JP3031477B2 - Nb Lower 3 Method for Manufacturing Sn Superconducting Wire - Google Patents

Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Info

Publication number
JP3031477B2
JP3031477B2 JP2150250A JP15025090A JP3031477B2 JP 3031477 B2 JP3031477 B2 JP 3031477B2 JP 2150250 A JP2150250 A JP 2150250A JP 15025090 A JP15025090 A JP 15025090A JP 3031477 B2 JP3031477 B2 JP 3031477B2
Authority
JP
Japan
Prior art keywords
wire
filament
superconducting wire
atomic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2150250A
Other languages
Japanese (ja)
Other versions
JPH0443513A (en
Inventor
圀尚 鎌田
修二 酒井
恭司 太刀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2150250A priority Critical patent/JP3031477B2/en
Publication of JPH0443513A publication Critical patent/JPH0443513A/en
Application granted granted Critical
Publication of JP3031477B2 publication Critical patent/JP3031477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Nb3Sn超電導線材、特に交流用途に適した
低交流損失のNb3Sn超電導線材の製造方法に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a method for producing a Nb 3 Sn superconducting wire, particularly a low AC loss Nb 3 Sn superconducting wire suitable for AC use.

[従来の技術] Nb3Sn線材は、NbTi線材に比べて臨界温度が格段に高
いため、低交流損失のNb3Sn線材が開発されると、発電
機、トランス等の電力システムに対して大きなインパク
トを与える。
[Prior art] Nb 3 Sn wire has a much higher critical temperature than NbTi wire, so if a low AC loss Nb 3 Sn wire is developed, it will have a large impact on power systems such as generators and transformers. Make an impact.

交流用途を目的とした超電導線材においては、超電導
体のピンニング力に起因するヒステリシス損失を小さく
するために、フィラメント径をできるだけ小さくしなけ
ればならず、理論的にはNb3Snでは0.05μm、NbTiでは
0.1μmが最適であるといわれている。
In superconducting wire for the purpose of AC applications, in order to reduce the hysteresis loss due to pinning force of the superconductor, it is necessary to minimize the filament diameter, in theory Nb 3 Sn in 0.05 .mu.m, NbTi Then
It is said that 0.1 μm is optimal.

しかしながら、ヒステリシス損失は超電導体のフィラ
メント径と必ずしも1対1で対応するわけではなく、フ
ィラメント間隔がある限界以下になると近接効果が生じ
てヒステリシス損失は増大する。従って、理論的には最
適とされるフィラメント径を有する線材であっても、フ
ィラメント間隔との関連で、必ずしもヒステリシス損失
が小さくなるわけではない。
However, the hysteresis loss does not always correspond one-to-one with the filament diameter of the superconductor. When the filament interval becomes less than a certain limit, the proximity effect occurs and the hysteresis loss increases. Therefore, even in the case of a wire having a filament diameter which is theoretically optimized, the hysteresis loss is not necessarily reduced in relation to the filament interval.

これまで、Nb3Sn線材については、内部拡散法或いは
外部拡散法で、交流用途を目的としてフィラメント径が
0.1μm以下の線材が試作されてきた。しかし、Nbのフ
ィラメント径を1μm以下に加工すると、Nbフィラメン
トがリボン状に変形し、各フィラメント同志が局部的に
著しく接近したり、さらには、熱処理後に部分的に合体
が生じたりする。このため、フィラメント間隔はフィラ
メントが円断面を保って加工された場合の理論値に比べ
て小さくなり、線材のヒステリシス損失は、いわゆる近
接効果によって増大し、有効フィラメント径は理論値の
数倍〜数10倍の値に算定される結果となってしまってい
る。
Until now, the filament diameter of Nb 3 Sn wire rod has been reduced by the internal diffusion method or the external diffusion method for AC applications.
Wires of 0.1 μm or less have been trial manufactured. However, when the diameter of the Nb filament is processed to 1 μm or less, the Nb filament is deformed into a ribbon shape, and the filaments locally remarkably come close to each other, and further, partially coalesce after the heat treatment. For this reason, the filament interval becomes smaller than the theoretical value when the filament is processed while maintaining the circular cross section, the hysteresis loss of the wire increases due to the so-called proximity effect, and the effective filament diameter is several times to several times the theoretical value. The result is calculated to be 10 times the value.

[発明が解決すべき課題] Nbフィラメントのリボン状変形が起っても近接効果が
生じない程度にフィラメント間隔を大きくした線材構成
にすると、Nb3Sn超電導体に対するマトリックス材料の
体積比、即ちマトリックス比が増大し、線材断面積につ
いての臨界電流密度が低下して実用上好ましくない。従
って、線材の臨界電流密度を低下させずにヒステリシス
損失を低減するためには、Nbフィラメントのリボン状変
形をできるだけ抑制することが有効である。
[Problems to be Solved by the Invention] When a wire structure is used in which the filament interval is so large that the proximity effect does not occur even if ribbon-like deformation of the Nb filament occurs, the volume ratio of the matrix material to the Nb 3 Sn superconductor, that is, the matrix The ratio increases, and the critical current density with respect to the wire cross-sectional area decreases, which is not practically preferable. Therefore, in order to reduce the hysteresis loss without lowering the critical current density of the wire, it is effective to suppress the ribbon-like deformation of the Nb filament as much as possible.

本発明の目的は、前記した従来技術の欠点を解消し、
臨界電流密度が高く、かつ交流損失の小さい改良された
Nb3Sn超電導線材を提供することにある。
An object of the present invention is to eliminate the above-mentioned disadvantages of the prior art,
Improved critical current density and low AC loss
An object of the present invention is to provide an Nb 3 Sn superconducting wire.

[課題を解決するための手段] 本発明の要旨は、交流用途のNb3Sn超電導線材におい
て、コア材料としてNb基合金を用いたことにあり、それ
によってフィラメント径を1μm以下に小さくしたとき
のフィラメントのリボン状変形を抑制し、高臨界電流密
度、かつ低交流損失を達成するようにしたものである。
[Means for Solving the Problems] The gist of the present invention resides in that an Nb-based alloy is used as a core material in an Nb 3 Sn superconducting wire for AC use, thereby reducing the filament diameter to 1 μm or less. The present invention suppresses the ribbon-like deformation of the filament, and achieves a high critical current density and a low AC loss.

本発明の場合、Nb基合金における合金元素としては、
Ti、Hf又はTaが有効であり、その添加量は0.1〜5原子
%が適当である。添加量が5原子%を越えると、線材の
臨界温度が低下して好ましくない。また、添加量が0.1
原子%より少ないと、フィラメント径が小さくなったと
きのリボン状変形抑制の効果がなくなる。
In the case of the present invention, as an alloy element in the Nb-based alloy,
Ti, Hf or Ta is effective, and its addition amount is suitably 0.1 to 5 atomic%. If the addition amount exceeds 5 atomic%, the critical temperature of the wire is undesirably lowered. In addition, the addition amount is 0.1
If the content is less than atomic%, the effect of suppressing ribbon-shaped deformation when the filament diameter becomes small is lost.

添加量が0.1〜5原子%の範囲にある場合、前記のリ
ボン状変形抑制効果に加えて熱処理時のNb3Sn生成促進
効果があり、臨界電流特性も向上する。
When the addition amount is in the range of 0.1 to 5 atomic%, in addition to the effect of suppressing the ribbon-like deformation, there is an effect of accelerating the generation of Nb 3 Sn during the heat treatment, and the critical current characteristics are also improved.

マトリックスのCu−Sn合金については、Sn量が多いほ
どNb3Snを容易に生成し得るが、Sn量が8.5原子%を越え
るとSnがCuに全量固溶せず、加工性が損なわれる。
The Cu-Sn alloy matrix, but can produce easily as Nb 3 Sn Sn amount is large, Sn when Sn content exceeds 8.5 atomic% does not total amount dissolved in Cu, workability is impaired.

フィラメントのリボン状変形の度合いは、マトリック
ス材料の変形抵抗や加工硬化特性にも関連するため、前
記のNb基合金をコアに用いた場合、Sn量が3原子%以上
のCu−Sn合金に対してリボン状変形抑制効果が顕著にな
る。
Since the degree of ribbon-like deformation of the filament is also related to the deformation resistance and work hardening characteristics of the matrix material, when the above-mentioned Nb-based alloy is used for the core, the Sn amount is 3 atomic% or more with respect to the Cu-Sn alloy. As a result, the effect of suppressing ribbon-like deformation becomes remarkable.

[実施例] 以下、本発明の実施例について説明する。[Example] Hereinafter, an example of the present invention will be described.

コア材としてNb、Nb−1原子%Ti、Nb−1原子%Hf及
びNb−1原子%Taの夫々を用意すると共に、マトリック
ス材料としてCu−5原子%Sn、バリヤにTaを用意して従
来と同様に加工して第1表に示すような緒元の外周安定
化銅型のNb3Sn線材を製作した。
Conventionally, Nb, Nb-1at.% Ti, Nb-1at.% Hf and Nb-1at.% Ta are prepared as the core material, Cu-5at.% Sn as the matrix material, and Ta as the barrier. In the same manner as described above, an outer periphery stabilized copper-type Nb 3 Sn wire having the specifications shown in Table 1 was produced.

加工は450〜500℃で30分間の中間焼鈍を施しながら、
最終的に外径(mm)/フィラメント径(μm)が夫々0.
28/0.5、0.38/0.7、0.48/0.9の線材に仕上げた。次い
で、これらの線材にNb3Sn生成のために500〜600℃の熱
処理を施した。
Processing is performed while performing intermediate annealing at 450-500 ° C for 30 minutes.
Finally, the outer diameter (mm) / filament diameter (μm) are each 0.
Finished to 28 / 0.5, 0.38 / 0.7, 0.48 / 0.9 wire. Next, these wires were subjected to a heat treatment at 500 to 600 ° C. in order to generate Nb 3 Sn.

得られた各線材を夫々引張破断面のSEM(走査電子顕
微鏡)観察、臨界電流特性の測定、磁化特性等の測定に
供した。
Each of the obtained wires was subjected to SEM (scanning electron microscope) observation of a tensile fracture surface, measurement of critical current characteristics, measurement of magnetization characteristics, and the like.

第1図は、フィラメント径が0.9μmのNb−1原子%H
fコア線材の拡大断面を示したものである。なお、第1
図において、符号1は安定化材としてのCu、2はTaによ
るバリヤ、3はNb−1原子%Hfのコア(151本)、4はC
u−5原子%Snのマトリックスを示す。
FIG. 1 shows Nb-1 atomic% H having a filament diameter of 0.9 μm.
2 shows an enlarged cross section of an f-core wire rod. The first
In the figure, reference numeral 1 denotes Cu as a stabilizing material, 2 denotes a barrier made of Ta, 3 denotes a core of Nb-1 at% Hf (151 pieces), and 4 denotes C
2 shows a matrix of u-5 atomic% Sn.

線材の引張破断面のSEM観察においてはNbコア線材に
比べ、1原子%のTi、Hf又はTaのいずれかを添加したNb
基合金をコアとした線材の方がコアのリボン状変形が明
瞭に抑制されていることが観察された。
In the SEM observation of the tensile fracture surface of the wire, compared with the Nb core wire, 1 atomic% of Ti, Hf or Ta was added to Nb.
It was observed that the wire having the base alloy as the core had the ribbon-like deformation of the core suppressed more clearly.

第2図は600℃で100時間熱処理したフィラメント径0.
9μmのNbコア線材の引張破断面のSEM写真を示し、第3
図は同じく600℃で100時間熱処理したフィラメント径0.
9μmのNb−1原子%Tiコア線材の引張破断面のSEM写真
を示したものである。
Fig. 2 shows the filament diameter which was heat treated at 600 ° C for 100 hours.
The SEM photograph of the tensile fracture surface of the 9 μm Nb core wire is shown in FIG.
The figure also shows the filament diameter which was heat treated at 600 ° C for 100 hours.
It is the SEM photograph of the tensile fracture surface of a 9 micrometer Nb-1 atomic% Ti core wire.

なお、第2図及び第3図において、符号5はNb3Sn化
合物層、6は未反応コア、7はCu−Sn合金のマトリック
スを示す。
2 and 3, reference numeral 5 denotes an Nb 3 Sn compound layer, 6 denotes an unreacted core, and 7 denotes a matrix of a Cu—Sn alloy.

第2図及び第3図から明らかなように、同じ熱処理条
件でも、合金コア線材の方がNb3Sn層が厚く形成されて
いるのが観察され、微量のTi、Hf又はTaの添加がNb3Sn
の生成を促進する効果のあることが判る。
As is clear from FIGS. 2 and 3, even under the same heat treatment conditions, it was observed that the alloy core wire had a thicker Nb 3 Sn layer, and the addition of a small amount of Ti, Hf or Ta was 3 Sn
It has an effect of promoting the generation of

第4図は第1表に示す線材を575℃で100時間熱処理し
たときのフィラメント径に対する1T(テスラ)における
非銅断面積当りの臨界電流密度(non Cu Jc)と磁化履
歴損失の比の関係を示したものである。いずれのフィラ
メント径においても、この比は合金コア線材の方がNbコ
ア線材よりも高くなっておりTi、Hf又はTaを添加した合
金コア線材で高臨界電流、かつ低履歴損失が達成される
ことが判る。
Fig. 4 shows the relationship between the critical current density per non-copper cross-sectional area (non Cu Jc) and the magnetization history loss at 1T (tesla) with respect to the filament diameter when the wires shown in Table 1 were heat-treated at 575 ° C for 100 hours. It is shown. Regardless of the filament diameter, this ratio is higher for the alloy core wire than for the Nb core wire, and high critical current and low hysteresis loss are achieved with the alloy core wire to which Ti, Hf or Ta is added. I understand.

[発明の効果] 以上の説明から明らかなように、本発明によれば、交
流用途を目的とした1μm以下のフィラメント径のNb3S
n線材において、コアに微量のTi、Hf又はTaを添加したN
b基合金を用いることによって、フィラメントのリボン
状変形が抑制され、近接効果が低減されると共に、前記
合金元素の添加はNb3Snの生成促進効果も有するので低
交流損失、かつ高臨界電流のNb3Sn線材を容易に得るこ
とができる効果がある。
[Effects of the Invention] As is clear from the above description, according to the present invention, Nb 3 S having a filament diameter of 1 μm or less for AC use is used.
In n-wires, N with a small amount of Ti, Hf or Ta added to the core
By using the b-based alloy, the ribbon-like deformation of the filament is suppressed, the proximity effect is reduced, and the addition of the alloy element also has an effect of promoting the generation of Nb 3 Sn, so that a low AC loss, and a high critical current There is an effect that an Nb 3 Sn wire can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る方法の一実施例による超電導線材
の断面形状を示す顕微鏡写真の部分概略図、第2図は従
来技術による超電導線材の引張破断面の状態を示す顕微
鏡写真の概略図、第3図は本発明の実施例による超電導
線材の引張破断面の状態を示す顕微鏡写真の概略図、第
4図は各線材のフィラメント径に対する臨界電流密度と
磁化履歴損失の関係を示すグラフである。 3:Nb−1原子%Hfのコア、 4:Cu−5原子%Snのマトリックス、 5:Nb3Sn化合物層
FIG. 1 is a partial schematic diagram of a micrograph showing a cross-sectional shape of a superconducting wire according to an embodiment of the method according to the present invention, and FIG. 2 is a schematic diagram of a microscopic photograph showing a state of a tensile fracture surface of a conventional superconducting wire. FIG. 3 is a schematic diagram of a micrograph showing a state of a tensile fracture surface of a superconducting wire according to an embodiment of the present invention, and FIG. 4 is a graph showing a relationship between a critical current density and a magnetization history loss with respect to a filament diameter of each wire. is there. 3: Nb-1 at% Hf core, 4: Cu-5 at% Sn matrix, 5: Nb 3 Sn compound layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太刀川 恭司 神奈川県平塚市北金目1117番地 東海大 学工学部金属材料工学科内 (56)参考文献 特開 昭57−54260(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kyoji Tachikawa 1117 Kita-Kaneme, Hiratsuka-shi, Kanagawa Prefecture Tokai University Faculty of Engineering, Department of Metallic Materials Engineering (56) References JP-A-57-54260 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Nb材とCu−Sn合金材との複合体を中間焼鈍
を施しながら減面加工して得た線材に、Nb3Snを生成さ
せるための熱処理を施す交流用のNb3Sn超電導線材の製
造方法において、 前記複合体としてTi、HfまたはTaのいずれか1種を0.1
〜5原子%含むNb基合金材と、3〜8.5原子%のSnを含
むCu基合金材との複合体を用いてNb基合金材のフィラメ
ント径を1μm以下に減面加工することを特徴とするNb
3Sn超電導線材の製造方法。
To 1. A Nb material and wire the composite obtained by reduction process while subjected to intermediate annealing between the Cu-Sn alloy, Nb 3 Sn for alternating the heat treatment for producing a Nb 3 Sn In the method for producing a superconducting wire, any one of Ti, Hf and Ta is used as the composite in 0.1%.
The present invention is characterized in that the filament diameter of the Nb-based alloy material is reduced to 1 μm or less by using a composite of an Nb-based alloy material containing 5 to 5 atomic% and a Cu-based alloy material containing 3 to 8.5 atomic% Sn. Nb
Manufacturing method of 3 Sn superconducting wire.
JP2150250A 1990-06-08 1990-06-08 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire Expired - Fee Related JP3031477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150250A JP3031477B2 (en) 1990-06-08 1990-06-08 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150250A JP3031477B2 (en) 1990-06-08 1990-06-08 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Publications (2)

Publication Number Publication Date
JPH0443513A JPH0443513A (en) 1992-02-13
JP3031477B2 true JP3031477B2 (en) 2000-04-10

Family

ID=15492841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150250A Expired - Fee Related JP3031477B2 (en) 1990-06-08 1990-06-08 Nb Lower 3 Method for Manufacturing Sn Superconducting Wire

Country Status (1)

Country Link
JP (1) JP3031477B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60423B2 (en) * 1980-09-18 1985-01-08 科学技術庁金属材料技術研究所長 Manufacturing method of Nb↓3Sn composite material

Also Published As

Publication number Publication date
JPH0443513A (en) 1992-02-13

Similar Documents

Publication Publication Date Title
JPH0377608B2 (en)
JP6719141B2 (en) Nb3Sn superconducting wire manufacturing method, precursor for Nb3Sn superconducting wire, and Nb3Sn superconducting wire using the same
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
US20030085053A1 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
US4094059A (en) Method for producing composite superconductors
JP3031477B2 (en) Nb Lower 3 Method for Manufacturing Sn Superconducting Wire
JP7148103B2 (en) Precursor for Nb3Sn superconducting wire, method for producing same, and method for producing Nb3Sn superconducting wire using same
AU2006223967A1 (en) Process for producing superconducting wire rod
US7325293B2 (en) Zirconia-stabilized multi-filamentary niobium-tin superconducting wire
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JP2010135215A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE MATERIAL AND Nb3Sn SUPERCONDUCTING WIRE MATERIAL
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP3603565B2 (en) Nb (3) Sn superconducting wire capable of obtaining high critical current density and method for producing the same
JP3848449B2 (en) Manufacturing method of oxide superconducting wire
JPH0554741A (en) Manufacture of compound superconducting wire
JPH03283322A (en) Manufacture of nb3al superconductor
JP4687438B2 (en) Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
JP3046828B2 (en) Nb Lower 3 Method for Manufacturing Sn Composite Superconductor
JP3353217B2 (en) Method for producing Nb-3 Sn-based superconducting wire
JPH0636331B2 (en) Nb (bottom 3) A1 compound superconducting wire manufacturing method
JPS62211358A (en) Manufacture of nb3sn superconductor wire
JPS60170113A (en) Method of producing nb3sn superconductive lead
JPS5828685B2 (en) Chiyodendo V3GA Senzaino Seizouhou
JPH0259572B2 (en)
JPS59209210A (en) Nb3sn compound superconductive wire and production thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees