JP2913066B2 - Electrophotographic photoreceptor - Google Patents
Electrophotographic photoreceptorInfo
- Publication number
- JP2913066B2 JP2913066B2 JP17406090A JP17406090A JP2913066B2 JP 2913066 B2 JP2913066 B2 JP 2913066B2 JP 17406090 A JP17406090 A JP 17406090A JP 17406090 A JP17406090 A JP 17406090A JP 2913066 B2 JP2913066 B2 JP 2913066B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- image
- latent image
- electrostatic latent
- photoreceptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、静電潜像転写方式の電子写真法に係り、特
に静電潜像形成と静電潜像転写を同時に行う同時静電潜
像転写方式に好適な電子写真感光体に関するものであ
る。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic method of an electrostatic latent image transfer system, and more particularly, to a simultaneous electrostatic latent image forming and transferring an electrostatic latent image simultaneously. The present invention relates to an electrophotographic photosensitive member suitable for an image transfer method.
電子写真法として、感光体上の静電潜像を誘電体層を
設けた記録紙に一旦転写し、この静電潜像をトナーで現
像する静電潜像転写法が既に知られている。この電子写
真法はトランスファー・オブ・エレクトロスタティック
・イメージ(Transfer of Electro−Static Image)
法、いわゆるTESI法と呼ばれ、大別して、感光体上の静
電潜像形成と記録紙への静電潜像転写とを別々の工程で
行う「順次転写法」と、感光体と記録紙を積み重ねた状
態で画像露光を行い、静電潜像形成と転写を同時に行っ
て記録紙に静電潜像を形成する「同時転写法」とがあ
る。As an electrophotographic method, an electrostatic latent image transfer method in which an electrostatic latent image on a photoreceptor is temporarily transferred to a recording paper provided with a dielectric layer and the electrostatic latent image is developed with toner is already known. This electrophotography is based on Transfer of Electro-Static Image.
Method, the so-called TESI method, which is roughly classified into a "sequential transfer method" in which the formation of an electrostatic latent image on a photoreceptor and the transfer of the electrostatic latent image to recording paper are performed in separate steps. There is a "simultaneous transfer method" in which image exposure is performed in a state where the electrostatic latent images are stacked, and an electrostatic latent image is simultaneously formed and transferred to form an electrostatic latent image on recording paper.
後者の同時転写法に用いられる感光体として、透光性
の導電支持体上に光導電層を積層したものを基本構成と
し、更にコントラストを改善するために上記導電支持体
と光導電層との間に絶縁層を形成した層構成が提案され
ている(特公昭57−55140号及び特開昭56−43665号参
照)。The photoreceptor used in the latter simultaneous transfer method has a basic structure in which a photoconductive layer is laminated on a light-transmitting conductive support, and the conductive support and the photoconductive layer are combined with each other to further improve the contrast. A layer configuration in which an insulating layer is formed between the layers has been proposed (see Japanese Patent Publication No. 57-55140 and Japanese Patent Application Laid-Open No. 56-43665).
その他、特開昭49−52643号には上記導電支持体と光
導電層との間に該光導電層に比べて暗抵抗の高い有機光
導電層を形成した層構成が、また、特公昭57−46067号
には透明支持体上に透明電極層、光導電性注入阻止層及
び光導電層を順次積層した層構成も提案されている。In addition, JP-A-49-52643 discloses a layer structure in which an organic photoconductive layer having a higher dark resistance than the photoconductive layer is formed between the conductive support and the photoconductive layer. No. 46067 also proposes a layer configuration in which a transparent electrode layer, a photoconductive injection blocking layer and a photoconductive layer are sequentially laminated on a transparent support.
前記光導電層にはSe,Se−Te,Se−As,Te−As,ZnO,ZnCd
S,CdS,CdS・nCdCO3,CdSe,CdTe,PbO,Sb2S3などの無機材
料や、ポリビニルカルバゾール、アントラセン、アント
ラキノンなどの有機材料が用いられていた。Se, Se-Te, Se-As, Te-As, ZnO, ZnCd
Inorganic materials such as S, CdS, CdS.nCdCO 3 , CdSe, CdTe, PbO, and Sb 2 S 3 and organic materials such as polyvinylcarbazole, anthracene, and anthraquinone have been used.
しかしながら、これらの光導電材料は光感度が充分に
高くなく、そのために静電潜像形成時に大きな露光エネ
ルギー(数十〜数百ルックス・秒〔lux・sec〕)を必要
としていた。However, these photoconductive materials do not have sufficiently high photosensitivity, and thus require a large exposure energy (tens to hundreds of lux seconds) when forming an electrostatic latent image.
そこで、近年急速に発展してきたLEDアレイやELアレ
イから成る光プリントヘッドを用いて小型化を成し、消
費電力を小さくする要求に対しては、感光体の感度が不
足し、満足し得なかった。In response to the demand for miniaturization and low power consumption using an optical print head consisting of an LED array and EL array, which has been rapidly developing in recent years, the sensitivity of the photoconductor is insufficient and it cannot be satisfied. Was.
また、TESI法は感光体が現像器やクリーナーに接して
いないために通常のカールソン法に比べて感光体表面の
摩耗や傷発生がなくなり、その感光体を長寿命化させる
ことができるが、その反面、従来の光導電材料では、そ
の表面硬度が高くなく、そのために静電記録紙や転写ロ
ーラとの接触に起因して感光体表面が摩耗したり、その
表面に傷が生じるという問題点がある。In addition, since the photoconductor does not come in contact with a developing device or a cleaner, the TESI process eliminates abrasion and scratching of the photoconductor surface as compared with the normal Carlson method, and can extend the life of the photoconductor. On the other hand, the conventional photoconductive material has a problem that the surface hardness is not high, so that the surface of the photoreceptor is worn out or scratched due to the contact with the electrostatic recording paper or the transfer roller. is there.
従って本発明は上記事情に鑑みて案出されたものであ
り、その目的は可視光領域の光に対して高い感度が得ら
れ、しかも、長寿命化を達成した同時静電潜像転写方式
に好適な電子写真感光体を提供することにある。Accordingly, the present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a simultaneous electrostatic latent image transfer method that achieves high sensitivity to light in the visible light region and achieves a long life. An object of the present invention is to provide a suitable electrophotographic photosensitive member.
本発明は透光性支持体を有する感光体表面を誘電体の
一方主面と接触させるとともに上記透光性支持体側から
の画像露光と同時に上記誘電体の他方主面と感光体との
間に電圧を印加する同時静電潜像転写方式に用いられる
電子写真感光体に係り、上記透光性支持体が透光性電極
を備えるとともに、その支持体上に周期律表第III a族
元素を1〜10,000ppm、もしくは第V a族元素を5,000ppm
以下含有するアモルファスシリコン系キャリア注入阻止
層と、アモルファスシリコン系光導電層を順次積層し
(以下、アモルファスシリコンをa−Siと略す)、a−
Si注入阻止層にカーボン、酸素、窒素を含有させてa−
Si光導電層に比べバンドギャップを大きくして、上記画
像露光に対しLEDヘッドを適用させたことを特徴とす
る。In the present invention, the surface of the photoreceptor having the translucent support is brought into contact with one main surface of the dielectric, and at the same time as the image exposure from the side of the translucent support, the other main surface of the dielectric and the photoreceptor The present invention relates to an electrophotographic photoreceptor used in a simultaneous electrostatic latent image transfer method for applying a voltage, wherein the translucent support includes a translucent electrode, and a Group IIIa element of the periodic table is provided on the support. 1 to 10,000 ppm or 5,000 ppm of Group Va element
An amorphous silicon-based carrier injection blocking layer and an amorphous silicon-based photoconductive layer are sequentially laminated (hereinafter, amorphous silicon is abbreviated as a-Si).
Inclusion of carbon, oxygen and nitrogen in the Si injection blocking layer
The band gap is made larger than that of the Si photoconductive layer, and the LED head is applied to the image exposure.
次に本発明を詳述する。 Next, the present invention will be described in detail.
第1図は本発明電子写真感光体の典型的層構成を表
す。FIG. 1 shows a typical layer constitution of the electrophotographic photoreceptor of the present invention.
同図中、1は透光性支持体であり、その支持体1の上
に透光性電極層2、a−Si系キャリア注入阻止層3及び
a−Si系光導電層4を順次積層する。In FIG. 1, reference numeral 1 denotes a light-transmitting support, on which a light-transmitting electrode layer 2, an a-Si-based carrier injection blocking layer 3, and an a-Si-based photoconductive layer 4 are sequentially laminated. .
上記透光性支持体1は板状、ドラム状、シート状、ベ
ルト状などの形状をなし、その材料にはガラス、石英、
サファイア等の透明な無機材料、または、弗素樹脂、ポ
リエステル、ポリカーボネート、ポリエチレン、ポリエ
チレンテレフタレート、ビニロン、エポキシ、マイラー
等の透明な有機樹脂、更にまた、オプチカルファイバ
ー、セルフォック光学プレート等がある。The translucent support 1 has a shape such as a plate shape, a drum shape, a sheet shape, and a belt shape.
There are transparent inorganic materials such as sapphire, or transparent organic resins such as fluorine resin, polyester, polycarbonate, polyethylene, polyethylene terephthalate, vinylon, epoxy, and mylar, as well as optical fibers and selfoc optical plates.
上記透光性電極層2にはITO(インジウム・スズ・酸
化物)、酸化錫、酸化鉛、酸化インジウム、ヨウ化銅等
の透明導電性材料を用いたり、或いは蒸着やスパッタリ
ングにより、Al,Ni,Au等の金属を半透明になる程度に薄
く形成してもよい。The transparent electrode layer 2 is made of a transparent conductive material such as ITO (indium tin oxide), tin oxide, lead oxide, indium oxide, copper iodide, or Al, Ni by evaporation or sputtering. , Au or the like may be formed as thin as to be translucent.
上記a−Si系キャリア注入阻止層3やa−Si系光導電
層4はグロー放電分解法、スパッタリング法、ECR法、
蒸着法などにより成膜形成し、その形成に当たってダン
グリングボンド終端用の元素、例えば水素(H)やハロ
ゲンを含有させる。The a-Si-based carrier injection blocking layer 3 and the a-Si-based photoconductive layer 4 are formed by glow discharge decomposition, sputtering, ECR,
A film is formed by an evaporation method or the like, and an element for terminating a dangling bond, for example, hydrogen (H) or halogen is contained in the formation.
a−Si系キャリア注入阻止阻止3には、その層自体で
光導電層での光キャリア発生に有効な光を吸収しないよ
うに光導電層4に比べてバンドギャップを大きくする必
要があり、そのためにカーボン、酸素または窒素などの
元素を含有させるとよい。そして、これらの元素を含有
させることによって電極層2との密着性が高められる。The a-Si based carrier injection blocking block 3 needs to have a band gap larger than that of the photoconductive layer 4 so that the layer itself does not absorb light effective for photocarrier generation in the photoconductive layer. May contain an element such as carbon, oxygen, or nitrogen. Then, by containing these elements, the adhesion to the electrode layer 2 is enhanced.
またキャリア注入阻止層3には、電極層2から光導電
層4へのキャリアの注入を阻止するために不純物元素を
含有させる。Further, the carrier injection blocking layer 3 contains an impurity element for preventing carrier injection from the electrode layer 2 into the photoconductive layer 4.
即ち、負電荷キャリアの注入を阻止するためには周期
律表第III a族元素を1〜10,000ppm、好適には100〜5,0
00ppm含有するとよく、一方、正電荷キャリアの注入を
阻止するためには第V a族元素を5,000ppm以下、好適に
は300〜3,000ppm含有するとよい。これらの元素は層厚
方向に亘って勾配を設けてもよく、その場合には層全体
の平均含有量が上記範囲内であればよい。That is, in order to prevent the injection of negative charge carriers, the Group IIIa element of the Periodic Table is 1 to 10,000 ppm, preferably 100 to 50,000.
On the other hand, in order to prevent the injection of positive charge carriers, the Group Va element should be contained in an amount of 5,000 ppm or less, preferably 300 to 3,000 ppm. These elements may be provided with a gradient in the layer thickness direction, in which case the average content of the entire layer may be within the above range.
このようにキャリア注入阻止層3に第III a族元素を
含有した場合、最終的に誘電体に転写される潜像は負電
荷となり、他方、第V a族元素を含有した場合、最終的
に誘電体に転写される潜像は正電荷となる。When the carrier injection blocking layer 3 contains a Group IIIa element as described above, the latent image finally transferred to the dielectric becomes a negative charge, whereas when the carrier injection blocking layer 3 contains a Group Va element, the latent image finally becomes negative. The latent image transferred to the dielectric has a positive charge.
III a族元素としては、B元素が共有結合性に優れて
半導体特性を敏感に変え得る点で、その上優れた注入阻
止能並びに光感度が得られるという点で望ましい。As a group IIIa element, element B is preferable because it has excellent covalent bonding properties and can change semiconductor characteristics sensitively, and furthermore, excellent injection stopping power and photosensitivity can be obtained.
V a族元素としては、P元素が共有結合性に優れて半
導体特性を敏感に変え得る点で、その上優れた注入阻止
能並びに光感度が得られるという点で望ましい。As a group Va element, the P element is preferable because it has excellent covalent bonding properties and can change semiconductor characteristics sensitively, and furthermore, excellent injection stopping power and photosensitivity can be obtained.
また上記キャリア注入阻止層3の厚みは0.1〜10μ
m、好適には0.3〜5μmの範囲内がよく、これによ
り、静電潜像の形成に必要な絶縁耐圧が確保し易く、ま
たこの層での露光の不必要な吸収を抑制して光導電層に
おいて光キャリアを有効に生成でき、しかも、残留電位
の上昇を抑制することができる。The thickness of the carrier injection blocking layer 3 is 0.1 to 10 μm.
m, preferably in the range of 0.3 to 5 μm, whereby it is easy to secure the withstand voltage required for forming an electrostatic latent image, and it is also possible to suppress unnecessary absorption of light exposure in this layer to achieve photoconductivity. Photocarriers can be effectively generated in the layer, and the rise in residual potential can be suppressed.
a−Si系光導電層4にはそのシリコン元素の一部をカ
ーボン、酸素、窒素、ゲルマニウム、スズ、イオウなど
の元素と置換して導電率やバンドギャップ、表面硬度な
どの物性を適宜変えてもよい。光源としてLEDヘッドを
用いた場合にはa−Si系の層により有効に受光される
が、ELヘッドを用いた場合、その発光波長は短波長側へ
シフトしており、そのためa−Si層にカーボン、酸素、
窒素などの元素を含有させてバンドギャップを広げると
よい。また、半導体レーザを用いた場合、その発光波長
は長波長へシフトしており、そのためa−Si層にゲルマ
ニウム、スズなどの元素を含有させてバンドギャップを
狭くすればよい。In the a-Si-based photoconductive layer 4, a part of the silicon element is replaced with an element such as carbon, oxygen, nitrogen, germanium, tin, and sulfur to appropriately change physical properties such as conductivity, band gap, and surface hardness. Is also good. When an LED head is used as a light source, the light is effectively received by the a-Si-based layer.However, when an EL head is used, the emission wavelength is shifted to a shorter wavelength side. Carbon, oxygen,
It is preferable to increase the band gap by containing an element such as nitrogen. In the case where a semiconductor laser is used, the emission wavelength is shifted to a longer wavelength. Therefore, the band gap may be narrowed by including an element such as germanium or tin in the a-Si layer.
更にまたa−Si系光導電層4に周期律表第III a族元
素や第V a族元素を添加して電気特性を調整することも
できる。Furthermore, the electrical characteristics can be adjusted by adding a group IIIa element or a group Va element of the periodic table to the a-Si-based photoconductive layer 4.
上記a−Si系光導電層4の厚みは0.1〜100μm、好適
には1〜50μmの範囲内がよく、これにより、静電潜像
の形成に必要な絶縁耐圧が確保し易く、また露光を吸収
して光キャリアを有効に生成でき、しかも、残留電位の
上昇を抑制することができる。The thickness of the a-Si-based photoconductive layer 4 is preferably in the range of 0.1 to 100 μm, preferably 1 to 50 μm, whereby the dielectric strength required for forming an electrostatic latent image is easily ensured, and It is possible to effectively generate photocarriers by absorption, and to suppress an increase in residual potential.
かくして上記構成の電子写真感光体を同時静電潜像転
写方式に用いた場合、高い光感度をもつために静電潜像
形成時の露光エネルギを小さくすることができ、これに
より、従来の感光体では用いられなかったLEDヘッドやE
Lヘッドなどの小型かつ低消費電力の露光光源を用いる
ことができる。Thus, when the electrophotographic photosensitive member having the above configuration is used in the simultaneous electrostatic latent image transfer method, the exposure energy at the time of forming the electrostatic latent image can be reduced due to the high light sensitivity. LED head and E that were not used in the body
A small and low power consumption exposure light source such as an L head can be used.
また従来の感光体に比べて高い表面硬度があり、これ
によって長寿命な電子写真感光体を提供することができ
た。因にアモルファスAs2Se3層のビッカース硬度は150k
g/mm2であり、有機系光導電層はそれ以下の硬度である
が、これに対してa−Si層のビッカース硬度は1500〜20
00Kg/mm2であり、それにカーボン、酸素、窒素を添加す
ると一層高硬度となる。Also, the surface hardness is higher than that of the conventional photoreceptor, so that a long-life electrophotographic photoreceptor can be provided. The Vickers hardness of the amorphous As 2 Se 3 layer is 150k
a g / mm 2, although an organic photoconductive layer is less hardness, the Vickers hardness of the hand a-Si layer 1500-20
00 kg / mm 2 , and when carbon, oxygen and nitrogen are added thereto, the hardness becomes higher.
更にa−Si系キャリア注入阻止層3を形成したことに
より感光体の絶縁耐圧を高め、バックグラウンド電荷の
転写を抑制でき、その結果、コントラストが高く、バッ
クのかぶりのない良好な画像が得られる。Further, the formation of the a-Si based carrier injection blocking layer 3 increases the dielectric strength of the photoreceptor and suppresses the transfer of background charge. As a result, a good image with high contrast and no back fogging can be obtained. .
尚、上記の電子写真感光体においては透光性が支持体
1の上に透光性電極層2を積層しているが、その他透光
性支持体1を導電性材料を用いて形成し、それに電極機
能をもたせ、上記電極層2を不要としてもよい。In the above electrophotographic photoreceptor, the translucent electrode layer 2 is laminated on the support 1 for translucency, but other translucent supports 1 are formed using a conductive material. It may have an electrode function, and the electrode layer 2 may not be necessary.
次に本発明の実施例を述べる。 Next, examples of the present invention will be described.
(電子写真複写機の構成) 第2図は本例に用いられる電子写真複写機の構成であ
る。(Configuration of Electrophotographic Copying Machine) FIG. 2 shows a configuration of the electrophotographic copying machine used in this embodiment.
同図において、ドラム状透光性支持体1の上に透光性
電極層2、キャリア注入阻止層3及び光導電層4を順次
積層して成る感光体ドラム5の内側にLEDヘッド6及び
イレースランプ7を配置する。透光性電極層2に対して
電圧を直流電源8により印加することができる。9は導
電ローラ、10は現像器、11は定着器であり、感光体5と
導電ローラ9の間に静電転写紙12が搬送される。In FIG. 1, an LED head 6 and an erase head are provided inside a photosensitive drum 5 in which a light-transmitting electrode layer 2, a carrier injection blocking layer 3 and a photoconductive layer 4 are sequentially laminated on a drum-shaped light-transmitting support 1. The lamp 7 is arranged. A voltage can be applied to the translucent electrode layer 2 by the DC power supply 8. Reference numeral 9 denotes a conductive roller, 10 denotes a developing device, and 11 denotes a fixing device. An electrostatic transfer paper 12 is transported between the photoconductor 5 and the conductive roller 9.
このような構成において、先ず感光体ドラム5の透光
性電極層2と導電ローラ9の間に静電転写紙12を介して
電圧を印加するとともに、LEDヘッド6により画像露光
を行うと、光導電層3における光キャリア発生と光キャ
リア搬送により感光体表面に画像露光に応じた電荷潜像
が形成され、次いで感光体ドラム5の回転に伴って、静
電転写紙12感光体ドラム5と剥離する際、両者間の空隙
における気中放電により静電転写紙12上に電荷潜像の転
写が行われる。この静電潜像は引き続いて現像器10によ
りトナー像として現像され、定着器11により定着され
る。一方、感光体ドラム5は、その後、イレースランプ
7の光照射により残留電荷が消去され、次の潜像形成に
用いられる。In such a configuration, when a voltage is first applied between the translucent electrode layer 2 of the photosensitive drum 5 and the conductive roller 9 via the electrostatic transfer paper 12 and image exposure is performed by the LED head 6, light A charge latent image corresponding to the image exposure is formed on the surface of the photoconductor by photocarrier generation and photocarrier transport in the conductive layer 3, and then the electrostatic transfer paper 12 is separated from the photoconductor drum 5 as the photoconductor drum 5 rotates. At this time, the charge latent image is transferred onto the electrostatic transfer paper 12 by air discharge in a gap between the two. The electrostatic latent image is subsequently developed as a toner image by the developing device 10 and fixed by the fixing device 11. On the other hand, the photoreceptor drum 5 is erased of residual charges by irradiation with light from the erase lamp 7 and is used for forming a next latent image.
(例1) 透明な円筒状ガラス基板の周面に透光性電極層として
ITO層を電子ビーム蒸着法により1000Åの厚みで形成
し、次いで、その上に容量結合型グロー放電分解装置を
用いて第1表の成膜条件でキャリア注入阻止層と光導電
層を順次積層した。(Example 1) As a transparent electrode layer on the peripheral surface of a transparent cylindrical glass substrate
An ITO layer was formed to a thickness of 1000 mm by an electron beam evaporation method, and then a carrier injection blocking layer and a photoconductive layer were sequentially stacked thereon using a capacitively coupled glow discharge decomposition apparatus under the film forming conditions shown in Table 1. .
かくして得られた感光体を第2図の電子写真複写機に
装着し、その感光体内部にLEDヘッドを配して、波長660
nm、露光量1.0μJ/cm2の条件で画像露光を行いながら、
導電ローラを介して感光体と静電転写紙との間に+500V
の電圧を印加した。そして、静電転写紙上に静電潜像を
形成し、続いて、この静電潜像を負帯電トナーの2成分
方式の現像機を用いて現像し、得られたトナー像を熱定
着して露光部に対応した画像を得た。この画像を評価し
たところ、O.D.が1.0の画像濃度を有し、バックのかぶ
りもなく、解像力も良好な画像であった。 The photoreceptor thus obtained was mounted on the electrophotographic copying machine shown in FIG.
nm, while the image exposure under the conditions of exposure 1.0μJ / cm 2,
+ 500V between photoreceptor and electrostatic transfer paper via conductive roller
Was applied. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and subsequently, the electrostatic latent image is developed using a two-component developing machine for negatively charged toner, and the obtained toner image is thermally fixed. An image corresponding to the exposed part was obtained. When this image was evaluated, it was an image having an image density of OD of 1.0, no fogging of the back, and a good resolution.
(例2) (例1)と同様に透明な円筒状のガラス基板の周面に
ITO層を電子ビーム蒸着法により1000Åの厚みで形成し
た。(Example 2) Similar to (Example 1), on the peripheral surface of a transparent cylindrical glass substrate
An ITO layer was formed to a thickness of 1000 mm by an electron beam evaporation method.
次いで、その上に光導電性微粉末CdS・nCdCO3(0.8≦
n≦1.0)を金属活性剤とともにアクリル樹脂に分散さ
せ、熱硬化した厚み30μmの光導電層を形成した。Then, a photoconductive fine powder CdS · nCdCO 3 (0.8 ≦
n ≦ 1.0) was dispersed in an acrylic resin together with a metal activator to form a thermosetting photoconductive layer having a thickness of 30 μm.
かくして得られた感光体を(例1)と同様に電子写真
複写機に装着し、その感光体内部にLEDヘッドを配し
て、波長660nm、露光量1.0μJ/cm2の条件で画像露光を
行いながら、導電ローラを介して感光体と静電転写紙と
の間に−800Vの電圧を印加した。そして、静電転写紙上
に静電潜像を形成し、続いて、この静電潜像を正帯電ト
ナーの2成分方式の現像機を用いて現像し、得られたト
ナー像を熱定着して露光部に対応した画像を得た。この
画像を評価したところ、光導電層の光感度が不足のため
に十分な静電潜像が形成されず、濃度がほとんど得られ
ない画像であった。The photoreceptor thus obtained was mounted on an electrophotographic copying machine in the same manner as in (Example 1), an LED head was arranged inside the photoreceptor, and image exposure was performed under the conditions of a wavelength of 660 nm and an exposure of 1.0 μJ / cm 2. While performing, a voltage of -800 V was applied between the photosensitive member and the electrostatic transfer paper via the conductive roller. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then the electrostatic latent image is developed using a two-component developing machine of positively charged toner, and the obtained toner image is thermally fixed. An image corresponding to the exposed part was obtained. When this image was evaluated, a sufficient electrostatic latent image was not formed due to insufficient photosensitivity of the photoconductive layer, and an image with almost no density was obtained.
(例3) 透明な円筒状ガラス基板の周面にITO層を電子ビーム
蒸着法により1000Åの厚みで形成し、次いで容量結合型
グロー放電分解装置を用いて第2表の成膜条件によりキ
ャリア注入阻止層と光導電層を順次積層した。(Example 3) An ITO layer was formed on the peripheral surface of a transparent cylindrical glass substrate to a thickness of 1000 mm by an electron beam evaporation method, and then a carrier was injected using a capacitively coupled glow discharge decomposition apparatus under the film forming conditions shown in Table 2. A blocking layer and a photoconductive layer were sequentially laminated.
かくして得られた感光体を電子写真複写機に装着し、
その感光体内部にLEDヘッドを配して波長660nm、露光量
1.0μJ/cm2の条件で画像露光を行いながら、導電ローラ
を介して感光体と静電転写紙との間に−500Vの電圧を印
加した。そして、静電転写紙上に静電潜像を形成し、続
いてこの静電潜像を正帯電トナーの2成分方式の現像機
を用いて現像し、得られたトナー像を熱定着して露光部
に対応した画像を得た。この画像を評価したところ、
(例1)と同様にO.D.が1.0の画像濃度を有し、バック
のかぶりもなく、解像力も良好な画像であった。 The photoreceptor thus obtained is mounted on an electrophotographic copying machine,
An LED head is placed inside the photoreceptor and the wavelength is 660 nm,
While performing image exposure under the condition of 1.0 μJ / cm 2 , a voltage of −500 V was applied between the photosensitive member and the electrostatic transfer paper via the conductive roller. Then, an electrostatic latent image is formed on the electrostatic transfer paper, and then the electrostatic latent image is developed using a two-component developing machine of positively charged toner, and the obtained toner image is thermally fixed and exposed. An image corresponding to the part was obtained. After evaluating this image,
As in (Example 1), the image had an image density of OD of 1.0, no fogging of the background, and a good resolution.
また、この画像評価試験において、露光光源のLEDヘ
ッドを波長585nmのELヘッドに変え、露光量0.9μJ/cm2
の条件で画像露光を行いながら、同様に画像を得たとこ
ろ、同じく良好な画像が得られ、a−Si光導電層より
も、波長の短い光により高感度な特性を示すことが確か
められた。In this image evaluation test, the LED head as the exposure light source was changed to an EL head with a wavelength of 585 nm, and the exposure amount was 0.9 μJ / cm 2.
When an image was similarly obtained while performing image exposure under the conditions described above, a similarly good image was obtained, and it was confirmed that the a-Si photoconductive layer exhibited higher sensitivity characteristics to light having a shorter wavelength than the a-Si photoconductive layer. .
(例4) (例1)と同様の感光体を作製するに当たり、B2H6ガ
ス流量を変化させてB元素含有量を変え、第3表に示す
A〜Jの10種類の感光体を作製した。そして、各々の感
光体を用いた場合の画像濃度及びバックのかぶりを評価
した。(Example 4) in fabricating the same photoconductor (Example 1), B 2 H 6 by changing the gas flow rate changing B element content, the 10 kinds of the photoreceptor A~J shown in Table 3 Produced. Then, the image density and the back fog when each photoconductor was used were evaluated.
表中、◎は最も優れた結果が得られた場合であり、〇
は幾分優れた結果が得られた場合であり、△はやや劣る
結果が得られた場合である。In the table, ◎ indicates the case where the most excellent result was obtained, 〇 indicates the case where a somewhat excellent result was obtained, and △ indicates the case where a slightly inferior result was obtained.
以上の結果より、感光体B〜Iは、画像濃度及びバッ
クのかぶりにおいて優れた結果が得られたことがわか
る。また、感光体B〜Iにおける画像の解像力はいずれ
も良好な結果であった。 From the above results, it is understood that the photoconductors B to I obtained excellent results in image density and back fog. In addition, the resolving powers of the images on the photoconductors B to I were all good results.
(例5) (例3)と同様の感光体を作製するに当たり、PH3ガ
ス流量を変化させて第1のa−SiC層のP元素含有量を
変え、第4表に示すK〜Tの10種類の感光体を作製し
た。そして、各々の感光体を用いた場合の画像濃度及び
バックのかぶりを評価した。(Example 5) in fabricating the same photoconductor (Example 3), changing the P element content of the first a-SiC layer by changing the PH 3 gas flow rate of K~T shown in Table 4 Ten types of photoreceptors were produced. Then, the image density and the back fog when each photoconductor was used were evaluated.
以上の結果より、感光体K〜Rは、画像濃度及びバッ
クのかぶりにおいて優れた結果が得られたことがわか
る。また、感光体K〜Rにおける画像の解像力はいずれ
も良好な結果であった。 From the above results, it can be seen that the photoconductors K to R obtained excellent results in image density and back fog. The resolution of the images on the photoconductors K to R was all good.
以上の通り、本発明の電子写真感光体によれば、高い
光感度のa−Si系光導電層を用いているので、静電潜像
形成時の露光エネルギが小さくなり、これにより、LED
ヘッドやELヘッドなどの小型かつ低消費電力の露光光源
を用いることができた。As described above, according to the electrophotographic photoreceptor of the present invention, since the a-Si-based photoconductive layer having high photosensitivity is used, the exposure energy at the time of forming an electrostatic latent image is reduced.
A small and low power consumption exposure light source such as a head and an EL head could be used.
また本発明によれば、表面硬度に優れているために高
耐久性かつ長寿命化を達成したTESI用の電子写真感光体
を提供することができた。Further, according to the present invention, it is possible to provide an electrophotographic photoconductor for TESI which has high durability and long life because of its excellent surface hardness.
更にまた本発明の電子写真感光体によれば、コントラ
ストが高く、かぶりのない良好な画像が得られた。Furthermore, according to the electrophotographic photoreceptor of the present invention, a good image having high contrast and no fog was obtained.
第1図は本発明電子写真感光体の層構成を表す断面図で
あり、第2図はTESI法の説明図である。 1……透光性支持体 2……透光性電極層 3……アモルファスシリコン系キャリア注入阻止層 4……アモルファスシリコン系光導電層FIG. 1 is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention, and FIG. 2 is an explanatory view of the TESI method. DESCRIPTION OF SYMBOLS 1 ... Translucent support 2 ... Translucent electrode layer 3 ... Amorphous silicon-based carrier injection blocking layer 4 ... Amorphous silicon-based photoconductive layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 浩 滋賀県八日市市蛇溝町長谷野1166番地の 6 京セラ株式会社滋賀八日市工場内 (56)参考文献 特開 平1−293348(JP,A) 特開 平1−296254(JP,A) 特開 平2−173756(JP,A) 特開 平2−245766(JP,A) 特開 昭55−157747(JP,A) (58)調査した分野(Int.Cl.6,DB名) G03G 5/00 - 5/16 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Ito 6 1166 Haseno, Snakegrove-cho, Yokaichi-shi, Shiga Pref. In the Shiga Yokaichi Plant of Kyocera Corporation (56) References JP-A-1-296254 (JP, A) JP-A-2-173756 (JP, A) JP-A-2-245766 (JP, A) JP-A-55-157747 (JP, A) (58) Int.Cl. 6 , DB name) G03G 5/00-5/16
Claims (1)
1〜10,000ppmもしくは周期律表第V a族元素を5,000ppm
以下含むアモルファスシリコンキャリア注入阻止層と、
アモルファスシリコン光導電層とを順次積層してなる感
光体に対しLEDヘッドまたはELヘッドによる上記透光性
電極側からの画像露光と同時に透光性電極に電圧印加す
る同時静電潜像転写方式に適用する電子写真感光体であ
って、前記アモルファスシリコンキャリア注入阻止層に
カーボン、酸素または窒素を含有してアモルファスシリ
コン光導電層に比べバンドギャップを大きくしたことを
特徴とする電子写真感光体。An element of Group IIIa of the Periodic Table of 1 to 10,000 ppm or an element of Group Va of the Periodic Table of 5,000 ppm on the translucent electrode.
An amorphous silicon carrier injection blocking layer including:
Simultaneous electrostatic latent image transfer method in which voltage is applied to the translucent electrode simultaneously with image exposure from the translucent electrode side by the LED head or EL head to the photoreceptor that is formed by sequentially laminating amorphous silicon photoconductive layers An electrophotographic photoconductor to be applied, wherein the amorphous silicon carrier injection blocking layer contains carbon, oxygen or nitrogen to increase the band gap as compared with the amorphous silicon photoconductive layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17406090A JP2913066B2 (en) | 1990-06-29 | 1990-06-29 | Electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17406090A JP2913066B2 (en) | 1990-06-29 | 1990-06-29 | Electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0462562A JPH0462562A (en) | 1992-02-27 |
JP2913066B2 true JP2913066B2 (en) | 1999-06-28 |
Family
ID=15971922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17406090A Expired - Lifetime JP2913066B2 (en) | 1990-06-29 | 1990-06-29 | Electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2913066B2 (en) |
-
1990
- 1990-06-29 JP JP17406090A patent/JP2913066B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0462562A (en) | 1992-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4869982A (en) | Electrophotographic photoreceptor containing a toner release material | |
US5729800A (en) | Electrophotographic apparatus having an a-Si photosensitive drum assembled therein | |
JP3046087B2 (en) | Image forming device | |
JP2913066B2 (en) | Electrophotographic photoreceptor | |
JPH07120953A (en) | Electrophotographic photoreceptor and image forming method using the same | |
JP2920663B2 (en) | Electrophotographic photoreceptor | |
JP2920668B2 (en) | Electrophotographic photoreceptor | |
JPS63225250A (en) | Electrostatic latent image forming device | |
JPH0458256A (en) | Electrophotographic sensitive body | |
JP2985984B2 (en) | Image forming device | |
JP2948937B2 (en) | Image forming device | |
JP3000311B2 (en) | Image forming device | |
JP3004114B2 (en) | Image forming method | |
JP3206742B2 (en) | Island photoreceptor and image recording apparatus using the same | |
JPH0728332A (en) | Image forming device | |
EP0606757B1 (en) | Electrophotographic apparatus for performing image exposure and development simultaneously | |
JPH06337531A (en) | Image forming device | |
JP2638183B2 (en) | Image forming device | |
JP3878752B2 (en) | Image forming apparatus | |
JPH04324464A (en) | Image forming method | |
JP3047005B2 (en) | Electrophotographic recording device | |
JP3140116B2 (en) | Image forming method | |
CA1146003A (en) | Imaging method using a dielectric overcoated photoreceptor which is charged negatively, then positively and exposed | |
JP2640697B2 (en) | Image forming device | |
JPH052296A (en) | Image forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080416 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20100416 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20110416 |