completely cure the resin component, and subsequently calcined or carbonized or graphitized in a conventional manner to obtain a C / C base material. Depending on the application, the process of impregnation, curing, and carbonization of the matrix resin may be repeated,
The structure can be densified by depositing pyrolytic carbon using methane, propane, or the like as a raw material by using a CVD method.
It is desirable that the temperature during the firing carbonization be set higher than the processing temperature at the time of forming the silicon carbide film.

【0010】本発明においてC/C基材の所定部位を被
覆する熱分解性の熱硬化性樹脂と炭素質粉末の混合物
は、炭化珪素層の被覆形成時にSiOガスと基材面との
接触を阻止するガス遮断膜として機能し、熱硬化性樹脂
としては最終的に熱分解して揮散するものから選択さ
れ、例えばフェノール系、フラン系、エポキシ系などの
樹脂類が用いらる。また炭素質粉末としては例えば黒
鉛、炭素、コークスなどの粉末が用いられ、平均粒径が
100μm以下、窒素吸着比表面積が1m/g以上の
微粉末を用いることが好適である。この熱硬化性樹脂と
炭素質粉末は所定の割合で混合しペースト状として、所
定の部位に塗布することにより被覆する。両成分の混合
割合は、被覆する所定部位の形状などに応じて適宜に調
整されるが、通常、この配合調整は熱硬化性樹脂。10
0〜200重量部に対し炭素質粉末50〜100重量部
の範囲内でおこなわれる。
In the present invention, the mixture of the thermodegradable thermosetting resin and the carbonaceous powder covering a predetermined portion of the C / C base material makes contact between the SiO gas and the base material surface at the time of forming the silicon carbide layer coating. The thermosetting resin functions as a gas blocking film that blocks the heat, and is selected from thermosetting resins that eventually decompose and volatilize. For example, phenol-based, furan-based, and epoxy-based resins are used. As the carbonaceous powder, for example, a powder of graphite, carbon, coke, or the like is used, and it is preferable to use a fine powder having an average particle diameter of 100 μm or less and a nitrogen adsorption specific surface area of 1 m 2 / g or more. The thermosetting resin and the carbonaceous powder are mixed at a predetermined ratio to form a paste, which is applied to a predetermined site to cover the same. The mixing ratio of the two components is appropriately adjusted according to the shape of the predetermined portion to be coated, and usually, the adjustment of the mixing is made of a thermosetting resin. 10
It is performed within the range of 50 to 100 parts by weight of carbonaceous powder with respect to 0 to 200 parts by weight.

【0011】[0011]

【0012】[0012]

【0013】ついで、上記の各手段により所定部位に被
覆、被包または充填処理を施したC/C基材面に珪素源
と炭材とからなる組成の粉末を用いてコンバージョン法
により炭化珪素層を被覆する。珪素源としては、石英、
珪石、珪砂等のSiO2 含有物質を粒径10〜500 μm に
粉砕したものが、また炭材としては、粒径10〜100 μm
のコークス、ピッチ、黒鉛、カーボンブラック等の炭素
質物質が用いられる。珪素源と炭材との配合組成は、各
材料粉末の表面積を考慮して決定されるが、一般的には
SiO2 :Cの重量比率が1:1〜4:1の範囲になる
ように配合される。配合物はV型ブレンダーなどの混合
装置で十分に混合し、黒鉛のような高耐熱性材料で構成
された反応容器に入れる。
Then, a silicon carbide layer is formed on the surface of the C / C substrate on which a predetermined portion is coated, covered or filled by each of the above-mentioned means, using a powder having a composition comprising a silicon source and a carbon material by a conversion method. Is coated. As a silicon source, quartz,
Silica, those obtained by pulverizing SiO 2 containing material such as silica sand to grain size 10 to 500 [mu] m, but also carbonaceous materials, the particle size 10 to 100 [mu] m
Carbonaceous materials such as coke, pitch, graphite, and carbon black. The composition of the silicon source and the carbonaceous material is determined in consideration of the surface area of each material powder, but is generally adjusted so that the weight ratio of SiO 2 : C is in the range of 1: 1 to 4: 1. Be blended. The mixture is sufficiently mixed with a mixing device such as a V-type blender and placed in a reaction vessel made of a highly heat-resistant material such as graphite.

【0014】耐酸化処理は、C/C基材を反応容器内の
被覆材料粉末中に埋没し、ついで加熱炉に移して非酸化
性雰囲気下1600〜2000℃の温度に加熱する工程でおこな
われる。この処理工程により、必要としない所定部位の
炭化珪素化を抑制し、その他の部分に均一で緻密組織の
炭化珪素被覆層が形成された耐酸化性のC/C材が得ら
れる。
The oxidation-resistant treatment is performed in a process in which a C / C base material is buried in a coating material powder in a reaction vessel, and then transferred to a heating furnace and heated to a temperature of 1600 to 2000 ° C. in a non-oxidizing atmosphere. . By this treatment step, an unnecessary oxidation of C / C material in which silicon carbide is prevented from being formed in predetermined portions and a silicon carbide coating layer having a uniform and dense structure is formed in other portions can be obtained.

【0015】[0015]

【作用】本発明による炭化珪素被覆層の形成は実質的に
コンバージョン法によるものであるため、被覆材料粉末
から生成するSiOガスをC/C基材に接触させて徐々
にその表面を炭化珪素層に転化させる機構に基づいてい
る。この反応機構による炭化珪素化をC/C基材の全面
におこなうと、例えばボルト穴のような部位にまで炭化
珪素層が生成し、基材時に加工形成した寸法精度を損ね
る結果を与える。
Since the formation of the silicon carbide coating layer according to the present invention is substantially performed by the conversion method, the SiO gas generated from the coating material powder is brought into contact with the C / C base material to gradually form the surface of the silicon carbide coating layer. Based on the conversion mechanism. When silicon carbide is formed on the entire surface of the C / C base by this reaction mechanism, a silicon carbide layer is formed up to, for example, a portion such as a bolt hole, resulting in a loss of dimensional accuracy formed at the time of the base.

【0016】本発明の耐酸化処理法によれば、耐酸化処
理を必要としない所定部位に対し熱分解性の熱硬化性樹
脂と炭素質粉末の混合ペーストによるガス遮断膜を被覆
した状態でコンバージョン工程に移されるから、加熱時
にSiOガスはガス遮断膜によりC/C基材との接触が
効果的に阻止される。この場合、ガス遮断膜中の熱効果
性樹脂は反応時の加熱過程で徐々に揮散し、他の部分に
炭化珪素層が形成される時点では完全に消失するので炭
化物として基材面に残留することはない。また、炭素質
粉末は反応過程で生成するCOガス下で炭素化され、多
孔質化して比表面積が高くなる結果、SiOガスがC/
C基材面に到達する前に消費される。これらのガス遮断
ならびに優先反応の作用が相乗的に機能して、所定部位
の炭化珪素化が効果的に抑制される。
According to the oxidation-resistant treatment method of the present invention, conversion is performed with a gas barrier film of a mixed paste of a thermodegradable thermosetting resin and a carbonaceous powder coated on a predetermined portion not requiring the oxidation resistance treatment. Since the process is transferred to the process, the SiO gas is effectively prevented from contacting the C / C substrate by the gas barrier film during heating. In this case, the thermo-effective resin in the gas barrier film gradually volatilizes during the heating process during the reaction, and completely disappears when the silicon carbide layer is formed in other parts, and remains on the substrate surface as carbide. Never. Further, the carbonaceous powder is carbonized under CO gas generated in the reaction process, and becomes porous to increase the specific surface area.
C Consumed before reaching the substrate surface. The functions of the gas shutoff and the preferential reaction function synergistically, and siliconization of a predetermined portion is effectively suppressed.

【0017】[0017]

【0018】[0018]

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0020】比較例1、3 ポリアクリロニトリル系の平織炭素繊維布〔東邦レーヨ
ン(株)製、W6101〕にフェノール樹脂初期縮合物
〔住友デュレズ(株)製、PR940〕をマトリックス
として体積含有率が60%になるように塗布し、48時
間風乾してプリプレグシートを作成した。このプリプレ
グシートを20枚積層してモールドに入れ、20Kg/
cmの圧力を適用して加熱温度130℃で10時間、
加熱温度170℃で3時間の条件により加圧成形して複
合化した。ついで、複合体を窒素ガス雰囲気に保持され
た焼成炉に移し、20℃/hrの昇温速度で1000℃
まで上昇して炭化処理をおこなった。この材料にフルフ
リルアルコール初期縮合物を真空・加圧含浸し、再び焼
成炉に移して50℃/hrの昇温速度で2000℃まで
加熱して厚さ6mmの板状C/C基材を作製した。つい
で、このC/C基材を縦横200mmに切断し、固定用
のボルト穴(M10、加工精度±0.01mm)を10
箇所穿設したのち、ネジ切り加工を施してネジ部を設置
した。
Comparative Examples 1, 3 A polyacrylonitrile-based plain woven carbon fiber cloth [W6101 manufactured by Toho Rayon Co., Ltd.] was used as a matrix and a phenolic resin precondensate [PR940 manufactured by Sumitomo Durez Co., Ltd.] was used as a matrix and the volume content was 60%. %, And air-dried for 48 hours to prepare a prepreg sheet. Twenty of these prepreg sheets are stacked and put into a mold, and the weight of the prepreg sheet is 20 kg /
applying a pressure of cm 2 at a heating temperature of 130 ° C. for 10 hours,
Pressure molding was performed at a heating temperature of 170 ° C. for 3 hours to form a composite. Then, the composite was transferred to a firing furnace maintained in a nitrogen gas atmosphere, and heated at a rate of 20 ° C./hr to 1000 ° C.
And carbonized. This material is impregnated with a furfuryl alcohol precondensate under vacuum and pressure, transferred again to a baking furnace, heated to 2000 ° C. at a heating rate of 50 ° C./hr, and a 6 mm-thick plate-shaped C / C substrate is obtained. Produced. Then, the C / C base material was cut into a length and width of 200 mm, and a fixing bolt hole (M10, processing accuracy ± 0.01 mm) was formed by 10 mm.
After drilling in places, threading was performed to install a screw portion.

【0021】このC/C基材のボルト穴ネジ面に50重量
%濃度のフェノール樹脂アセトン溶液を膜厚が 100μm
になるように均一に塗布し、150 ℃の温度で2時間加熱
して樹脂成分を硬化した。この状態のC/C基材を、珪
砂粉末 (粒径40〜300 μm)と炭材コークス粉末 (粒径74
μm)を2:1の重量比率で混合し充填した黒鉛容器中に
埋没するように入れた。黒鉛容器を窒素ガス雰囲気に保
持された加熱炉に移し、1800℃に2時間加熱してC/C
基材の表面に炭化珪素被覆層を形成した。
A 50% by weight phenol resin acetone solution is coated on the screw surface of the bolt hole of the C / C base material to a thickness of 100 μm.
, And heated at a temperature of 150 ° C. for 2 hours to cure the resin component. In this state, the C / C base material was mixed with silica sand powder (particle size: 40 to 300 μm) and carbonaceous coke powder (particle size: 74
μm) at a weight ratio of 2: 1 and buried in a filled graphite container. Transfer the graphite container to a heating furnace maintained in a nitrogen gas atmosphere and heat it to 1800 ° C for 2 hours to C / C
A silicon carbide coating layer was formed on the surface of the substrate.

【0022】処理後のC/C材につき組織および外観検
査をおこない、ボルト穴のネジ部の炭化珪素の形成状
況、ネジ精度の変化およびボルトの螺着状態の結果を表
1に示した。なお、ボルト穴部位を除く全表面に形成さ
れた炭化珪素被覆層の膜厚は約150μmであった。ま
た、比較例3として、同一のC/C基材をボルト穴にな
んらの処理を施さずに同様の炭化珪素被覆をおこない、
その場合のボルト穴ネジ部の検査結果を表1に併載し
た。
The structure and appearance of the C / C material after the treatment were examined. Table 1 shows the results of the formation of silicon carbide in the screw portion of the bolt hole, the change in screw precision, and the screwed state of the bolt. The thickness of the silicon carbide coating layer formed on the entire surface excluding the bolt hole portions was about 150 μm. Further, as Comparative Example 3, the same C / C base material was coated with the same silicon carbide without performing any treatment on the bolt hole,
Table 1 also shows the inspection results of the bolt hole screw portions in that case.

【0023】比較例2 比較例1と同一C/C基材のボルト穴に、平均粒径5μ
m、窒素吸着比表面積10m/gの黒鉛粉末を充填し
た。この状態で比較例1と同一条件によりコンバージョ
ン法を用いてC/C基材面に炭化珪素被覆層を形成し
た。この場合のボルト穴ネジ部について検査した結果を
表1に併載した。なお、ボルト穴を除く部分に形成され
た炭化珪素被覆層の膜厚は約150μmであった。
COMPARATIVE EXAMPLE 2 An average particle size of 5 μm was formed in a bolt hole of the same C / C base material as in Comparative Example 1.
m, graphite powder having a nitrogen adsorption specific surface area of 10 m 2 / g. In this state, a silicon carbide coating layer was formed on the C / C substrate surface using the conversion method under the same conditions as in Comparative Example 1. Table 1 also shows the results of the inspection performed on the screw portion of the bolt hole in this case. In addition, the thickness of the silicon carbide coating layer formed in the portion excluding the bolt holes was about 150 μm.

【0024】実施例 比較例1と同一C/C基材のボルト穴ネジ面に、フェノ
ール樹脂初期縮合物100重量部に対し比較例2で用い
た黒鉛粉末を100重量部の比率で混合したペーストを
塗布し、150℃で1時間加熱して樹脂成分を硬化させ
た。この状態で比較例1と同一条件によりコンバージョ
ン法を用いてC/C基材面に炭化珪素被覆層を形成し
た。この場合のボルト穴ネジ部について検査した結果を
表1に併載した。なお、ボルト穴を除く部分に形成され
た炭化珪素被覆層の膜厚は約150μmであった。
Example A paste in which the graphite powder used in Comparative Example 2 was mixed at a ratio of 100 parts by weight with respect to 100 parts by weight of a phenol resin precondensate on the screw surface of a bolt hole of the same C / C substrate as in Comparative Example 1. Was applied and heated at 150 ° C. for 1 hour to cure the resin component. In this state, a silicon carbide coating layer was formed on the C / C substrate surface using the conversion method under the same conditions as in Comparative Example 1. Table 1 also shows the results of the inspection performed on the screw portion of the bolt hole in this case. In addition, the thickness of the silicon carbide coating layer formed in the portion excluding the bolt holes was about 150 μm.

【0025】[0025]

【表1】 [Table 1]

【0026】表1の結果から、本発明を適用した実施例
は比較例に比べてボルト穴部での炭化珪素生成が効果的
に抑制されており、ボルト結合に支障はなく、良好な結
果が得られた。
From the results shown in Table 1, it can be seen that in Examples to which the present invention was applied, silicon carbide generation in bolt holes was more effectively suppressed than in Comparative Examples, and there was no hindrance to bolt bonding, and good results were obtained. Obtained.

【0027】[0027]

【発明の効果】以上のとおり、本発明によればC/C基
材面のうち特定の部位を除いて均一で緻密な炭化珪素被
覆層を形成することができる。したがって、高い寸法精
度が要求され、かつ使用時に大気に接触することのない
部位の炭化珪素化を抑制した状態での工業的なC/C材
の耐酸化処理が可能となる。
As described above, according to the present invention, a uniform and dense silicon carbide coating layer can be formed except for a specific portion of the C / C substrate surface. Therefore, it is possible to industrially perform oxidation-resistant treatment of the C / C material in a state where high dimensional accuracy is required and silicon carbide is suppressed in a portion that does not come into contact with the atmosphere during use.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素繊維強化炭素複合基材の所定部位を
熱分解性の熱硬化性樹脂と炭素質粉末の混合物で被覆
し、ついで珪素源と炭材とからなる組成の粉末中に埋没
した状態で非酸化性雰囲気下1600〜2000°Cの
温度に加熱して基材面に炭化珪素層の被覆処理を施すこ
とを特徴とする炭素繊維強化炭素複合材の耐酸化処理
法。
1. A predetermined portion of a carbon fiber reinforced carbon composite substrate is coated with a mixture of a thermodegradable thermosetting resin and a carbonaceous powder, and then buried in a powder having a composition comprising a silicon source and a carbonaceous material. An oxidation-resistant treatment method for a carbon fiber reinforced carbon composite material, wherein the substrate is heated to a temperature of 1600 to 2000 ° C. in a non-oxidizing atmosphere in a state and the surface of the substrate is coated with a silicon carbide layer.
JP3323807A 1991-11-11 1991-11-11 Oxidation-resistant treatment of carbon fiber reinforced carbon composites. Expired - Fee Related JP2607409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323807A JP2607409B2 (en) 1991-11-11 1991-11-11 Oxidation-resistant treatment of carbon fiber reinforced carbon composites.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323807A JP2607409B2 (en) 1991-11-11 1991-11-11 Oxidation-resistant treatment of carbon fiber reinforced carbon composites.

Publications (2)

Publication Number Publication Date
JPH05132384A JPH05132384A (en) 1993-05-28
JP2607409B2 true JP2607409B2 (en) 1997-05-07

Family

ID=18158828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323807A Expired - Fee Related JP2607409B2 (en) 1991-11-11 1991-11-11 Oxidation-resistant treatment of carbon fiber reinforced carbon composites.

Country Status (1)

Country Link
JP (1) JP2607409B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834018C1 (en) * 1998-07-28 2000-02-03 Deutsch Zentr Luft & Raumfahrt Method for producing a protective layer containing silicon carbide
KR20040029665A (en) * 2002-10-02 2004-04-08 이재춘 ELECTRICALLY HEATABLE FIBROUS Si/SiC PARTICULATE FILTER MEDIA AND METHOD OF MAKING SAME
JP5200730B2 (en) 2008-07-25 2013-06-05 イビデン株式会社 Ceramic composite material
JP5690789B2 (en) * 2012-09-19 2015-03-25 大阪ガスケミカル株式会社 Surface-treated molded heat insulating material and method for producing the same
JP6478364B2 (en) * 2015-04-09 2019-03-06 信越化学工業株式会社 Coated graphite member and assembly thereof with holding means

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591236B2 (en) * 1980-06-12 1984-01-11 日立化成工業株式会社 Manufacturing method of carbon-SiC composite member
JPS56120584A (en) * 1980-06-26 1981-09-21 Hitachi Chemical Co Ltd Manufacture of carbonnsic composite member

Also Published As

Publication number Publication date
JPH05132384A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2004175605A (en) Oxidation resistant C / C composite and method for producing the same
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH02111679A (en) Method for manufacturing oxidation-resistant carbon fiber reinforced carbon material
JPH0848509A (en) Production of carbonaceous porous body
JPH0710753B2 (en) Method for producing carbon fiber reinforced composite material having oxidation resistance
JP3548597B2 (en) Oxidation-resistant treatment method of carbon fiber reinforced carbon composite
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH10209061A (en) Components for semiconductor diffusion furnaces
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JP2001289226A (en) Screw made of carbon fiber reinforced carbon composite material
JPH05306180A (en) Production of carbon fiber reinforced carbon-inorganic compound composite material
JP2579560B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon materials
JP3431958B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JPH0952777A (en) Method for producing oxidation resistant C / C composite
JP3461424B2 (en) Method for producing oxidation resistant C / C composite
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP2000219584A (en) Carbon fiber reinforced carbon composite material coated with silicon carbide and its production
JP4152580B2 (en) Method for manufacturing and repairing C / C crucible for pulling Si single crystal
JPH08169786A (en) Method for producing oxidation resistant carbon fiber reinforced carbon composite material
JPH1029881A (en) Method for producing oxidation resistant C / C composite
JPH11199354A (en) Oxidation resistant C / C composite and method for producing the same
JPH0412078A (en) Method for carrying out oxidation resisting treatment of carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees