JP3684614B2 - Organic thin film light emitting device and method for manufacturing the same - Google Patents

Organic thin film light emitting device and method for manufacturing the same Download PDF

Info

Publication number
JP3684614B2
JP3684614B2 JP13902195A JP13902195A JP3684614B2 JP 3684614 B2 JP3684614 B2 JP 3684614B2 JP 13902195 A JP13902195 A JP 13902195A JP 13902195 A JP13902195 A JP 13902195A JP 3684614 B2 JP3684614 B2 JP 3684614B2
Authority
JP
Japan
Prior art keywords
light emitting
cathode
thin film
organic thin
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13902195A
Other languages
Japanese (ja)
Other versions
JPH08330072A (en
Inventor
克紀 鈴木
洋太郎 白石
春雄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP13902195A priority Critical patent/JP3684614B2/en
Publication of JPH08330072A publication Critical patent/JPH08330072A/en
Application granted granted Critical
Publication of JP3684614B2 publication Critical patent/JP3684614B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【産業上の利用分野】
本発明は各種表示装置の発光源として用いられる有機薄膜発光素子の陰極およびその製造方法に関する。
【0002】
【従来の技術】
従来のブラウン管に代わるフラットパネルディスプレイの需要の急増に伴い、各種表示素子の開発および実用化が精力的に進められている。エレクトロルミネッセンス素子(以下EL素子と称する)もこうしたニーズに即するものであり、特に素子全体が固体より構成されていること、自ら発光することにより他のディスプレイにはない高解像度および高視認性により注目を集めている。
【0003】
現在実用化されているものは、主に発光層にZnS/Mn系を用いた無機材料からなるEL素子である。しかしこの種の無機EL素子は発光に必要な駆動電圧が200V程度と高いために駆動方法が複雑となり、製造コストが高いといった問題点がある。また青色発光の効率が低いため、フルカラー化が困難である。
これに対して有機材料を用いた薄膜発光素子は、発光に必要な駆動電圧を大幅に低減でき、かつ各種発光材料の添加により、フルカラー化の可能性を持つことから、近年活発に研究が行われている。
【0004】
特に、陽極/正孔注入層/発光層/陰極からなる積層型において、発光剤にトリス(8−ヒドロキシキノリン)アルミニウムを、正孔注入剤に1,1−ビス(4−N,N−ジトリルアミノフェニル)シクロヘキサンを用いることにより、10V以下の印加電圧で1000cd/m2 以上の輝度を得られたという報告がなされて以来、開発に拍車がかけられた(Appl.Phys.Lett. 51, 913 (1987))。
【0005】
以上のように有機材料を用いた薄膜発光素子は低電圧駆動やフルカラー化などの可能性を強く示唆しているものの、性能面では解決しなければならない課題が多く残されている。特に長時間駆動に伴う特性劣化の問題は乗り越えねばならない課題である。該特性劣化の原因の一つとして、陰極の安定性の不足が挙げられる。陰極材料は、電子注入性を向上するために仕事関数の小さな金属が好ましいが、そのために酸化されやすいという問題を抱えている。
【0006】
【発明が解決しようとする課題】
この問題に対処するために陰極を仕事関数の大きい金属元素との合金にして用いる(特開平2−15595号公報)方法、あるいは仕事関数の小さい金属または合金上に仕事関数の大きい金属および合金を積層する(特開平4−233195号公報)等の手法が提案されている。しかしながら前者は仕事関数の小さい金属元素(例えばMg)を多量に含まなければ電子注入性が確保されないために仕事関数の大きい金属元素(例えばAg)の組成割合が小さくそのために安定性が充分でない。また後者は有機層と金属または合金との界面における酸化を防ぐことは困難である等の課題を抱えている。
【0007】
この発明は上述の点に鑑みてなされ、その目的は電子注入性が高い上に化学的安定性にも優れる陰極を開発することにより特性と信頼性に優れる有機薄膜発光素子およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上述の目的はこの発明によれば、絶縁性透明基体上に陽極、正孔注入層と発光層と電子注入層のうちの少なくとも発光層からなる有機層、陰極を積層してなる有機薄膜発光素子において、陰極がアルミニウムを主成分とし、副成分としてシリコン元素および仕事函数がアルミニウムの仕事函数よりも小さいMg、C a 、Mn、Ba、Laから選ばれる元素を含有し、かつシリコン元素の含有量が0.1重量%ないし3.00重量%であることにより達成される。
また、絶縁性透明基体上に陽極、正孔注入層と発光層と電子注入層のうちの少なくとも発光層からなる有機層、陰極を積層してなる有機薄膜発光素子において、陰極がアルミニウムを主成分とし、副成分としてシリコン元素および仕事函数がアルミニウムの仕事函数よりも小さいMg、C a 、Mn、Ba、Laから選ばれる元素を含有し、かつシリコン元素の含有量が0.1重量%ないし3.00重量%である有機薄膜発光素子の製造方法において、陰極はフラッシュ蒸着法により成膜されることにより達成される。
【0009】
また前記した有機薄膜発光素子の陰極はフラッシュ蒸着法により成膜されるとすることにより達成される。
また陰極のAl元素の含有量は、好ましくは90重量%以上であり、より好ましくは95重量%以上である。
陰極のSi元素の含有量は好ましくは0.01ないし3.00重量%であり、より好ましくは0.1ないし1.00重量%の範囲にある。
【0010】
アルミニウム金属元素の仕事函数4.2eVよりも小さい仕事函数を有する元素としては経済性の見地からMg、C a 、Mn、Ba、Laが挙げられる。アルミニウム金属元素の仕事函数4.2eVよりも小さい仕事函数を有する元素の含有量は、各元素の固溶限界内の含有量が用いられる。なお、Si元素の仕事函数はn型のシリコンの場合4.85eVである。
【0011】
【作用】
Al金属にSi元素を含有させると、導電性および生産性を損なうことなく、陰極に十分な耐酸化性が付与される。このSi元素を添加したAl合金に仕事関数の小さい金属元素を含有させると良好な電子注入性が得られる。
前記した陰極は沸点,蒸気圧の異なる少なくとも三つの元素を含有する組成物であるからフラッシュ蒸着法により陰極を形成するときに陰極組成の安定性と生産性が確保される。
【0012】
【実施例】
本発明の実施例を図面に基づいて説明する。
図1は本発明の実施例に係る有機薄膜発光素子の一例を示す断面図である。
図2は本発明の実施例に係る有機薄膜発光素子の異なる例を示す断面図である。
【0013】
図3は本発明の実施例に係る有機薄膜発光素子のさらに異なる例を示す断面図である。
図4は本発明の実施例に係る有機薄膜発光素子のさらに異なる例を示す断面図である。
上述の例において1は絶縁性透明基板、2は陽極、3は正孔注入層、4は発光層、5は電子注入層、6は陰極である。
【0014】
絶縁性透明基板1は有機薄膜発光素子の支持体であり、ガラス、樹脂などが用いられる。
陽極2は金,ニッケル等の半透膜やインジウムスズ酸化物(ITO)、酸化スズ(SnO2 )等の透明導電膜からなり、抵抗加熱蒸着,電子ビーム蒸着,スパッタ法等により形成される。膜厚は10ないし500nmの厚さが好ましい。
【0015】
正孔注入層3は発光層に効率よく正孔を輸送・注入し、該発光層4にて発光した光の波長領域においてできるだけ透明であることが望ましい。成膜方法としてはスピンコート,キャスティング,LB法,抵抗加熱蒸着,電子ビーム蒸着等があるが、抵抗加熱蒸着が一般的である。膜厚は5ないし500nmであり、好適には10ないし80nmである。正孔注入物質としてはヒドラゾン化合物,ピラリゾン化合物,スチルベン化合物,アミン系化合物,等が用いられる。正孔注入物質の具体例が化学式(I―1)ないし化学式(I―7)に示される。
【0016】
【化1】

Figure 0003684614
【0017】
【化2】
Figure 0003684614
【0018】
発光層4は正孔注入層3または陽極2より注入された正孔と、陰極6または電子注入層5から注入された電子により効率よく発光を行う。成膜方法としてはスピンコート,キャスティング,LB法,抵抗加熱蒸着,電子ビーム蒸着等があるが、抵抗加熱蒸着が一般的である。膜厚は5ないし500nmであり、好適には30ないし80nmである。
【0019】
発光層4としては金属キレート化合物,ペリノン誘導体,ジスチリルベンゼン誘導体等が用いられる。発光物質の具体例が化学式(II―1)ないし化学式(II―4)に示される。
【0020】
【化3】
Figure 0003684614
【0021】
電子注入層5は電子を発光層4に効率よく輸送・注入することが必要である。成膜方法としてはスピンコート,キャスティング,LB法,抵抗加熱蒸着,電子ビーム蒸着等があるが、抵抗加熱蒸着が一般的である。膜厚は5ないし500nmであり、好適には30ないし80nmである。
電子注入層5としてはオキサジアゾール誘導体,ペリレン誘導体等が用いられる。電子注入物質の具体例が化学式(III ―1)ないし化学式(III ―4)に示される。
【0022】
【化4】
Figure 0003684614
【0023】
実施例1
膜厚100nmのインジウムスズ酸化物(ITO)からなる陽極パターンを設けた50mm角のガラスを基板とし、この基板を抵抗加熱蒸着装置内に戴置し、正孔注入層、発光層、陰極の順に成膜した。成膜に際して真空槽内は8×10-4Paまで減圧した。正孔注入層には化学式(I−2)に示される正孔注入物質を用い、ボート温度230℃で加熱し、成長速度を0.2nm/sとして60nm厚さに成膜した。発光層には化学式(II―1)で示される発光物質を用い、ボート温度270℃で加熱し、成膜速度を0.2nm/sとして70nm厚さに形成した。こののち基板を抵抗加熱蒸着装置から取り出すことなく、陰極パターン用ステンレスマスクを基板に取り付け、陰極としてMgAlSiワイヤー(組成比1:98:1、線径1.0mm)を十分に加熱したタングステンボードに押しつけて300nmの膜厚にフラッシュ蒸着した。このフラッシュ蒸着により沸点,蒸気圧の異なる三つの元素が、MgAlSiワイヤーと同一組成で同時且つ安定に発光層の上に蒸着される。
実施例2
膜厚100nmのインジウムスズ酸化物(ITO)からなる陽極パターンを設けた50mm角のガラスを基板とし、この基板を抵抗加熱蒸着装置内に戴置し、発光層、電子輸送層、陰極の順に成膜した。成膜に際して真空槽内は8×10-4Paまで減圧した。発光層には化学式(II−1)に示される発光物質を用い、ボート温度270℃で加熱し、成長速度を0.2nm/sとして60nm厚さに形成した。電子輸送層には化学式(III −3)で示される電子輸送物質を用い、ボート温度210℃で加熱し、成膜速度を0.2nm/sとして40nm厚さに形成した。こののち基板を抵抗加熱蒸着装置から取り出すことなく、陰極マスクパターン用ステンレスマスクを基板に取り付け、新たに抵抗加熱蒸着装置内に戴置し、陰極としてMgAlSiワイヤー(組成比1:98:1、線径1.0mm)を十分に加熱したタングステンボードに押しつけて、300nmの膜厚にフラッシュ蒸着した。
比較例1
実施例1の陰極として二元蒸着法により、Al−Mg合金を300nm厚さに成膜する他は実施例1と同様にして有機薄膜発光素子を形成した。
比較例2
実施例2の陰極として二元蒸着法により、Al−Mg合金を300nm厚さに成膜する他は実施例2と同様にして有機薄膜発光素子を形成した。
【0024】
このようにして得られた有機薄膜発光素子を連続試験し画質寿命および輝度半減期を測定した。ここで画質寿命は有機薄膜発光素子において、長径100μm以上の非発光欠陥部(いわゆるダークスポット)が生成するまでの駆動時間を表す。測定結果を表1に示す。
【0025】
【表1】
Figure 0003684614
表1に見られるように、実施例1,2は比較例1,2に比較して、画質寿命、輝度半減期ともに著しく向上しており、本発明の優位性は明らかである。
【0026】
【発明の効果】
Alを主成分とし、副成分としてSi元素と、仕事関数の小さい元素を含有させた合金を陰極として用いると電子注入性あるいは導電性を損なうことなく、陰極の耐酸化性が向上し、特性と信頼性に優れる有機薄膜発光素子が得られる。
フラッシュ蒸着により陰極を製造するときは、沸点,蒸気圧の異なる元素を含む場合において元素組成の安定した陰極を効率良く製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例に係る有機薄膜発光素子の一例を示す断面図
【図2】本発明の実施例に係る有機薄膜発光素子の異なる例を示す断面図
【図3】本発明の実施例に係る有機薄膜発光素子のさらに異なる例を示す断面図
【図4】本発明の実施例に係る有機薄膜発光素子のさらに異なる例を示す断面図
【符号の説明】
1 絶縁性透明基板
2 陽極
3 正孔注入層
4 発光層
5 電子注入層
6 陰極[0001]
[Industrial application fields]
The present invention relates to a cathode of an organic thin film light emitting element used as a light emitting source of various display devices and a method for manufacturing the same.
[0002]
[Prior art]
With the rapid increase in demand for flat panel displays that replace conventional cathode ray tubes, various display elements have been developed and put into practical use. Electroluminescence elements (hereinafter referred to as EL elements) are also in line with these needs, especially due to the fact that the entire element is made of solid, and because it emits light by itself, it has high resolution and high visibility not found in other displays. It attracts attention.
[0003]
What is currently put into practical use is an EL element mainly made of an inorganic material using a ZnS / Mn system for a light emitting layer. However, this type of inorganic EL element has a problem that the driving voltage required for light emission is as high as about 200 V, so that the driving method is complicated and the manufacturing cost is high. In addition, since the efficiency of blue light emission is low, it is difficult to achieve full color.
In contrast, thin-film light-emitting devices using organic materials can be greatly reduced in driving voltage required for light emission, and can be fully colored by adding various light-emitting materials. It has been broken.
[0004]
In particular, in a laminated type composed of an anode / hole injection layer / light emitting layer / cathode, tris (8-hydroxyquinoline) aluminum is used as the light emitting agent and 1,1-bis (4-N, N-di-acid is used as the hole injecting agent. Since it was reported that the use of (tolylaminophenyl) cyclohexane gave a luminance of 1000 cd / m 2 or more at an applied voltage of 10 V or less, development has been spurred (Appl. Phys. Lett. 51 , 913 (1987)).
[0005]
As described above, although thin film light emitting devices using organic materials strongly suggest the possibility of low voltage driving and full color, there are still many problems that must be solved in terms of performance. In particular, the problem of characteristic deterioration associated with long-time driving is a problem that must be overcome. One of the causes of the characteristic deterioration is insufficient cathode stability. The cathode material is preferably a metal having a small work function in order to improve the electron injection property, but has a problem that it is easily oxidized.
[0006]
[Problems to be solved by the invention]
In order to cope with this problem, the cathode is used as an alloy with a metal element having a high work function (Japanese Patent Laid-Open No. 2-15595), or a metal and alloy having a high work function on a metal or alloy having a low work function. A method of laminating (JP-A-4-233195) has been proposed. However, the former does not ensure electron injection properties unless it contains a large amount of a metal element (for example, Mg) having a low work function, so the composition ratio of the metal element (for example, Ag) having a large work function is small, and therefore the stability is not sufficient. The latter also has problems such as difficulty in preventing oxidation at the interface between the organic layer and the metal or alloy.
[0007]
The present invention has been made in view of the above points, and an object thereof is to provide an organic thin-film light-emitting element having excellent characteristics and reliability by developing a cathode having high electron injection property and excellent chemical stability, and a method for manufacturing the same. There is to do.
[0008]
[Means for Solving the Problems]
An object of the present invention is to provide an organic thin film light emitting device comprising an anode, a hole injection layer, an organic layer composed of a light emitting layer and an electron injection layer, and a cathode laminated on an insulating transparent substrate. In which the cathode contains aluminum as a main component, the silicon element as an accessory component , and an element selected from Mg, Ca , Mn, Ba, La whose work function is smaller than the work function of aluminum , and the content of silicon element There is achieved by 0.1 wt% to 3.00 wt% der Rukoto.
Also, in an organic thin film light emitting device in which an anode, an organic layer composed of at least a light emitting layer among a light emitting layer, an electron injecting layer, and a cathode are laminated on an insulating transparent substrate, the cathode is mainly composed of aluminum. And an element selected from Mg, C a , Mn, Ba, and La whose work function is smaller than that of aluminum as a subcomponent , and the content of silicon element is 0.1 to 3% by weight In the method for manufacturing an organic thin film light emitting device of 0.000% by weight, the cathode is achieved by forming a film by a flash vapor deposition method.
[0009]
The cathode of the organic thin film light emitting element is achieved by forming a film by flash vapor deposition.
The content of Al element in the cathode is preferably 90% by weight or more, more preferably 95% by weight or more.
The content of Si element in the cathode is preferably 0.01 to 3.00% by weight, more preferably 0.1 to 1.00% by weight.
[0010]
Examples of the element having a work function smaller than 4.2 eV of the aluminum metal element include Mg, Ca , Mn, Ba, and La from the viewpoint of economy. As the content of the element having a work function smaller than the work function of 4.2 eV of the aluminum metal element, the content within the solid solution limit of each element is used. Note that the work function of Si element is 4.85 eV in the case of n-type silicon.
[0011]
[Action]
When Si element is contained in Al metal, sufficient oxidation resistance is imparted to the cathode without impairing conductivity and productivity. When an Al alloy to which this Si element is added contains a metal element having a small work function, good electron injection properties can be obtained.
Since the cathode described above is a composition containing at least three elements having different boiling points and vapor pressures, the stability and productivity of the cathode composition are ensured when the cathode is formed by flash vapor deposition.
[0012]
【Example】
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of an organic thin film light emitting device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a different example of the organic thin film light emitting device according to the embodiment of the present invention.
[0013]
FIG. 3 is a sectional view showing still another example of the organic thin film light emitting device according to the embodiment of the present invention.
FIG. 4 is a sectional view showing still another example of the organic thin film light emitting device according to the embodiment of the present invention.
In the above example, 1 is an insulating transparent substrate, 2 is an anode, 3 is a hole injection layer, 4 is a light emitting layer, 5 is an electron injection layer, and 6 is a cathode.
[0014]
The insulating transparent substrate 1 is a support for an organic thin film light emitting element, and glass, resin, or the like is used.
The anode 2 is made of a semi-permeable film such as gold or nickel, or a transparent conductive film such as indium tin oxide (ITO) or tin oxide (SnO 2 ), and is formed by resistance heating vapor deposition, electron beam vapor deposition, sputtering, or the like. The film thickness is preferably 10 to 500 nm.
[0015]
It is desirable that the hole injection layer 3 is as transparent as possible in the wavelength region of the light emitted from the light emitting layer 4 by efficiently transporting and injecting holes into the light emitting layer. Examples of film forming methods include spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation, and the like, but resistance heating evaporation is common. The film thickness is 5 to 500 nm, preferably 10 to 80 nm. As the hole injecting substance, hydrazone compounds, pirarizone compounds, stilbene compounds, amine compounds, and the like are used. Specific examples of the hole injection material are shown in chemical formula (I-1) to chemical formula (I-7).
[0016]
[Chemical 1]
Figure 0003684614
[0017]
[Chemical formula 2]
Figure 0003684614
[0018]
The light emitting layer 4 emits light efficiently by holes injected from the hole injection layer 3 or the anode 2 and electrons injected from the cathode 6 or the electron injection layer 5. Examples of film forming methods include spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation, and the like, but resistance heating evaporation is common. The film thickness is 5 to 500 nm, preferably 30 to 80 nm.
[0019]
As the light emitting layer 4, a metal chelate compound, a perinone derivative, a distyrylbenzene derivative, or the like is used. Specific examples of the light-emitting substance are shown in chemical formula (II-1) to chemical formula (II-4).
[0020]
[Chemical 3]
Figure 0003684614
[0021]
The electron injection layer 5 needs to efficiently transport and inject electrons into the light emitting layer 4. Examples of film forming methods include spin coating, casting, LB method, resistance heating evaporation, electron beam evaporation, and the like, but resistance heating evaporation is common. The film thickness is 5 to 500 nm, preferably 30 to 80 nm.
As the electron injection layer 5, an oxadiazole derivative, a perylene derivative, or the like is used. Specific examples of the electron injecting substance are shown in chemical formula (III-1) to chemical formula (III-4).
[0022]
[Formula 4]
Figure 0003684614
[0023]
Example 1
A glass of 50 mm square provided with an anode pattern made of indium tin oxide (ITO) with a thickness of 100 nm is used as a substrate, this substrate is placed in a resistance heating vapor deposition apparatus, and a hole injection layer, a light emitting layer, and a cathode in this order. A film was formed. During film formation, the pressure in the vacuum chamber was reduced to 8 × 10 −4 Pa. For the hole injection layer, a hole injection material represented by the chemical formula (I-2) was used, heated at a boat temperature of 230 ° C., and grown to a thickness of 60 nm at a growth rate of 0.2 nm / s. A light emitting material represented by the chemical formula (II-1) was used for the light emitting layer, heated at a boat temperature of 270 ° C., and formed to a thickness of 70 nm at a film formation rate of 0.2 nm / s. After that, without removing the substrate from the resistance heating vapor deposition apparatus, a stainless steel mask for a cathode pattern was attached to the substrate, and a MgAlSi wire (composition ratio 1: 98: 1, wire diameter 1.0 mm) was sufficiently heated as a cathode on a tungsten board. It was pressed and flash evaporated to a film thickness of 300 nm. By this flash deposition, three elements having different boiling points and vapor pressures are deposited on the light emitting layer simultaneously and stably with the same composition as the MgAlSi wire.
Example 2
A glass of 50 mm square provided with an anode pattern made of indium tin oxide (ITO) with a thickness of 100 nm is used as a substrate, this substrate is placed in a resistance heating vapor deposition apparatus, and a light emitting layer, an electron transport layer, and a cathode are formed in this order. Filmed. During film formation, the pressure in the vacuum chamber was reduced to 8 × 10 −4 Pa. A light emitting material represented by the chemical formula (II-1) was used for the light emitting layer, heated at a boat temperature of 270 ° C., and formed to a thickness of 60 nm at a growth rate of 0.2 nm / s. For the electron transport layer, an electron transport material represented by the chemical formula (III-3) was used, heated at a boat temperature of 210 ° C., and formed to a thickness of 40 nm at a film formation rate of 0.2 nm / s. After that, without removing the substrate from the resistance heating vapor deposition apparatus, a stainless mask for the cathode mask pattern is attached to the substrate and newly placed in the resistance heating vapor deposition apparatus, and MgAlSi wire (composition ratio 1: 98: 1, wire) is used as the cathode. (1.0 mm in diameter) was pressed against a sufficiently heated tungsten board and flash evaporated to a film thickness of 300 nm.
Comparative Example 1
An organic thin-film light-emitting element was formed in the same manner as in Example 1 except that an Al—Mg alloy film was formed to a thickness of 300 nm by a binary vapor deposition method as the cathode of Example 1.
Comparative Example 2
An organic thin-film light-emitting element was formed in the same manner as in Example 2 except that an Al—Mg alloy film was formed to a thickness of 300 nm by a binary vapor deposition method as the cathode of Example 2.
[0024]
The organic thin film light-emitting device thus obtained was continuously tested to measure the image quality life and the luminance half-life. Here, the image quality life represents a driving time until a non-light emitting defect portion (so-called dark spot) having a major axis of 100 μm or more is generated in the organic thin film light emitting element. The measurement results are shown in Table 1.
[0025]
[Table 1]
Figure 0003684614
As can be seen from Table 1, Examples 1 and 2 have significantly improved image quality lifetime and luminance half-life compared to Comparative Examples 1 and 2, and the superiority of the present invention is clear.
[0026]
【The invention's effect】
When an alloy containing Si as a main component, Si element as an accessory component, and an element having a small work function is used as a cathode, the oxidation resistance of the cathode is improved without impairing the electron injecting property or conductivity. An organic thin film light emitting device having excellent reliability can be obtained.
When a cathode is manufactured by flash vapor deposition, a cathode having a stable element composition can be efficiently manufactured when elements having different boiling points and vapor pressures are included.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an organic thin film light emitting device according to an embodiment of the present invention. FIG. 2 is a cross sectional view showing a different example of an organic thin film light emitting device according to an embodiment of the present invention. FIG. 4 is a cross-sectional view showing still another example of the organic thin film light emitting element according to the embodiment. FIG. 4 is a cross sectional view showing still another example of the organic thin film light emitting element according to the embodiment of the present invention.
1 Insulating transparent substrate 2 Anode 3 Hole injection layer 4 Light emitting layer 5 Electron injection layer 6 Cathode

Claims (2)

絶縁性透明基体上に陽極、正孔注入層と発光層と電子注入層のうちの少なくとも発光層からなる有機層、陰極を積層してなる有機薄膜発光素子において、陰極がアルミニウムを主成分とし、副成分としてシリコン元素および仕事函数がアルミニウムの仕事函数よりも小さいMg、C a 、Mn、Ba、Laから選ばれる元素を含有し、かつシリコン元素の含有量が0.1重量%ないし3.00重量%であることを特徴とする有機薄膜発光素子。In an organic thin film light emitting device in which an anode, a hole injection layer, an organic layer composed of at least a light emitting layer and an electron injection layer, and a cathode are laminated on an insulating transparent substrate, the cathode is mainly composed of aluminum, As an accessory component, silicon element and an element selected from Mg, C a , Mn, Ba, and La whose work function is smaller than that of aluminum are contained , and the content of silicon element is 0.1 wt% to 3.00 the organic thin film light emitting element characterized wt% der Rukoto. 絶縁性透明基体上に陽極、正孔注入層と発光層と電子注入層のうちの少なくとも発光層からなる有機層、陰極を積層してなる有機薄膜発光素子において、陰極がアルミニウムを主成分とし、副成分としてシリコン元素および仕事函数がアルミニウムの仕事函数よりも小さいMg、C a 、Mn、Ba、Laから選ばれる元素を含有し、かつシリコン元素の含有量が0.1重量%ないし3.00重量%である有機薄膜発光素子の製造方法において、陰極はフラッシュ蒸着法により成膜されることを特徴とする有機薄膜発光素子の製造方法。 In an organic thin film light emitting device in which an anode, a hole injection layer, an organic layer composed of at least a light emitting layer and an electron injection layer, and a cathode are laminated on an insulating transparent substrate, the cathode is mainly composed of aluminum, As an accessory component, silicon element and an element selected from Mg, C a , Mn, Ba, and La whose work function is smaller than that of aluminum are contained, and the content of silicon element is 0.1 wt% to 3.00 A method for producing an organic thin film light emitting device, wherein the cathode is formed by flash vapor deposition.
JP13902195A 1995-06-06 1995-06-06 Organic thin film light emitting device and method for manufacturing the same Expired - Lifetime JP3684614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13902195A JP3684614B2 (en) 1995-06-06 1995-06-06 Organic thin film light emitting device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13902195A JP3684614B2 (en) 1995-06-06 1995-06-06 Organic thin film light emitting device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08330072A JPH08330072A (en) 1996-12-13
JP3684614B2 true JP3684614B2 (en) 2005-08-17

Family

ID=15235633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13902195A Expired - Lifetime JP3684614B2 (en) 1995-06-06 1995-06-06 Organic thin film light emitting device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3684614B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816863B2 (en) 2003-09-12 2010-10-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
JP2005108825A (en) * 2003-09-12 2005-04-21 Semiconductor Energy Lab Co Ltd Light emitting apparatus and method of manufacturing the same
KR100611673B1 (en) * 2005-01-31 2006-08-10 삼성에스디아이 주식회사 Thin film formation method and manufacturing method of organic light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117845A (en) * 1991-10-22 1993-05-14 Matsushita Electric Ind Co Ltd Device and method for film forming of compound material
JPH05159882A (en) * 1991-12-04 1993-06-25 Idemitsu Kosan Co Ltd Manufacture of electron injectable electrode and manufacture of organic electroluminescence element therewith
JP3243311B2 (en) * 1992-12-15 2002-01-07 キヤノン株式会社 EL device
JP2701738B2 (en) * 1994-05-17 1998-01-21 日本電気株式会社 Organic thin film EL device
JPH0896963A (en) * 1994-09-28 1996-04-12 Tdk Corp Organic electroluminescent device

Also Published As

Publication number Publication date
JPH08330072A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US6949878B2 (en) Multicolor light emission apparatus with multiple different wavelength organic elements
JPH06290873A (en) Organic thin film light emitting device
JP4454130B2 (en) Organic electroluminescence device
TW200414799A (en) Organic electroluminescent device, method for manufacturing the organic electroluminescent device, and organic electroluminescent display apparatus
JPH04304466A (en) Organic thin-film light emitting element
JPH1140365A (en) Organic EL device and method of manufacturing the same
JP2004014512A (en) Organic light emitting diode device
KR20020076171A (en) Organic light-emitting device capable of high-quality display
JP3684614B2 (en) Organic thin film light emitting device and method for manufacturing the same
JPH1131587A (en) Organic electroluminescent element and manufacture thereof
JPH04264189A (en) electroluminescent element
JP2000188184A (en) Organic thin film EL device and method of manufacturing the same
JPH05315078A (en) Organic thin film luminescent element
JPH06231881A (en) Organic thin film luminous element
JP3011277B2 (en) Manufacturing method of organic electroluminescence device
JPH11121172A (en) Organic el element
JP3170957B2 (en) Organic thin film light emitting device
JP3253368B2 (en) EL device
JP2949966B2 (en) Organic thin-film light emitting device
JP3418510B2 (en) Organic electroluminescent device
JP2001332390A (en) Electric field-effect light emitting organic element
JPH0633047A (en) Organic thin film light emitting device
JPH118074A (en) Organic electroluminescence device
JPH09283281A (en) Organic electroluminescent device
JPH0753951A (en) Organic thin film light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

EXPY Cancellation because of completion of term