JP3367711B2 - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JP3367711B2
JP3367711B2 JP18731893A JP18731893A JP3367711B2 JP 3367711 B2 JP3367711 B2 JP 3367711B2 JP 18731893 A JP18731893 A JP 18731893A JP 18731893 A JP18731893 A JP 18731893A JP 3367711 B2 JP3367711 B2 JP 3367711B2
Authority
JP
Japan
Prior art keywords
group
effect transistor
polymer semiconductor
polymer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18731893A
Other languages
Japanese (ja)
Other versions
JPH0786600A (en
Inventor
滋 金原
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18731893A priority Critical patent/JP3367711B2/en
Publication of JPH0786600A publication Critical patent/JPH0786600A/en
Application granted granted Critical
Publication of JP3367711B2 publication Critical patent/JP3367711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 【0001】 【技術分野】本発明は、高分子半導体および該半導体を
使用した電界効果型トランジスタに関する。 【0002】 【従来技術】電子機器の普及に供ない半導体素子の需要
が高まっており、微細加工技術、プロセス技術、材料技
術等の面から研究開発が行われている。これらの半導体
素子としては、Si、Geなどの金属、あるいはGaA
s、InPなどの無機化合物を半導体材料として使用さ
れるのが一般的である。しかし、あらゆる産業に浸透し
ているシリコン集積回路がその集積度において限界に達
するであろうという予測がある。この要因として、トラ
ンジスタの微細化に供なう素子の信頼性低下と微細加工
技術の限界が挙げられる。最近、シリコンなどの半導体
に替わる材料として、有機材料の研究が試みられてい
る。有機材料は、古くからエレクトロニクス分野の研究
開発の対象になっており、passiveな補助的材料
として従来から用いられてきたが、active de
viceの構成材料として、無機材料で構成されるデバ
イスの性能向上や、従来にない新しい機能を発現させよ
うとする提案がなされている。例えば、R.S.Pot
emberらはCu/TCNQ等の薄膜でスイッチング
やメモリー現象を有する電気伝導素子を開示している
〔US−4507672(1985)Appl. Ph
ys. Lett. (1979) 34 405〕ま
た、Carterらは、ソリトンによる分子デバイスを
提案している。導電性高分子あるいはオリゴマーを用い
たFETでは、無機並のmobilityも確認され、
エレクトロニクスの分野への応用で注目を集めている。
導電性高分子は、分子骨格が、π電子共役二重結合や三
重結合からなり、高い導電性を用いた応用(磁気シール
ド、電極材料等)以外にもドーピングによって電導度と
共に電気化学ポテンシャル(フェルミレベル)や電子構
造が、変化するため、バッテリーやエレクトロクロミッ
クディスプレイ等に応用が可能である。また、ドーピン
グレベルを適当に制御することにより、任意の電気伝導
度、電子状態の半導体、金属を作成することができる。
例えば、Koezukaらは、ポリチェニレンビニレン
を〔Synth. Met. 41−43(1991)
1181〕Garnierらは、オリゴチオフェンを
〔Adv.Mat.2(1990)No.12〕それぞ
れチャネル層としたFETを作製した。また、半導体と
して高分子半導体を用いることにより、成型性、低価格
性等に優れた大面積化の容易なFETを提供することが
できる。 【0003】 【目的】本発明は、高分子半導体として、熱または光等
の物理的外部刺激によって高分子の状態が変化すること
のできる新規な高分子半導体の提供を目的とする。 【0004】 【構成】本発明者らは、導電性高分子の骨格構造のなか
に、光または熱等の物理的な外部刺激によって異性化を
起こすことのできる官能基を導入することにより、外部
刺激に対して高分子の状態が変化することに着目し、さ
らにはそのキャリア移動度が変化することを見い出し、
本発明の高分子半導体に到った。本発明の光または熱等
の物理的な外部刺激によって異性化を起こすことのでき
る官能基を導入した高分子半導体としては、下式
(I)、(II)、(III)および(IV)よりなる群から
選ばれた少なくとも1種のπ電子共役系骨格を有する高
分子半導体である。 【化2】 〔式中、XはNH、あるいはS、O、Se、Teおよび
Poよりなる酸素族の元素から選ばれた少なくとも1種
の元素である。R、Rの一方は、アルキル基または
COY基(式中、Yはアルキル基、フェニル基あるい
はそれらの誘導体)であり、R、Rの他方は、アゾ
ベンゼン、スチルベンおよびスピロピランよりなる群か
ら選ばれた少なくとも一種のものより誘導された基であ
る。nは、重合度5〜2000である。〕 【0005】本発明の高分子半導体は、光または熱等の
物理的外部刺激を加えることにより高分子の状態が変化
し、該変化に伴ってキャリアの移動度が変化するので、
このような特性を利用して、FET、光センサ、ダイオ
ード、コンデンサ、光変調素子、光ニューロ素子等に応
用することができる。例えば、該高分子半導体を光また
は熱等の物理的外部刺激を加えることによりキャリア移
動度の変化とともに、ソースドレイン間電流(ISD)が
変調するが、光照射時間と光遮断時でのISDの比が10
2以上でスイッチング素子、102以下で光変調素子等に
利用可能である。次に、本発明の高分子半導体をチャネ
ル層の構成材料として用いたFETについて、図面に基
づいて具体的に説明する。 【0006】図1は、ゲートと半導体の間に絶縁膜を持
つMIS型電界効果トランジスタ素子断面図である。こ
の素子は、絶縁基板1上に形成したゲート電極5上に絶
縁膜6を形成し、この絶縁膜6上に高分子半導体膜2を
重合形成し、ゲート領域を間にした高分子半導体膜上に
ソース電極3及びドレイン電極4を形成することにより
作製される。前記MIS型電界効果トランジスタにおい
て、絶縁基板1としては、板ガラス、表面酸化処理シリ
コンウエハー、高分子フィルム等を使用できる。ゲート
電極5は、任意の金属で構成し得るが、ソース電極3及
びドレイン電極4は、高分子半導体膜2とオーミック接
触し得る材質で構成される必要がある。該ソース電極3
および4は、高分子半導体膜としてp型の高分子半導体
を使用した場合、Al、In、Mg等の仕事関数の小さ
な材質を利用する。また、n型の高分子半導体を使用し
た場合、Pt、Au等の仕事関数の大きな材質を使用す
る。また、絶縁膜6としては、プラズマ重合膜、熱分解
気相重合膜、無機酸化膜等を使用することができる。該
MIS型電界効果トランジスタ素子において、ゲート幅
は100μm〜5mm程度、ゲート長は50μm〜1μ
mの程度とする。また、電極配置は、高分子半導体膜の
片面のみ使用するコプレナー構造、両面を使用するスタ
ガ構造にすることが可能である。 【0007】図2は、ショットキーバリアゲート電界効
果トランジスタの素子断面図である。この素子は、絶縁
基板1に高分子半導体膜2を重合により形成し、その上
にゲート電極5を形成し、ゲート電極5直下のゲート領
域をゲートにした高分子半導体膜2上にソース電極3お
よびドレイン電極4を形成し作製される。図2の素子に
おいても、絶縁基板1、ソース電極3、ドレイン電極
4、ゲート電極5および絶縁膜6は、図1の素子で使用
する材料を使用することができる。 【0008】以下、図3に基づいて本発明の高分子半導
体をチャネル層に用いた電界効果型トランジスタの実施
例について説明する。 【0009】 【実施例】実施例1 p型Siを基板として用い、表面を酸化処理し、膜厚4
00ÅのSiO2絶縁膜を形成した。次に絶縁膜上にn
型Siからなるソース電極とドレイン電極をチャネル長
10μm、チャネル幅80mmでくし型に形成した。そ
の上から下式(V)に示す構造においてR=メチル基、
X=アゾベンゼンを導入した高分子半導体をスピンコー
ター(ミカサ株式会社 1H−DX)を用いて1μmの
半導体膜に形成した。 【化3】 基板の裏面にはAu−alloyを用いて厚さ40nm
のゲート電極を形成した。以上のようにして、製作した
MOS型電界効果トランジスタのV−I測定を光照射時
と光遮断時で行った。その結果を図4に示す。 実施例2 高分子半導体としてR=メチル基、X=スチルベンを導
入した高分子を用い、厚さ1μmの半導体膜を絶縁膜上
に形成した。それ以外実施例1と同じトランジスタ構造
パラメータとし、V−I測定を行った。この時光照射時
と遮断時とで、ソースドレイン電流(ISD)に違いが見
られた。 実施例3 電界効果トランジスタの構造は、実施例1と同じであ
る。光照射回数を10回まで続けて行った時、照射回数
によってソース−ドレイン間電流に違いが見られた。こ
の現象を用いることにより、光ニューロ素子に応用可能
となる。その結果を図5に示す。なお、実施例1におい
て、スピロピラン、フルギド、チオインジゴ等を導入し
た高分子半導体を使用した場合にも同様の効果を示す。 【0010】 【効果】本発明によると、光または熱等の物理的外部刺
激により高分子の状態が変化し、該変化に伴ってキャリ
アの移動度が変化する、FET、光センサ、ダイオー
ド、コンデンサ、光変調素子等に応用可能な高分子半導
体が提供される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer semiconductor and a field effect transistor using the semiconductor. 2. Description of the Related Art There is an increasing demand for semiconductor devices that do not spread electronic equipment, and research and development are being carried out in terms of microfabrication technology, process technology, material technology, and the like. These semiconductor elements include metals such as Si and Ge, or GaAs.
In general, inorganic compounds such as s and InP are used as semiconductor materials. However, there are predictions that silicon integrated circuits permeating all industries will reach their limits in their degree of integration. This may be due to a decrease in the reliability of the element used for miniaturization of the transistor and a limitation of the fine processing technology. Recently, research on organic materials has been attempted as a material replacing semiconductors such as silicon. Organic materials have long been the subject of research and development in the electronics field, and have been conventionally used as passive auxiliary materials.
Proposals have been made to improve the performance of a device made of an inorganic material as a constituent material of a device, and to express a new function that has not existed before. For example, R. S. Pot
disclose an electric conduction element having switching and memory phenomena in a thin film such as Cu / TCNQ [US Pat. No. 4,507,672 (1985) Appl. Ph
ys. Lett. (1979) 34 405] Carter et al. Propose a molecular device based on solitons. In the case of FETs using conductive polymers or oligomers, mobilities comparable to inorganics were also confirmed,
It is attracting attention for its application to the electronics field.
Conductive polymers have a molecular skeleton consisting of π-electron conjugated double bonds and triple bonds. In addition to applications using high conductivity (magnetic shields, electrode materials, etc.), doping also adds conductivity to electrochemical potential (Fermi potential). Level) and electronic structure change, so that it can be applied to batteries, electrochromic displays, and the like. Further, by appropriately controlling the doping level, a semiconductor or a metal having an arbitrary electrical conductivity and electronic state can be produced.
For example, Koezuka et al. Have described polychenylene vinylene [Synth. Met. 41-43 (1991)
1181] Garnier et al. Converted oligothiophenes [Adv. Mat. 2 (1990) No. 12] FETs each having a channel layer were manufactured. In addition, by using a polymer semiconductor as a semiconductor, it is possible to provide an FET which is excellent in moldability, low cost, and the like, and can be easily enlarged. An object of the present invention is to provide a novel polymer semiconductor which can change its state by a physical external stimulus such as heat or light as a polymer semiconductor. The present inventors have introduced a functional group capable of causing isomerization by a physical external stimulus such as light or heat into a skeleton structure of a conductive polymer, whereby an external polymer is introduced. Focusing on the change in the state of the polymer in response to the stimulus, and further finding that the carrier mobility changes,
The polymer semiconductor of the present invention has been reached. As the polymer semiconductor of the present invention into which a functional group capable of causing isomerization by physical external stimulus such as light or heat is introduced, the following formulas (I), (II), (III) and (IV) A polymer semiconductor having at least one kind of π-electron conjugated skeleton selected from the group consisting of: Embedded image [In the formula, X is NH or at least one element selected from oxygen group elements including S, O, Se, Te and Po. One of R 1 and R 2 is an alkyl group or a CO 2 Y group (where Y is an alkyl group, a phenyl group or a derivative thereof), and the other of R 1 and R 2 is a group selected from azobenzene, stilbene and spiropyran. It is a group derived from at least one selected from the group consisting of: n is a degree of polymerization of 5 to 2,000. In the polymer semiconductor of the present invention, the state of the polymer changes when a physical external stimulus such as light or heat is applied, and the mobility of the carrier changes with the change.
Utilizing such characteristics, it can be applied to FETs, optical sensors, diodes, capacitors, optical modulation elements, optical neuro elements, and the like. For example, when a physical external stimulus such as light or heat is applied to the polymer semiconductor, the carrier mobility is changed and the source-drain current (ISD) is modulated. The ratio is 10
It can be used as a switching element with 2 or more and a light modulation element with 2 or less. Next, an FET using the polymer semiconductor of the present invention as a constituent material of a channel layer will be specifically described with reference to the drawings. FIG. 1 is a sectional view of a MIS field-effect transistor element having an insulating film between a gate and a semiconductor. In this device, an insulating film 6 is formed on a gate electrode 5 formed on an insulating substrate 1, a polymer semiconductor film 2 is formed on the insulating film 6 by polymerization, and the polymer semiconductor film 2 It is manufactured by forming a source electrode 3 and a drain electrode 4 on the substrate. In the MIS field-effect transistor, as the insulating substrate 1, a sheet glass, a surface-oxidized silicon wafer, a polymer film, or the like can be used. The gate electrode 5 can be made of any metal, but the source electrode 3 and the drain electrode 4 need to be made of a material that can make ohmic contact with the polymer semiconductor film 2. The source electrode 3
And 4 use a material having a small work function such as Al, In, and Mg when a p-type polymer semiconductor is used as the polymer semiconductor film. When an n-type polymer semiconductor is used, a material having a large work function, such as Pt or Au, is used. Further, as the insulating film 6, a plasma polymerized film, a thermally decomposed gas phase polymerized film, an inorganic oxide film, or the like can be used. In the MIS field effect transistor device, the gate width is about 100 μm to 5 mm, and the gate length is 50 μm to 1 μm.
m. The electrode arrangement can be a coplanar structure using only one side of the polymer semiconductor film, or a staggered structure using both sides. FIG. 2 is a sectional view of a Schottky barrier gate field effect transistor. In this device, a polymer semiconductor film 2 is formed on an insulating substrate 1 by polymerization, a gate electrode 5 is formed thereon, and a source electrode 3 is formed on the polymer semiconductor film 2 having a gate region immediately below the gate electrode 5 as a gate. And the drain electrode 4 is formed. Also in the device of FIG. 2, the insulating substrate 1, the source electrode 3, the drain electrode 4, the gate electrode 5, and the insulating film 6 can use the materials used in the device of FIG. Hereinafter, an embodiment of a field effect transistor using a polymer semiconductor of the present invention for a channel layer will be described with reference to FIG. EXAMPLE 1 Using p-type Si as a substrate, the surface was oxidized to a thickness of 4
An SiO 2 insulating film of 00 ° was formed. Next, n
A source electrode and a drain electrode made of a mold Si were formed in a comb shape with a channel length of 10 μm and a channel width of 80 mm. From above, in the structure shown in the following formula (V), R = methyl group,
X = A polymer semiconductor in which azobenzene was introduced was formed into a 1 μm semiconductor film using a spin coater (Mikasa Corporation 1H-DX). Embedded image Au-alloy is used on the back surface of the substrate to a thickness of 40 nm.
Was formed. As described above, VI measurement of the manufactured MOS field effect transistor was performed at the time of light irradiation and at the time of light blocking. FIG. 4 shows the results. Example 2 Using a polymer in which R = methyl group and X = stilbene were introduced as a polymer semiconductor, a semiconductor film having a thickness of 1 μm was formed on an insulating film. Otherwise, the same transistor structure parameters as in Example 1 were used, and VI measurement was performed. At this time, a difference was observed in the source / drain current (ISD) between the time of light irradiation and the time of interruption. Embodiment 3 The structure of a field-effect transistor is the same as that of Embodiment 1. When light irradiation was continued up to 10 times, a difference was observed in the source-drain current depending on the number of irradiations. By using this phenomenon, it can be applied to an optical neuro element. The result is shown in FIG. In the first embodiment, the same effect is obtained when a polymer semiconductor into which spiropyran, fulgide, thioindigo, or the like is introduced is used. According to the present invention, an FET, an optical sensor, a diode, and a capacitor in which the state of a polymer is changed by a physical external stimulus such as light or heat, and the mobility of a carrier is changed in accordance with the change. And a polymer semiconductor applicable to a light modulation element and the like.

【図面の簡単な説明】 【図1】本発明の高分子半導体をチャネル層として用い
た、ゲートと半導体の間に絶縁膜を持つMIS型電界効
果トランジスタ素子の断面図である。 【図2】本発明の高分子半導体をチャネル層として用い
たショットキーバリアゲート電界効果トランジスタ素子
の断面図である。 【図3】本発明の実施例で作製したMOS型電界効果ト
ランジスタ素子の断面図である。 【図4】本発明の実施例2で作製したMOS型電界効果
トランジスタのV−I測定の結果を示す図である。 【図5】本発明の実施例3で作製したMOS型電界効果
トランジスタのV−I測定の結果を示す図である。 【符号の説明】 1 絶縁基板 2 高分子半導体膜 3 ソース電極 4 ドレイン電極 5 ゲート電極 6 絶縁膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an MIS field-effect transistor device using a polymer semiconductor of the present invention as a channel layer and having an insulating film between a gate and a semiconductor. FIG. 2 is a cross-sectional view of a Schottky barrier gate field effect transistor device using the polymer semiconductor of the present invention as a channel layer. FIG. 3 is a cross-sectional view of a MOS field-effect transistor device manufactured in an example of the present invention. FIG. 4 is a diagram showing a result of VI measurement of a MOS field effect transistor manufactured in Example 2 of the present invention. FIG. 5 is a diagram showing a result of VI measurement of a MOS type field effect transistor manufactured in Example 3 of the present invention. [Description of Signs] 1 Insulating substrate 2 Polymer semiconductor film 3 Source electrode 4 Drain electrode 5 Gate electrode 6 Insulating film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/786 H01L 51/00 CA(STN)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01L 29/786 H01L 51/00 CA (STN)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 高分子半導体をチャネル層とする電界効
果型トランジスタにおいて、該高分子半導体が、次式
(I)、(II)、(III)および(IV)よりなる群から
選ばれた少なくとも1種のπ電子共役系骨格を有する高
分子半導体であることを特徴とする電界効果型トランジ
スタ。 【化1】〔式中、XはNH、あるいはS、O、Se、Teおよび
Poよりなる酸素族の元素から選ばれた少なくとも1種
の元素である。R、Rの一方は、アルキル基または
COY基(式中、Yはアルキル基、フェニル基あるい
はそれらの誘導体)であり、R、Rの他方は、アゾ
ベンゼン、スチルベンおよびスピロピランよりなる群か
ら選ばれた少なくとも一種のものより誘導された基であ
る。nは、重合度5〜2000である。〕
(57) [Claim 1] In a field effect transistor using a polymer semiconductor as a channel layer, the polymer semiconductor is represented by the following formulas (I), (II), (III) and (IV) A) a field-effect transistor comprising a polymer semiconductor having at least one π-electron conjugated skeleton selected from the group consisting of: Embedded image [In the formula, X is NH or at least one element selected from oxygen group elements including S, O, Se, Te and Po. One of R 1 and R 2 is an alkyl group or a CO 2 Y group (where Y is an alkyl group, a phenyl group or a derivative thereof), and the other of R 1 and R 2 is a group selected from azobenzene, stilbene and spiropyran. It is a group derived from at least one selected from the group consisting of: n is a degree of polymerization of 5 to 2,000. ]
JP18731893A 1993-06-30 1993-06-30 Field-effect transistor Expired - Fee Related JP3367711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18731893A JP3367711B2 (en) 1993-06-30 1993-06-30 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18731893A JP3367711B2 (en) 1993-06-30 1993-06-30 Field-effect transistor

Publications (2)

Publication Number Publication Date
JPH0786600A JPH0786600A (en) 1995-03-31
JP3367711B2 true JP3367711B2 (en) 2003-01-20

Family

ID=16203912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18731893A Expired - Fee Related JP3367711B2 (en) 1993-06-30 1993-06-30 Field-effect transistor

Country Status (1)

Country Link
JP (1) JP3367711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508078B2 (en) 2005-01-06 2009-03-24 Ricoh Company, Ltd. Electronic device, method for manufacturing electronic device, contact hole of electronic device, method for forming contact hole of electronic device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152958A (en) * 2002-10-30 2004-05-27 Pioneer Electronic Corp Organic semiconductor device
JP4629997B2 (en) 2003-06-02 2011-02-09 株式会社リコー Thin film transistor and thin film transistor array
JP4570341B2 (en) * 2003-07-23 2010-10-27 シャープ株式会社 THIN FILM TRANSISTOR, DISPLAY ELEMENT USING SAME, AND LIQUID CRYSTAL DISPLAY ELEMENT
JP4887599B2 (en) * 2003-11-19 2012-02-29 セイコーエプソン株式会社 CIRCUIT BOARD, CIRCUIT BOARD MANUFACTURING METHOD, DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP5419063B2 (en) * 2008-09-24 2014-02-19 独立行政法人産業技術総合研究所 Semiconductor element
JP2014529728A (en) * 2011-08-02 2014-11-13 アルマ・マテール・ストゥディオルム・ウニベルシータ・ディ・ボローニャAlma Mater Studiorum Universita Di Bologna Intrinsic direct detector of ionizing radiation and method of manufacturing the detector
JP6210530B2 (en) * 2013-06-04 2017-10-11 国立研究開発法人物質・材料研究機構 Dual gate organic thin film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508078B2 (en) 2005-01-06 2009-03-24 Ricoh Company, Ltd. Electronic device, method for manufacturing electronic device, contact hole of electronic device, method for forming contact hole of electronic device

Also Published As

Publication number Publication date
JPH0786600A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
JP2813428B2 (en) Field effect transistor and liquid crystal display device using the field effect transistor
TWI294687B (en) Organic thin film transistor
Koezuka et al. Field-effect transistor with polythiophene thin film
Brown et al. Organic n-type field-effect transistor
JPH0541520A (en) Semiconductor device
US7151275B2 (en) Reducing the contact resistance in organic field-effect transistors with palladium contacts by using nitriles and isonitriles
Zhang et al. Interlayers for improved hole injection in organic field‐effect transistors
JP3367711B2 (en) Field-effect transistor
KR19980032958A (en) Device with thin film transistor containing N type organic semiconductor compound
Grecu et al. Characterization of polymeric metal-insulator–semiconductor diodes
JPH01259563A (en) Field effect transistor
De Vusser et al. Light-emitting organic field-effect transistor using an organic heterostructure within the transistor channel
Pearson et al. A field effect transistor based on Langmuir-Blodgett films of an Ni (dmit) 2 charge transfer complex
Burroughes et al. Field-enhanced conductivity in polyacetylene-construction of a field-effect transistor
Kadoya et al. Estimation of charge-injection barriers at the metal/pentacene interface through accumulated charge measurement
WO2001035500A2 (en) Field effect transistor (fet) and fet circuitry
Zhu et al. Depletion-mode n-channel organic field-effect transistors based on NTCDA
KR20180000712A (en) Graphene-organic junction bipolar transistor
JPS5833872A (en) Manufacture of thin film field effect transistor
Lin et al. Contact dependence of α-sexithienyl thin film transistor characteristics
Kim et al. Control of interfacial charges of organic semiconductor by a surface polarized layer for high noise-margin inverters with full-swing capability
Huang et al. Organic field-effect inversion-mode transistors and single-component complementary inverters on charged electrets
JP2006286681A (en) Field effect transistor and manufacturing method thereof
JPS6231174A (en) Field effect transistor
JPS6285467A (en) field effect transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees