JP3709637B2 - Hole transport material and use thereof - Google Patents

Hole transport material and use thereof Download PDF

Info

Publication number
JP3709637B2
JP3709637B2 JP33521696A JP33521696A JP3709637B2 JP 3709637 B2 JP3709637 B2 JP 3709637B2 JP 33521696 A JP33521696 A JP 33521696A JP 33521696 A JP33521696 A JP 33521696A JP 3709637 B2 JP3709637 B2 JP 3709637B2
Authority
JP
Japan
Prior art keywords
group
layer
light emitting
hole transport
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33521696A
Other languages
Japanese (ja)
Other versions
JPH10168447A (en
Inventor
年男 榎田
美智子 玉野
俊一 鬼久保
聡 奥津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP33521696A priority Critical patent/JP3709637B2/en
Publication of JPH10168447A publication Critical patent/JPH10168447A/en
Application granted granted Critical
Publication of JP3709637B2 publication Critical patent/JP3709637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は芳香族アミン構造を有する正孔輸送材料に関し、該芳香族アミン化合物は、感光材料、有機光導電材料として使用でき、さらに具体的には、平面光源や表示に使用される有機エレクトロルミネッセンス(EL)素子もしくは電子写真感光体等の正孔輸送材料として利用することができる。
【0002】
【従来の技術】
感光材料や正孔輸送材料として開発されている有機光導電材料は、低コスト、加工性が多様であり、無公害性などの多くの利点があり、多くの化合物が提案されている。例えば、オキサジアゾール誘導体(米国特許第3,189,447号)、オキサゾール誘導体(米国特許第3,257,203号)、ヒドラゾン誘導体(米国特許第3,717,462号、特開昭54−59,143号、米国特許第4,150,978号)、トリアリールピラゾリン誘導体(米国特許第3,820,989号、特開昭51−93,224号、特開昭55−108,667号)、アリールアミン誘導体(米国特許第3,180,730号、米国特許第4,232,103号、特開昭55−144,250号、特開昭56−119,132号)、スチルベン誘導体(特開昭58−190,953号、特開昭59−195,658号)などの有機光導電性材料が開示されている。
【0003】
正孔輸送材料を利用した技術の一つとしては、有機EL素子が挙げられる。有機物質を使用したEL素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般にELは発光層および該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出する現象である。
【0004】
従来の有機EL素子は、無機EL素子に比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。
近年、10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物を含有した薄膜を積層した有機EL素子が報告され、関心を集めている(アプライド・フィジクス・レターズ、51巻、913ページ、1987年参照)。
この方法は、金属キレート錯体を蛍光体層、アミン系化合物を正孔注入層に使用して、高輝度の緑色発光を得ており、6〜7Vの直流電圧で輝度は1000(cd/m2 )、最大発光効率は1.5(lm/W)を達成して、実用領域に近い性能を持っている。
【0005】
有機EL素子は、金属陰極層と透明陽極層との間に、有機蛍光化合物を含有する発光層を備えた素子である。また、低電圧で高輝度の発光を得るために、電子注入層や正孔注入層を加えて素子化している。これら有機EL素子は、陰極から注入された電子と陽極から注入された正孔との再結合により励起子が生じ、この励起子が放射失活する過程で光を放出している(特開昭59−194393号公報、特開昭63−295695号公報)。しかしながら、直流電圧を印加して長時間にわたり発光し続けると、有機化合物の結晶化などが促進され、素子にリーク電流が流れ易くなり素子が破壊される。そのため、正孔注入層に使用する正孔輸送材料として、4,4’,4”−トリス(N,N’−ジフェニルアミノ)トリフェニルアミン(TDATA)、4,4’,4”−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(MTDATA)等の化合物を使用して改良している(特開平4−308688号公報)。これらの化合物は、立体的な配位構造を有しているために結晶化しにくく、薄膜形成性も優れているが、有機EL素子を構成する有機薄膜としては未だに充分なものではない。そのために、発光時に素子が容易に劣化するという問題があった。
【0006】
このように、現在までの有機EL素子は、発光輝度や繰り返し使用時の発光安定性は未だ充分ではなく、より大きな発光輝度を持ち、発光効率が高く繰り返し使用時での安定性の優れた有機EL素子の開発のために、優れた正孔輸送能力を有し、耐久性のある正孔輸送材料の開発が望まれている。
【0007】
さらに、正孔輸送材料を利用した技術としては、電子写真感光体が挙げられる。電子写真方式は、カールソンにより発明された画像形成法の一つである。この方式は、コロナ放電により感光体を帯電した後、光像露光して感光体に静電潜像を得、該静電潜像にトナーを付着させて現像し、得られたトナー像を紙へ転写することからなる。このような電子写真感光体に要求される基本的な特性としては、暗所において適当な電位が保持されること、暗所における電荷の放電が少ないこと、光照射により速やかに電荷を放電することなどが挙げられる。従来までの電子写真感光体は、セレン、セレン合金、酸化亜鉛、硫化カドミウムおよびテルルなどの無機光導電体が使用されてきた。これらの無機光導電体は、耐久性が高く、耐刷枚数が多いなどの利点を有しているが、製造コストが高く、加工性が劣り、毒性を有するなどの問題点が指摘されている。これらの欠点を克服するために有機化合物を使用した感光体の開発が行われているが、従来までの有機光導電材料を正孔輸送材料として用いた電子写真感光体は、帯電性、感度および残留電位などの電子写真特性が、必ずしも満足されているとは言えないのが現状であり、優れた電荷輸送能力を有し、耐久性のある正孔輸送材料の開発が望まれていた。
【0008】
【発明が解決しようとする課題】
本発明の目的は、優れた正孔輸送能力を有し、耐久性のある正孔輸送材料を提供することにあり、さらにこの正孔輸送材料を使用することにより、長寿命の有機EL素子、繰り返し使用時での安定性の優れた電子写真感光体等を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、一般式[1]で示される少なくとも一種の正孔輸送材料は、正孔輸送能力が大きく、これを用いて作製した有機EL素子の素子特性、発光寿命や、電子写真感光体の感度や繰り返し使用時での安定性が優れていることを見いだし本発明に至った。すなわち、本発明は下記一般式[1]で示される正孔輸送材料に関する。一般式[1]
【化2】

Figure 0003709637
[式中、R1 〜R6 は、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換の単環基、置換もしくは未置換の縮合多環基、またはR1 とR2 、R3 とR4 、R5 とR6 が一体となって窒素原子を結合手とする縮合多環基を表す。Ar1 〜Ar3 は置換もしくは未置換のアリーレン基を表す。A1 〜A3 は、それぞれ独立に、直接結合、−(CH2 x −Z−(CH2 y −(ただし、Zは直接結合、酸素原子、硫黄原子を表し、x、yはそれぞれ0〜8の整数を表すが、xとyが共に0となることはない。)、ジメチルメチレン基を表し、ただしA1 〜A3 が同時に直接結合となることはない。]
【0010】
更に本発明は、一対の電極間に、発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、少なくとも一層が上記正孔輸送材料である有機エレクトロルミネッセンス素子に関する。
【0011】
更に本発明は、一対の電極間に、少なくとも正孔注入層と発光層とを含む有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、正孔注入層が上記正孔輸送材料を含有する層である有機エレクトロルミネッセンス素子材料に関する。
【0012】
更に本発明は、一対の電極間に、発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、発光層が上記正孔輸送材料を含有する層である有機エレクトロルミネッセンス素子に関する。
【0013】
更に本発明は、導電性支持体上に、電荷発生材料および正孔輸送材料を使用してなる電子写真感光体において、正孔輸送材料が上記正孔輸送材料である電子写真感光体に関する。
【発明の実施の形態】
【0014】
一般式[1]の化合物のR1 〜R6 のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基等の炭素数1〜20の直鎖状、分枝状アルキル基がある。
【0015】
一般式[1]の化合物のR1 〜R6 の単環基としては、単環シクロアルキル基、単環アリール基、単環複素環基等がある。
単環シクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数4〜8のシクロアルキル基がある。
【0016】
単環アリール基としては、フェニル基がある。
単環複素環基としては、チオニル基、チオフェニル基、フラニル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、オキサゾリル基、チアゾリル基、オキサジアゾリル基、チアジアゾリル基、イミダジアゾリル基等がある。
【0017】
一般式[1]の化合物のR1 〜R6 の縮合多環基としては、縮合多環アリール基、縮合多環複素環基、縮合多環シクロアルキル基等がある。
縮合多環アリール基としては、ナフチル基、アントラニル基、フェナントレニル基、フルオレニル基、アセナフチル基、アズレニル基、ヘプタレニル基、アセナフチレニル基、ピレニル基等がある。
【0018】
縮合多環複素環基としては、インドリル基、キノリル基、イソキノリル基、フタラジニル基、キノキサリニル基、キナゾリニル基、カルバゾリル基、アクリジニル基、フェナジニル基、フルフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンズイミダゾリル基等がある。
その他の縮合多環基として、1−テトラリル基、2−テトラリル基、テトラヒドロキノリル基等がある。
【0019】
一般式[1]の化合物のAr1 〜Ar3 のアリーレン基としては、フェニレン基、ナフチレン基、アントラニレン基、フェナントレニレン基、フルオレニレン基、アセナフチレン基、ピレニレン基、ビフェニレン基、ターフェニレン基、クオーターフェニレン基等がある。
【0020】
一般式[1]の化合物のA1 〜A3 の2価の結合基としては、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、オクチレン基等の炭素数1〜16のアルキレン基、オキシメチレン基、オキシエチレン基、オキシプロピレン基、チオメチレン基、チオエチレン基、チオプロピレン基等、ジメチルメチレン基がある。
【0021】
本発明におけるR1 〜R6 で示されるアルキル基、単環基、縮合多環基およびAr1 〜Ar3 で示されるアリーレン基に置換してもよい置換基の代表例としては以下に示す置換基がある。
ハロゲン原子としてフッ素、塩素、臭素、ヨウ素。
置換もしくは未置換のアルキル基として、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフロロメチル基、シクロプロピル基、シクロヘキシル基、1,3−シクロヘキサジエニル基、2−シクロペンテン−1−イル基、2,4−シクロペンタジエン−1−イリデニル基等。
【0022】
置換もしくは未置換のアルコキシ基として、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基、トリフロロメトキシ基等。
置換もしくは未置換のチオアルコキシ基として、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基等。
【0023】
モノまたはジ置換アミノ基として、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ビス(アセトオキシメチル)アミノ基、ビス(アセトオキシエチル)アミノ基、ビス(アセトオキシプロピル)アミノ基、ビス(アセトオキシブチル)アミノ基、ジベンジルアミノ基等。
【0024】
置換もしくは未置換のアリールオキシ基として、フェノキシ基、p−tert−ブチルフェノキシ基、3−フルオロフェノキシ基等がある。置換もしくは未置換のアリールチオ基としては、フェニルチオ基、3−フルオロフェニルチオ基等。
【0025】
置換もしくは未置換のアリール基として、フェニル基、ビフェニル基、トリフェニル基、ターフェニル基、3−ニトロフェニル基、4−メチルチオフェニル基、3,5−ジシアノフェニル基、o−,m−およびp−トリル基、キシリル基、o−,m−およびp−クメニル基、メシチル基、ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、アセナフチレニル基、フェナレニル基、フルオレニル基、アントリル基、アントラキノリル基、3−メチルアントリル基、フェナントリル基、トリフェニレニル基、ピレニル基、クリセニル基、2−エチル−1−クリセニル基、ピセニル基、ペリレニル基、6−クロロペリレニル基、ペンタフェニル基、ペンタセニル基、テトラフェニレニル基、ヘキサフェニル基、ヘキサセニル基、ルビセニル基、コロネニル基、トリナフチレニル基、ヘプタフェニル基、ヘプタセニル基、ピラントレニル基、オバレニル基等。
【0026】
置換もしくは未置換の複素環基として、チオニル基、チオフェニル基、フラニル基、ピロリル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、インドリル基、キノリル基、イソキノリル基、フタラジニル基、キノキサリニル基、キナゾリニル基、カルバゾリル基、アクリジニル基、フェナジニル基、フルフリル基、イソチアゾリル基、イソキサゾリル基、フラザニル基、フェノキサジニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、ベンズイミダゾリル基、2−メチルピリジル基、3−シアノピリジル基、オキサゾリル基、チアゾリル基、イミダゾリル基、オキサジアゾリル基、チアジアゾリル基、イミダジアゾリル基等。
【0027】
本発明の一般式[1]で示される化合物は、例えば以下の方法により合成することができる。フラスコ中に、極性溶媒、トリスハロゲノアミン化合物、5〜8倍モルの置換芳香族ジアミン化合物、アルカリ、金属原子もしくは金属化合物等の触媒を加えて、200℃以上で5〜50時間反応させて、一般式[1]で示される芳香族アミン化合物を合成する。
【0028】
一般式[1]で示される化合物の代表例を具体的に表1に例示するが、これらに限定されるものではない。
【0029】
【表1】
Figure 0003709637
【0030】
Figure 0003709637
【0031】
Figure 0003709637
【0032】
Figure 0003709637
【0033】
Figure 0003709637
【0034】
Figure 0003709637
【0035】
Figure 0003709637
【0036】
Figure 0003709637
【0037】
Figure 0003709637
【0038】
Figure 0003709637
【0039】
Figure 0003709637
【0040】
Figure 0003709637
【0041】
Figure 0003709637
【0042】
Figure 0003709637
【0043】
Figure 0003709637
【0044】
Figure 0003709637
【0045】
本発明の正孔輸送材料は、同一層中で他の正孔もしくは電子輸送性化合物と混合して使用してもさしつかえない。本発明の化合物は正孔輸送性に優れているので、正孔輸送性材料として極めて有効に使用することができる。
【0046】
有機EL素子は、陽極と陰極間に一層もしくは多層の有機薄膜を形成した素子である。一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、発光材料を含有し、それに加えて陽極から注入した正孔もしくは陰極から注入した電子を発光材料まで輸送させるために正孔輸送材料もしくは電子輸送材料を含有しても良い。発光材料が、正孔輸送性もしくは電子輸送性を有している場合もある。多層型は、(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)の多層構成で積層した有機EL素子がある。一般式[1]の化合物は、どの素子構成においても使用することが出来る。一般式[1]の化合物は、正孔注入層もしくは発光層のいずれの層においても、正孔輸送材料として使用できる。本発明の正孔輸送材料は、陽極から有機層への正孔注入機能、および注入した正孔を輸送し発光層に注入する機能を有しているので、正孔注入層が二層以上の場合でも、いずれの正孔注入層に使用することが出来る。一般式[1]の化合物により形成される薄膜は非晶質性があるので、薄膜にした場合の長期間の保存や素子を駆動させた場合の発光寿命等においても有利である。また、一般式[1]の化合物は、ITO等の金属電極に対する密着性も良好であり、膜膜のイオン化ポテンシャルも低いことから、陽極からの正孔注入に有利であるので、正孔注入層を二層以上にした場合、一般式[1]の化合物を金属電極(陽極)側の正孔注入層に使用した方がさらに有利である。
【0047】
発光層には、必要があれば、本発明の一般式[1]の化合物に加えて、発光材料、ドーピング材料、キャリア輸送を行う正孔輸送材料や電子輸送材料を使用することもできる。二層構造の場合、発光層と正孔注入層を分離している。この構造により、正孔注入層から発光層への正孔注入効率が向上して、発光輝度や発光効率を増加させることができる。この場合、発光のためには、発光層に使用される発光材料自身が電子輸送性であること、または発光層中に電子輸送材料を添加することが望ましい。もう一つの層構成として、発光層と電子注入層による二層構造がある。この場合、発光材料自身が正孔輸送性であること、または発光層中に正孔輸送材料を添加することが望ましい。
【0048】
また、三層構造の場合は、発光層、正孔注入層、電子注入層を有し、発光層での正孔と電子の再結合の効率を向上させている。このように、有機EL素子を多層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。このような多層構造の素子においても、必要があれば、発光材料、ドーピング材料、キャリア輸送を行う正孔輸送材料や電子輸送材料を組み合わせて使用することが出来る。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上で形成されていても良い。
【0049】
有機EL素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等およびそれらの合金、ITO基板、NESA基板と称される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。
陰極に使用される導電性材料としては、4eVより小さな仕事関数を持つものが好適であり、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン等およびそれらの合金が用いられる。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウムなどがあるが、これらに限定されるものではなく、合金の金属比率も限定されるものではない。また、陽極および陰極は必要があれば二層以上で形成されていても良い。
【0050】
有機EL素子では、効率良く発光させるために、少なくとも一方は素子の発光波長領域において充分透明であることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性を確保するように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明であれば限定されるものではないが、例示すると、ガラス基板、ポリエチレン、ポリエーテルサルフォン、ポリプロピレン等の透明性樹脂があり、板状、フィルム状のいずれでも良い。
【0051】
本発明に係わる有機EL素子の各層の形成は、真空蒸着、スパッタリング等の乾式成膜法やスピンコーティング、ディッピング等の湿式成膜法のいずれの方法を適用することもできる。膜厚は特に限定されるものではないが、各層は適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nmから10μmの範囲が適しているが、10nmから0.2μmの範囲がさらに好ましい。
【0052】
湿式成膜法の場合、各層を形成する材料を、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解または分散して薄膜を形成するが、その溶媒はいずれであっても良い。また、いずれの薄膜においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。
本発明において使用される樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げることができる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げることができる。
【0053】
本発明の有機EL素子に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、トリフェニルアミン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミンピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン等およびそれらの誘導体があるが、これらに限定されるものではない。
【0054】
一般式[1]の正孔輸送材料と併せて使用できる正孔輸送材料としては、正孔を輸送する能力を持ち、発光層または発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層または電子輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物が挙げられる。具体的には、フタロシアニン系化合物、ナフタロシアニン系化合物、ポルフィリン系化合物、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフェニルアミン、スチリルアミン型トリフェニルアミン、ジアミン型トリフェニルアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料等があるが、これらに限定されるものではない。
【0055】
電子輸送材料としては、電子を輸送する能力を持ち、発光層または発光材料に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層または正孔輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物が挙げられる。例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサジアゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導体があるが、これらに限定されるものではない。また、正孔輸送材料に電子受容材料を、電子輸送材料に電子供与性材料を添加して増感させることもできる。
【0056】
本発明の一般式[1]の化合物は、いずれの層に使用することができ、一般式[1]の化合物の他に、発光材料、ドーピング材料、正孔輸送材料および電子輸送材料の少なくとも1種が同一層に含有されてもよい。また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル等を封入して素子全体を保護することも可能である。
以上のように、本発明では有機EL素子に一般式[1]の化合物を用いたため、発光効率と発光輝度を高くできた。また、この素子は熱や電流に対して安定であり、さらには低い駆動電圧で実用的に使用可能の発光輝度が得られるため、従来まで大きな問題であった連続発光時の輝度劣化も大幅に改良することができた。
本発明の有機EL素子は、壁掛けテレビ等のフラットパネルディスプレイや、平面発光体として、複写機やプリンター等の光源、液晶ディスプレイや計器類等の光源、表示板、標識灯等へ応用が考えられ、その工業的価値は非常に大きい。
【0057】
次に、本発明の一般式[1]で示される化合物を電子写真感光体として用いる場合について説明する。本発明の一般式[1]で示される化合物は、電子写真感光体の何れの層においても使用できるが、高い正孔輸送特性を有することから正孔輸送材料として使用することが望ましい。該化合物は正孔輸送材料として作用し、光を吸収することにより発生した電荷を極めて効率よく輸送でき、高速応答性の感光体を得ることができる。また、該化合物は、耐オゾン性、光安定性に優れているので、耐久性に優れた感光体を得ることができる。
【0058】
電子写真感光体は、導電性基板上に電荷発生材料と、必要があれば電荷輸送材料を結着樹脂に分散させてなる感光層を設けた単層型感光体、導電性基板上に下引き層、電荷発生層、正孔輸送層の順に積層した、もしくは導電性基板または下引き層上に正孔輸送層、電荷発生層の順に積層した積層型感光体等がある。ここで、下引き層は必要がなければ使用しなくても良い。上記感光体は、必要があれば活性ガスからの表面保護およびトナーによるフィルミング防止等の意味でオーバーコート層を設けることも出来る。
【0059】
電荷発生材料としては、ビスアゾ、トリスアゾ、キナクリドン、ジケトピロロピロール、インジゴ、ペリレン、ペリノン、多環キノン、スクアリリウム塩、アズレニウム塩、フタロシアニン、ナフタロシアニン等の有機化合物、もしくは、セレン、セレン−テルル合金、硫化カドミウム、酸化亜鉛、アモルファスシリコン等の無機材料が挙げられる。
【0060】
感光体の各層は蒸着もしくは分散塗工方式により成膜することが出来る。分散塗工は、スピンコーター、アプリケーター、スプレーコーター、浸漬コーター、ローラーコーター、カーテンコーターおよびビードコーター等を用いて行い、乾燥は室温から200℃、10分から6時間の範囲で静止または送風条件下で行う。乾燥後の感光層の膜厚は単層型感光体の場合、5μmから50μm、積層型感光体の場合、電荷発生層は0.01μmから5μm、好ましくは0.1μmから1μmであり、正孔輸送層は5μmから50μm、好ましくは10μmから20μmが適している。
【0061】
単層型感光体の感光層、積層型感光体の電荷発生層もしくは正孔輸送層を形成する際に使用する樹脂は広範な絶縁性樹脂から選択出来る。また、ポリ−N−ビニルカルバゾール、ポリビニルアントラセンやポリシラン類などの有機光導電性ポリマーから選択出来る。好ましくは、ポリビニルブチラール、ポリアリレート、ポリカーボネート、ポリエステル、フェノキシ、アクリル、ポリアミド、ウレタン、エポキシ、シリコン、ポリスチレン、ポリ塩化ビニル、塩酢ビ共重合体、フェノールおよびメラミン樹脂等の絶縁性樹脂を挙げることが出来る。電荷発生層もしくは正孔輸送層を形成するために使用される樹脂は、電荷発生材料もしくは正孔輸送材料に対して、100重量%以下が好ましいがこの限りではない。樹脂は2種類以上組み合わせて使用しても良い。また、必要があれば樹脂を使用しなくてもよい。また、電荷発生層を蒸着、スパッタリング等の物理的成膜法により形成させることも出来る。蒸着、スパッタリング法では、好ましくは10-5Toor以下の真空雰囲気下で成膜することが望ましい。また、窒素、アルゴン、ヘリウム等の不活性ガス中で成膜することも可能である。
【0062】
電子写真感光体の各層を形成する際に使用する溶剤は、下引き層や他の感光層に影響を与えないものから選択することが好ましい。具体的には、ベンゼン、キシレン等の芳香族炭化水素、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、メタノール、エタノール等のアルコール類、酢酸エチル、メチルセロソルブ等のエステル類、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエチレン等の脂肪族ハロゲン化炭化水素類、クロルベンゼン、ジクロルベンゼン等の芳香族ハロゲン化炭化水素類、テトラヒドロフラン、ジオキサン等のエーテル類等が用いられるがこれらに限られるものではない。
【0063】
正孔輸送層は正孔輸送材料のみ、もしくは正孔輸送材料を絶縁性樹脂に溶解させた塗液を塗布する方法、もしくは蒸着等の乾式成膜法により形成される。本感光体に使用される正孔輸送材料は、一般式[1]の化合物に加えて他の正孔輸送材料を組み合わせて使用することもできる。更に、耐熱性、耐磨耗性を向上させるために絶縁性樹脂を併用した場合においても、他の樹脂との相溶性が良く、形成された薄膜が結晶として析出しにくいので、感度、耐久性の向上のために有利である。
【0064】
電子写真特性、画像特性等の向上のために、必要があれば基板と有機層の間に下引き層を設けることができ、下引き層としてはポリアミド類、カゼイン、ポリビニルアルコール、ゼラチン、ポリビニルブチラール等の樹脂類、酸化アルミニウム等の金属酸化物などが用いられる。
本発明の材料は、有機EL素子もしくは電子写真感光体等の正孔輸送材料としのみでなく、光電変換素子、太陽電池、イメージセンサー等有機光導電材料のいずれの分野においても使用できる。
【0065】
【実施例】
以下、本発明を実施例に基づき、さらに詳細に説明する。
DSC分析によれば、本発明の一般式[1]で示される化合物の多くはガラス転移点温度100℃、融点250℃以上、分解点300℃以上であり、非結晶性正孔輸送材料として従来まで使用されている、4,4’,4”−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンに比べて、ガラス転移点温度、融点、分解点が高く、有機EL素子の正孔輸送材料として、高い耐熱性を有していることがわかる。また、本発明の一般式[1]で示される全ての化合物は、結晶性が低く、非結晶性化合物であるので、陽極基板や有機薄膜層との密着性も良好であり、有機薄膜としての環境に対する耐性や、有機EL素子を駆動した際の発光寿命および素子の保存性についても大きな優位性がある。
【0066】
実施例1
洗浄したITO電極付きガラス板上に、化合物(2)を真空蒸着して、膜厚30nmの正孔注入層を得た。次いで、トリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚50nmの発光層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して、有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで発光輝度210(cd/m2 )、最大発光輝度17000(cd/m2 )、発光効率2.1(lm/W)の発光特性が得られた。
【0067】
実施例2
正孔注入層を、クロロホルムに溶解した化合物(2)をスピンコート法で形成する以外は、実施例1と同様の方法で有機EL素子を作製した。この素子は、直流電圧5Vで発光輝度200(cd/m2 )、最大発光輝度21000(cd/m2 )、発光効率2.2(lm/W)の発光特性が得られた。
【0068】
実施例3
洗浄したITO電極付きガラス板上に、化合物(3)を真空蒸着して、膜厚40nmの正孔注入層を得た。次いで、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルを真空蒸着して、膜厚10nmの正孔輸送層を得た。さらに、トリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚40nmの電子注入型発光層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して、有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで発光輝度190(cd/m2 )、最大発光輝度23000(cd/m2 )、発光効率2.0(lm/W)の発光特性が得られた。
【0069】
実施例4
洗浄したITO電極付きガラス板上に、化合物(3)に示した化合物をクロロホルムに溶解させ、スピンコーティング法により膜厚50nmの正孔注入層を得た。次いで、トリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚50nmの電子注入型発光層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚100nmの電極を形成して有機EL素子を得た。発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5V発光輝度230(cd/m2 )、最大発光輝度26000(cd/m2 )、発光効率1.9(lm/W)の発光特性が得られた。
【0070】
実施例5〜52
洗浄したITO電極付きガラス板上に、表1に示した化合物を真空蒸着して、膜厚40nmの正孔注入層を得た。次いで、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルを真空蒸着して、膜厚10nmの正孔輸送層を得た。さらに、トリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚50nmの発光層を作成し、さらにビス(2−メチル−8−ヒドロキシキノリナト)(1−フェノラート)ガリウム錯体を真空蒸着して膜厚30nmの電子注入層を作成し、その上に、アルミニウムとリチウムを25:1で混合した合金で膜厚150nmの電極を形成して、有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度は室温の条件下で蒸着した。この素子は表2で示された発光特性が得られた。
【0071】
【表2】
Figure 0003709637
【0072】
Figure 0003709637
【0073】
実施例53
洗浄したITO電極付きガラス板上に、化合物(38)を真空蒸着して、膜厚40nmの正孔注入層を得た。次いで、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルを真空蒸着して、膜厚10nmの正孔輸送層を得た。さらに、N,N,N’,N’−[4−(α,α’−ジメチルベンジル)フェニル]−アントラニル−9,10−ジアミンを真空蒸着して膜厚50nmの発光層を作成し、さらにトリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚40nmの電子注入層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して、有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで発光輝度800(cd/m2 )、最大発光輝度46000(cd/m2 )、発光効率4.4(lm/W)の発光特性が得られた。
【0074】
実施例54
洗浄したITO電極付きガラス板上に、化合物(10)を真空蒸着して、膜厚40nmの正孔注入層を得た。次いで、化合物(2)とルブレンを重量比10:1で真空蒸着して膜厚50nmの発光層を作成し、さらにトリス(8−ヒドロキシキノリン)アルミニウム錯体を真空蒸着して膜厚40nmの電子注入層を作成し、その上に、マグネシウムと銀を10:1で混合した合金で膜厚150nmの電極を形成して、有機EL素子を得た。正孔注入層および発光層は10-6Torrの真空中で、基板温度室温の条件下で蒸着した。この素子は、直流電圧5Vで発光輝度430(cd/m2 )、最大発光輝度31000(cd/m2 )、発光効率4.1(lm/W)の発光特性が得られた。
【0075】
実施例55
トリス(8−ヒドロキシキノリン)アルミニウム錯体とキナクリドンを重量比20:1で蒸着して、膜厚40nmの発光層を得る以外は実施例53と同様の方法で有機EL素子を作製した。この素子は、直流電圧5Vで発光輝度610(cd/m2 )、最大発光輝度39000(cd/m2 )、発光効率3.8(lm/W)の発光特性が得られた。
【0076】
比較例1
正孔注入層の化合物(2)に代えて、4,4’,4”−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンを使用する以外は、実施例1と同様の方法で有機EL素子を作成した。この素子は、直流電圧5Vで発光輝度約160(cd/m2 )、最大発光輝度16000(cd/m2 )、発光効率1.2(lm/W)の発光特性が得られた。
【0077】
比較例2
正孔注入層の化合物(38)に代えて、4,4’,4”−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンを使用する以外は、実施例53と同様の方法で有機EL素子を作成した。この素子は、直流電圧5Vで発光輝度約550(cd/m2 )、最大発光輝度15000(cd/m2 )、発光効率3.5(lm/W)の発光特性が得られた。
【0078】
本実施例で示された全ての有機EL素子について、3(mA/cm2 )で連続発光させたところ、1000時間以上初期輝度の50%以上の輝度を観測出来たが、比較例1および比較例2の素子を同様の条件で連続発光させたところ、共に200時間で初期輝度の50%以下になり、素子の未発光部分であるダークスポットの数も増加した。以上の結果の理由としては、本発明の化合物は非平面性化合物であるので、薄膜形成の際には、非結晶性薄膜を形成することが可能であること、化合物中に多くの縮合芳香族環を有しているために、正孔輸送性が向上し、有機EL素子の正孔注入性および正孔輸送性が良好になることが挙げられる。さらには、正孔輸送材料の耐熱性も向上しているので、連続発光時の発熱に対しても耐性が向上している。一般式[1]の化合物は、アリール基の隣接する置換基同士でシクロアルキル環を形成しているので、非結晶性が高くなり、基板からの正孔注入との基板との密着性も向上することになる。
【0079】
本発明の有機EL素子は、発光効率、発光輝度の向上と長寿命化を達成するものであり、併せて使用される発光材料、ドーピング材料、正孔輸送材料、電子輸送材料、増感剤、樹脂、電極材料等および素子作製方法を限定するものではない。
【0080】
次に、本発明の正孔輸送材料を電子写真感光体に使用した場合の実施例を以下に示す。
【0081】
実施例56
ε型銅フタロシアニン4g、化合物(2)2g、ポリエステル樹脂(東洋紡:バイロン200)14gをテトラヒドロフラン80gと共にボールミルで5時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、膜厚20μmの単層型電子写真感光体を作製した。
【0082】
実施例57
ジブロモアントアントロン6g、化合物(3)2g、ポリエステル樹脂(東洋紡:バイロン200)12gをテトラヒドロフラン80gと共にボールミルで5時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、膜厚20μmの単層型電子写真感光体を作製した。
【0083】
実施例58
N,N’−ビス(2,6−ジクロロフェニル)−3,4,9,10−ペリレンジカルボキシイミド2g、ポリビニルブチラール樹脂(積水化学:BH−3)2gをテトラヒドロフラン96gと共にボールミルで2時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、膜厚0.3μmの電荷発生層を作製した。次に化合物(10)10g、ポリカーボネート樹脂(帝人化成:パンライトL−1250)10gをジクロロメタン80gに溶解した。この塗液を電荷発生層上に塗工、乾燥して、膜厚20μmの正孔輸送層を形成し、積層型電子写真感光体を作製した。
【0084】
実施例59〜106
τ型無金属フタロシアニン2g、ポリビニルブチラール樹脂(積水化学:BH−3)2gをテトラヒドロフラン96gと共にボールミルで2時間分散した。この分散液をアルミニウム基板上に塗工、乾燥して、膜厚0.3μmの電荷発生層を作製した。次に表3に示した化合物10g、ポリカーボネート樹脂(帝人化成:パンライトK−1300)10gをジクロロメタン80gに溶解した。この塗液を電荷発生層の上に塗工、乾燥して、膜厚20μmの正孔輸送層を形成し、積層型電子写真感光体を作製した。
【0085】
電子写真感光体の電子写真特性は以下の方法で測定した。静電複写紙試験装置(川口電機製作所:EPA−8100)により、スタティックモード2、コロナ帯電は−5.2(kV)、5(lux)の白色光を照射して、初期表面電位(V0 )、V0 と2秒間暗所に放置した時の表面電位(V2 )の比(暗減衰率:DDR 2=V2 /V0 )、光露光後に帯電量が初期の1/2まで減少する時間から半減露量感度(E1/2 )および光露光3秒後の表面電位(VR3 )を調べた。本実施例の電子写真感光体の電子写真特性を表3に示す。
【0086】
【表3】
Figure 0003709637
【0087】
Figure 0003709637
【0088】
本実施例で示された全ての電子写真感光体は、1万回以上繰り返して使用した前後での表面電位、感度等の電子写真特性や画像濃度の変化率が2%以内であることから、安定な電子写真特性を有し高品質の画像が保持できる電子写真感光体であることがわかる。
【0089】
比較例3
正孔輸送層に、4,4’,4”−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンを使用する以外は、実施例59と同様の方法で電子写真感光体を作製した。この電子写真感光体の電子写真特性は、初期電位(V0 )=−75(V)、2秒後の電位保持率(DDR2 )=90(%)、半減露光量感度(E1/2 )=1.0(lux・s)、3秒後の残留電位(VR3 )=−25(V)であり、本発明の正孔輸送材料に比べて劣っていた。また、この電子写真感光体を1万回以上繰り返して使用した前後での表面電位、感度等の電子写真特性や画像濃度は10%以上の変化率を示し、高品質の画像を安定して得ることができなかった。
【0090】
【発明の効果】
本発明により、優れた正孔輸送能力を有する化合物を得ることができた。本発明が提供した化合物により、従来に比べて高発光効率、高輝度であり、長寿命の有機EL素子、および感度、正孔輸送特性、初期表面電位、暗減衰率等の電子写真特性に優れ、繰り返し使用に対する疲労も少ない電子写真感光体を得ることができた。[0001]
[Industrial application fields]
The present invention relates to a hole transport material having an aromatic amine structure, and the aromatic amine compound can be used as a photosensitive material or an organic photoconductive material, more specifically, an organic electroluminescence used for a planar light source or a display. It can be used as a hole transport material such as an (EL) element or an electrophotographic photosensitive member.
[0002]
[Prior art]
Organic photoconductive materials developed as photosensitive materials and hole transport materials have various advantages such as low cost, various processability, and non-polluting properties, and many compounds have been proposed. For example, an oxadiazole derivative (US Pat. No. 3,189,447), an oxazole derivative (US Pat. No. 3,257,203), a hydrazone derivative (US Pat. No. 3,717,462), 59,143, U.S. Pat. No. 4,150,978), triarylpyrazoline derivatives (U.S. Pat. No. 3,820,989, JP-A-51-93,224, JP-A-55-108,667). No.), arylamine derivatives (US Pat. No. 3,180,730, US Pat. No. 4,232,103, JP-A-55-144,250, JP-A-56-119,132), stilbene derivatives Organic photoconductive materials such as JP-A-58-190,953 and JP-A-59-195,658 are disclosed.
[0003]
An organic EL element is mentioned as one of the techniques using a hole transport material. An EL element using an organic substance is considered to be promising for use as an inexpensive large-area full-color display element of a solid light emitting type, and many developments have been made. In general, an EL is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Furthermore, this electron is recombined with holes in the light emitting layer, and energy is emitted as light when the energy level returns from the conduction band to the valence band.
[0004]
Conventional organic EL elements have a higher driving voltage and lower light emission luminance and light emission efficiency than inorganic EL elements. Further, the characteristic deterioration has been remarkably not put into practical use.
In recent years, an organic EL device in which a thin film containing an organic compound having a high fluorescence quantum efficiency that emits light at a low voltage of 10 V or less has been reported and attracted attention (Applied Physics Letters, Vol. 51, page 913). 1987).
This method uses a metal chelate complex as a phosphor layer and an amine compound as a hole injection layer to obtain high luminance green light emission. The luminance is 1000 (cd / m) at a DC voltage of 6 to 7 V. 2 ), The maximum luminous efficiency is 1.5 (lm / W), and the performance is close to the practical range.
[0005]
An organic EL element is an element provided with a light emitting layer containing an organic fluorescent compound between a metal cathode layer and a transparent anode layer. In order to obtain light emission with high luminance at a low voltage, an electron injection layer or a hole injection layer is added to form a device. In these organic EL elements, excitons are generated by recombination of electrons injected from the cathode and holes injected from the anode, and light is emitted in the process of radiation deactivation of the excitons (Japanese Patent Laid-Open No. Sho). 59-194393, JP-A 63-295695). However, if a direct current voltage is applied to continue to emit light for a long time, crystallization of an organic compound is promoted, a leak current easily flows through the element, and the element is destroyed. Therefore, as a hole transport material used for the hole injection layer, 4,4 ′, 4 ″ -tris (N, N′-diphenylamino) triphenylamine (TDATA), 4,4 ′, 4 ″ -tris [ This is improved by using a compound such as N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) (Japanese Patent Laid-Open No. 4-308688). Since these compounds have a three-dimensional coordination structure, they are difficult to crystallize and have excellent thin film forming properties, but are not yet sufficient as organic thin films constituting organic EL elements. Therefore, there has been a problem that the element easily deteriorates during light emission.
[0006]
As described above, the organic EL elements up to now are not yet sufficient in light emission luminance and light emission stability during repeated use, and have higher light emission luminance, high light emission efficiency, and excellent stability in repeated use. In order to develop an EL element, it is desired to develop a hole transport material having excellent hole transport ability and durability.
[0007]
Furthermore, as a technique using a hole transport material, an electrophotographic photoreceptor can be mentioned. The electrophotographic system is one of image forming methods invented by Carlson. In this method, after charging a photoconductor by corona discharge, an optical image is exposed to obtain an electrostatic latent image on the photoconductor, toner is attached to the electrostatic latent image and developed, and the obtained toner image is printed on paper. Consists of transcribing. The basic characteristics required for such an electrophotographic photosensitive member are that an appropriate potential is maintained in a dark place, there is little discharge of electric charge in the dark place, and electric charge is quickly discharged by light irradiation. Etc. Conventional electrophotographic photoreceptors have used inorganic photoconductors such as selenium, selenium alloys, zinc oxide, cadmium sulfide and tellurium. These inorganic photoconductors have advantages such as high durability and a large number of printed sheets, but problems such as high manufacturing cost, inferior processability, and toxicity are pointed out. . In order to overcome these disadvantages, development of a photoreceptor using an organic compound has been carried out. However, an electrophotographic photoreceptor using a conventional organic photoconductive material as a hole transporting material has chargeability, sensitivity and sensitivity. At present, it cannot be said that electrophotographic characteristics such as residual potential are always satisfied, and there has been a demand for the development of a durable hole transport material having excellent charge transport capability.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a durable hole transport material having excellent hole transport capability, and further by using this hole transport material, a long-life organic EL device, An object of the present invention is to provide an electrophotographic photosensitive member and the like excellent in stability during repeated use.
[0009]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that at least one hole transporting material represented by the general formula [1] has a large hole transporting ability. The present inventors have found that the sensitivity of the electrophotographic photosensitive member and the stability during repeated use have been found, leading to the present invention. That is, the present invention relates to a hole transport material represented by the following general formula [1]. General formula [1]
[Chemical formula 2]
Figure 0003709637
[Wherein R 1 ~ R 6 Each independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted monocyclic group, a substituted or unsubstituted fused polycyclic group, or R 1 And R 2 , R Three And R Four , R Five And R 6 Represents a condensed polycyclic group having a nitrogen atom as a bond. Ar 1 ~ Ar Three Represents a substituted or unsubstituted arylene group. A 1 ~ A Three Are each independently a direct bond,-(CH 2 ) x -Z- (CH 2 ) y -(However, Z represents a direct bond, an oxygen atom, and a sulfur atom, and x and y each represents an integer of 0 to 8, but x and y are not 0.), represents a dimethylmethylene group. However, A 1 ~ A Three Are not directly connected at the same time. ]
[0010]
Furthermore, the present invention relates to an organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, at least one layer being the hole transport material. .
[0011]
Furthermore, the present invention provides an organic electroluminescence device in which an organic compound thin film including at least a hole injection layer and a light emitting layer is formed between a pair of electrodes, wherein the hole injection layer contains the hole transport material. It is related with the organic electroluminescent element material which is.
[0012]
Furthermore, the present invention provides an organic electroluminescence device in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, wherein the light emitting layer is a layer containing the hole transport material. The present invention relates to an electroluminescence element.
[0013]
Furthermore, the present invention relates to an electrophotographic photoreceptor using a charge generating material and a hole transport material on a conductive support, wherein the hole transport material is the hole transport material.
DETAILED DESCRIPTION OF THE INVENTION
[0014]
R of the compound of the general formula [1] 1 ~ R 6 Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a stearyl group. There are linear and branched alkyl groups.
[0015]
R of the compound of the general formula [1] 1 ~ R 6 Examples of the monocyclic group include a monocyclic cycloalkyl group, a monocyclic aryl group, and a monocyclic heterocyclic group.
Examples of the monocyclic cycloalkyl group include cycloalkyl groups having 4 to 8 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
[0016]
A monocyclic aryl group includes a phenyl group.
Examples of monocyclic heterocyclic groups include thionyl, thiophenyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, oxadiazolyl, thiadiazolyl, And imidadiazolyl group.
[0017]
R of the compound of the general formula [1] 1 ~ R 6 Examples of the condensed polycyclic group include a condensed polycyclic aryl group, a condensed polycyclic heterocyclic group, and a condensed polycyclic cycloalkyl group.
Examples of the condensed polycyclic aryl group include a naphthyl group, an anthranyl group, a phenanthrenyl group, a fluorenyl group, an acenaphthyl group, an azulenyl group, a heptaenyl group, an acenaphthylenyl group, and a pyrenyl group.
[0018]
The condensed polycyclic heterocyclic group includes indolyl group, quinolyl group, isoquinolyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group, carbazolyl group, acridinyl group, phenazinyl group, furfuryl group, isothiazolyl group, isoxazolyl group, furazanyl group, phenoxazinyl group Benzothiazolyl group, benzoxazolyl group, benzimidazolyl group and the like.
Examples of other condensed polycyclic groups include a 1-tetralyl group, a 2-tetralyl group, and a tetrahydroquinolyl group.
[0019]
Ar of the compound of the general formula [1] 1 ~ Ar Three Examples of the arylene group include a phenylene group, a naphthylene group, an anthranylene group, a phenanthrenylene group, a fluorenylene group, an acenaphthylene group, a pyrenylene group, a biphenylene group, a terphenylene group, and a quarterphenylene group.
[0020]
A of the compound of the general formula [1] 1 ~ A Three As the divalent linking group, an alkylene group having 1 to 16 carbon atoms such as a methylene group, an ethylene group, a propylene group, an isopropylene group, a butylene group and an octylene group, an oxymethylene group, an oxyethylene group, an oxypropylene group, There are dimethylmethylene groups such as a thiomethylene group, a thioethylene group, and a thiopropylene group.
[0021]
R in the present invention 1 ~ R 6 An alkyl group, a monocyclic group, a condensed polycyclic group and Ar 1 ~ Ar Three As typical examples of the substituent which may be substituted on the arylene group represented by the following, there are substituents shown below.
Fluorine, chlorine, bromine and iodine as halogen atoms.
As a substituted or unsubstituted alkyl group, methyl group, ethyl group, propyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, A trifluoromethyl group, a cyclopropyl group, a cyclohexyl group, a 1,3-cyclohexadienyl group, a 2-cyclopenten-1-yl group, a 2,4-cyclopentadiene-1-ylidenyl group, and the like.
[0022]
As a substituted or unsubstituted alkoxy group, methoxy group, ethoxy group, propoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, stearyloxy group, trifluoromethoxy group, etc. .
Examples of the substituted or unsubstituted thioalkoxy group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a sec-butylthio group, a tert-butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
[0023]
As mono- or di-substituted amino group, methylamino group, dimethylamino group, ethylamino group, diethylamino group, dipropylamino group, dibutylamino group, diphenylamino group, bis (acetoxymethyl) amino group, bis (acetoxyethyl) ) Amino group, bis (acetoxypropyl) amino group, bis (acetoxybutyl) amino group, dibenzylamino group and the like.
[0024]
Examples of the substituted or unsubstituted aryloxy group include a phenoxy group, a p-tert-butylphenoxy group, and a 3-fluorophenoxy group. Examples of the substituted or unsubstituted arylthio group include a phenylthio group and a 3-fluorophenylthio group.
[0025]
As a substituted or unsubstituted aryl group, phenyl group, biphenyl group, triphenyl group, terphenyl group, 3-nitrophenyl group, 4-methylthiophenyl group, 3,5-dicyanophenyl group, o-, m- and p -Tolyl group, xylyl group, o-, m- and p-cumenyl group, mesityl group, pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptalenyl group, acenaphthylenyl group, phenalenyl group, fluorenyl group, anthryl group, anthraquinolyl group 3-methylanthryl group, phenanthryl group, triphenylenyl group, pyrenyl group, chrysenyl group, 2-ethyl-1-chrysenyl group, picenyl group, perylenyl group, 6-chloroperylenyl group, pentaphenyl group, pentacenyl group, tetraphenylyl group Nyl group, hexaphenyl group, hexase Group, rubicenyl group, coronenyl groups, trinaphthylenyl groups, heptacenyl groups, pyranthrenyl groups, etc. ovalenyl group.
[0026]
As a substituted or unsubstituted heterocyclic group, thionyl group, thiophenyl group, furanyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, indolyl group, quinolyl group, isoquinolyl group, phthalazinyl Group, quinoxalinyl group, quinazolinyl group, carbazolyl group, acridinyl group, phenazinyl group, furfuryl group, isothiazolyl group, isoxazolyl group, furazanyl group, phenoxazinyl group, benzothiazolyl group, benzoxazolyl group, benzimidazolyl group, 2-methylpyridyl group 3-cyanopyridyl group, oxazolyl group, thiazolyl group, imidazolyl group, oxadiazolyl group, thiadiazolyl group, imidazoldiazolyl group and the like.
[0027]
The compound represented by the general formula [1] of the present invention can be synthesized, for example, by the following method. In the flask, a catalyst such as a polar solvent, a trishalogenoamine compound, 5 to 8 moles of a substituted aromatic diamine compound, an alkali, a metal atom or a metal compound is added, and the reaction is performed at 200 ° C. or higher for 5 to 50 hours. An aromatic amine compound represented by the general formula [1] is synthesized.
[0028]
Although the typical example of a compound shown by General formula [1] is specifically illustrated in Table 1, it is not limited to these.
[0029]
[Table 1]
Figure 0003709637
[0030]
Figure 0003709637
[0031]
Figure 0003709637
[0032]
Figure 0003709637
[0033]
Figure 0003709637
[0034]
Figure 0003709637
[0035]
Figure 0003709637
[0036]
Figure 0003709637
[0037]
Figure 0003709637
[0038]
Figure 0003709637
[0039]
Figure 0003709637
[0040]
Figure 0003709637
[0041]
Figure 0003709637
[0042]
Figure 0003709637
[0043]
Figure 0003709637
[0044]
Figure 0003709637
[0045]
The hole transport material of the present invention may be used by mixing with other hole or electron transport compounds in the same layer. Since the compound of the present invention is excellent in hole transport property, it can be used very effectively as a hole transport material.
[0046]
An organic EL element is an element in which a single-layer or multilayer organic thin film is formed between an anode and a cathode. In the case of the single layer type, a light emitting layer is provided between the anode and the cathode. The light emitting layer contains a light emitting material, and may further contain a hole transporting material or an electron transporting material in order to transport holes injected from the anode or electrons injected from the cathode to the light emitting material. The light emitting material may have a hole transporting property or an electron transporting property. The multilayer type is a multilayer of (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), and (anode / hole injection layer / light emitting layer / electron injection layer / cathode). There are organic EL elements stacked in a configuration. The compound of the general formula [1] can be used in any device configuration. The compound of the general formula [1] can be used as a hole transport material in any of the hole injection layer and the light emitting layer. The hole transport material of the present invention has a hole injection function from the anode to the organic layer and a function of transporting the injected holes and injecting them into the light emitting layer. Even in this case, it can be used for any hole injection layer. Since the thin film formed of the compound of the general formula [1] is amorphous, it is advantageous in terms of long-term storage when the thin film is formed, light emission lifetime when the element is driven, and the like. In addition, the compound of the general formula [1] has good adhesion to a metal electrode such as ITO and has a low ionization potential of the film film, which is advantageous for hole injection from the anode. Is more advantageous when the compound of the general formula [1] is used in the hole injection layer on the metal electrode (anode) side.
[0047]
If necessary, in addition to the compound of the general formula [1] of the present invention, a light emitting material, a doping material, a hole transport material that performs carrier transport, and an electron transport material can be used for the light emitting layer. In the case of a two-layer structure, the light emitting layer and the hole injection layer are separated. With this structure, the hole injection efficiency from the hole injection layer to the light emitting layer is improved, and the light emission luminance and the light emission efficiency can be increased. In this case, for light emission, it is desirable that the light emitting material itself used for the light emitting layer has an electron transporting property, or that an electron transporting material is added to the light emitting layer. Another layer structure includes a two-layer structure including a light emitting layer and an electron injection layer. In this case, it is desirable that the light emitting material itself has a hole transporting property or that a hole transporting material is added to the light emitting layer.
[0048]
In the case of a three-layer structure, a light emitting layer, a hole injection layer, and an electron injection layer are provided to improve the efficiency of recombination of holes and electrons in the light emitting layer. Thus, by making the organic EL element have a multilayer structure, it is possible to prevent a decrease in luminance and life due to quenching. Even in such a multi-layered element, if necessary, a light emitting material, a doping material, a hole transporting material for transporting carriers, and an electron transporting material can be used in combination. In addition, the hole injection layer, the light emitting layer, and the electron injection layer may each be formed of two or more layers.
[0049]
As a conductive material used for an anode of an organic EL element, a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum, palladium, etc. Further, alloys thereof, ITO substrates, metal oxides such as tin oxide and indium oxide called NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used.
As the conductive material used for the cathode, a material having a work function smaller than 4 eV is preferable, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, and alloys thereof are used. Examples of the alloy include magnesium / silver, magnesium / indium, and lithium / aluminum. However, the alloy is not limited to these, and the metal ratio of the alloy is not limited. Moreover, the anode and the cathode may be formed of two or more layers if necessary.
[0050]
In the organic EL element, in order to emit light efficiently, it is desirable that at least one of the elements is sufficiently transparent in the light emission wavelength region of the element. The substrate is also preferably transparent. The transparent electrode is set so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering using the conductive material. The electrode on the light emitting surface preferably has a light transmittance of 10% or more. The substrate has mechanical and thermal strength and is not limited as long as it is transparent, but for example, there are transparent resins such as glass substrate, polyethylene, polyethersulfone, polypropylene, Any of film form may be sufficient.
[0051]
Formation of each layer of the organic EL element according to the present invention can be performed by any of dry film forming methods such as vacuum deposition and sputtering and wet film forming methods such as spin coating and dipping. The film thickness is not particularly limited, but each layer needs to be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied. The normal film thickness is suitably in the range of 5 nm to 10 μm, but more preferably in the range of 10 nm to 0.2 μm.
[0052]
In the case of the wet film-forming method, the material for forming each layer is dissolved or dispersed in an appropriate solvent such as chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used. In any thin film, an appropriate resin or additive may be used in order to improve film formability and prevent pinholes in the film.
Examples of the resin used in the present invention include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins, poly-N-vinylcarbazole, polysilane, and the like. And photoconductive resins such as polythiophene and polypyrrole. Examples of the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
[0053]
The light emitting material or doping material that can be used in the organic EL device of the present invention includes anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenyl. Butadiene, coumarin, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, triphenylamine , Benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine pyra , Thiopyran, polymethine, merocyanine, imidazole chelated oxinoid compounds, quinacridone, there are rubrene and derivatives thereof, but is not limited thereto.
[0054]
As a hole transport material that can be used in combination with the hole transport material of the general formula [1], it has the ability to transport holes, has an excellent hole injection effect for the light emitting layer or the light emitting material, and emits light. Examples include compounds that prevent excitons generated in the layer from moving to the electron injection layer or the electron transport material and have excellent thin film forming ability. Specifically, phthalocyanine compounds, naphthalocyanine compounds, porphyrin compounds, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acyl hydrazone, poly Aryl alkane, stilbene, butadiene, benzidine type triphenylamine, styrylamine type triphenylamine, diamine type triphenylamine, and their derivatives, and polymer materials such as polyvinylcarbazole, polysilane, and conductive polymers However, it is not limited to these.
[0055]
As an electron transport material, it has the ability to transport electrons, has an excellent electron injection effect for the light emitting layer or light emitting material, and excitons generated in the light emitting layer into the hole injection layer or hole transport material. Examples thereof include compounds that prevent migration and have excellent thin film forming ability. Examples include, but are not limited to, fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxadiazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone, and their derivatives. It is not a thing. Further, sensitization can be performed by adding an electron accepting material to the hole transport material and an electron donating material to the electron transport material.
[0056]
The compound of the general formula [1] of the present invention can be used in any layer. In addition to the compound of the general formula [1], at least one of a light emitting material, a doping material, a hole transport material, and an electron transport material is used. The seed may be contained in the same layer. In addition, in order to improve the stability of the organic EL device obtained by the present invention with respect to temperature, humidity, atmosphere, etc., a protective layer is provided on the surface of the device, or silicon oil or the like is sealed to protect the entire device. It is also possible.
As described above, in the present invention, since the compound of the general formula [1] is used for the organic EL element, the light emission efficiency and the light emission luminance can be increased. In addition, this element is stable against heat and electric current, and furthermore, a light emission luminance that can be used practically at a low driving voltage can be obtained. It was possible to improve.
The organic EL device of the present invention can be applied to flat panel displays such as wall-mounted TVs, flat light emitters, light sources such as copiers and printers, light sources such as liquid crystal displays and instruments, display boards, and indicator lights. The industrial value is very large.
[0057]
Next, the case where the compound represented by the general formula [1] of the present invention is used as an electrophotographic photoreceptor will be described. Although the compound represented by the general formula [1] of the present invention can be used in any layer of the electrophotographic photoreceptor, it is desirable to use it as a hole transport material because it has high hole transport properties. The compound acts as a hole transport material, can transport charges generated by absorbing light very efficiently, and can provide a photoconductor with high response speed. In addition, since the compound is excellent in ozone resistance and light stability, a photoreceptor having excellent durability can be obtained.
[0058]
An electrophotographic photosensitive member is a single layer type photosensitive member provided with a photosensitive layer formed by dispersing a charge generating material and, if necessary, a charge transporting material in a binder resin on a conductive substrate. There are laminated photoreceptors in which a layer, a charge generation layer, and a hole transport layer are laminated in this order, or a hole transport layer and a charge generation layer are laminated in this order on a conductive substrate or an undercoat layer. Here, the undercoat layer may not be used if it is not necessary. If necessary, the photoreceptor may be provided with an overcoat layer for the purpose of protecting the surface from active gas and preventing filming with toner.
[0059]
Examples of charge generation materials include organic compounds such as bisazo, trisazo, quinacridone, diketopyrrolopyrrole, indigo, perylene, perinone, polycyclic quinone, squarylium salt, azurenium salt, phthalocyanine, naphthalocyanine, or selenium, selenium-tellurium alloy. , Inorganic materials such as cadmium sulfide, zinc oxide, and amorphous silicon.
[0060]
Each layer of the photoreceptor can be formed by vapor deposition or dispersion coating. Dispersion coating is performed using a spin coater, applicator, spray coater, dip coater, roller coater, curtain coater, and bead coater, etc., and drying is performed at room temperature to 200 ° C. for 10 minutes to 6 hours under static or blowing conditions. Do. The thickness of the photosensitive layer after drying is 5 μm to 50 μm in the case of a single layer type photoreceptor, and in the case of a laminated type photoreceptor, the charge generation layer is 0.01 μm to 5 μm, preferably 0.1 μm to 1 μm. The transport layer is suitably 5 μm to 50 μm, preferably 10 μm to 20 μm.
[0061]
The resin used when forming the photosensitive layer of the single layer type photoreceptor, the charge generation layer or the hole transport layer of the multilayer type photoreceptor can be selected from a wide range of insulating resins. Further, it can be selected from organic photoconductive polymers such as poly-N-vinyl carbazole, polyvinyl anthracene and polysilanes. Preferably, insulating resins such as polyvinyl butyral, polyarylate, polycarbonate, polyester, phenoxy, acrylic, polyamide, urethane, epoxy, silicone, polystyrene, polyvinyl chloride, vinyl chloride copolymer, phenol and melamine resin I can do it. The resin used for forming the charge generation layer or hole transport layer is preferably 100% by weight or less based on the charge generation material or hole transport material, but is not limited thereto. Two or more kinds of resins may be used in combination. Moreover, it is not necessary to use resin if necessary. The charge generation layer can also be formed by a physical film formation method such as vapor deposition or sputtering. In vapor deposition and sputtering, preferably 10 -Five It is desirable to form a film in a vacuum atmosphere below Toor. It is also possible to form a film in an inert gas such as nitrogen, argon or helium.
[0062]
The solvent used in forming each layer of the electrophotographic photoreceptor is preferably selected from those that do not affect the undercoat layer or other photosensitive layers. Specifically, aromatic hydrocarbons such as benzene and xylene, ketones such as acetone, methyl ethyl ketone and cyclohexanone, alcohols such as methanol and ethanol, esters such as ethyl acetate and methyl cellosolve, carbon tetrachloride, chloroform and dichloromethane In addition, aliphatic halogenated hydrocarbons such as dichloroethane and trichloroethylene, aromatic halogenated hydrocarbons such as chlorobenzene and dichlorobenzene, and ethers such as tetrahydrofuran and dioxane are used, but not limited thereto.
[0063]
The hole transport layer is formed by a method of applying only a hole transport material or a coating solution in which a hole transport material is dissolved in an insulating resin, or a dry film forming method such as vapor deposition. The hole transport material used in the present photoreceptor can be used in combination with other hole transport materials in addition to the compound of the general formula [1]. Furthermore, even when an insulating resin is used in combination to improve heat resistance and abrasion resistance, the compatibility with other resins is good, and the formed thin film is difficult to precipitate as crystals, so sensitivity and durability It is advantageous for improvement.
[0064]
If necessary, an undercoat layer can be provided between the substrate and the organic layer in order to improve electrophotographic characteristics, image characteristics, etc. As the undercoat layer, polyamides, casein, polyvinyl alcohol, gelatin, polyvinyl butyral Resins such as aluminum oxide and metal oxides such as aluminum oxide are used.
The material of the present invention can be used not only as a hole transport material such as an organic EL element or an electrophotographic photoreceptor, but also in any field of organic photoconductive materials such as a photoelectric conversion element, a solar cell, and an image sensor.
[0065]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
According to DSC analysis, most of the compounds represented by the general formula [1] of the present invention have a glass transition temperature of 100 ° C., a melting point of 250 ° C. or higher, and a decomposition point of 300 ° C. or higher. Compared with 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine, which has a high glass transition temperature, melting point and decomposition point, It can be seen that the compound has a high heat resistance as a hole transporting material for EL elements, and all the compounds represented by the general formula [1] of the present invention have low crystallinity and are non-crystalline compounds. Therefore, the adhesion to the anode substrate and the organic thin film layer is also good, and there is a great advantage in terms of resistance to the environment as an organic thin film, light emission lifetime when the organic EL element is driven, and storage stability of the element.
[0066]
Example 1
Compound (2) was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 30 nm. Next, a tris (8-hydroxyquinoline) aluminum complex is vacuum-deposited to form a light-emitting layer having a thickness of 50 nm, and an electrode having a thickness of 150 nm is formed thereon using an alloy in which magnesium and silver are mixed at a ratio of 10: 1. Thus, an organic EL element was obtained. The hole injection layer and the light emitting layer are 10 -6 Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has a luminance of 210 (cd / m) at a DC voltage of 5V. 2 ), Maximum light emission luminance of 17000 (cd / m) 2 ), Emission characteristics with a luminous efficiency of 2.1 (lm / W) were obtained.
[0067]
Example 2
An organic EL device was produced in the same manner as in Example 1 except that the hole injection layer was formed by spin coating of compound (2) dissolved in chloroform. This device has an emission luminance of 200 (cd / m) at a DC voltage of 5V. 2 ), Maximum luminance 21000 (cd / m) 2 ), A light emission characteristic of a light emission efficiency of 2.2 (lm / W) was obtained.
[0068]
Example 3
Compound (3) was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a hole injection layer having a thickness of 40 nm. Subsequently, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl was vacuum-deposited to obtain a 10 nm-thick hole transport layer. Further, a tris (8-hydroxyquinoline) aluminum complex is vacuum-deposited to prepare a 40 nm-thickness electron-injection type light emitting layer. To obtain an organic EL element. The hole injection layer and the light emitting layer are 10 -6 Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has a light emission luminance of 190 (cd / m) at a DC voltage of 5V. 2 ), Maximum emission brightness 23000 (cd / m) 2 ), A light emission characteristic having a light emission efficiency of 2.0 (lm / W) was obtained.
[0069]
Example 4
On the washed glass plate with an ITO electrode, the compound shown in Compound (3) was dissolved in chloroform, and a hole injection layer having a film thickness of 50 nm was obtained by a spin coating method. Next, a tris (8-hydroxyquinoline) aluminum complex is vacuum-deposited to prepare a 50 nm-thick electron-injection-type light-emitting layer. To obtain an organic EL device. The light emitting layer is 10 -6 Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This element has a direct-current voltage of 5 V and an emission luminance of 230 (cd / m 2 ), Maximum light emission luminance of 26000 (cd / m) 2 ), A light emission characteristic of 1.9 (lm / W) was obtained.
[0070]
Examples 5-52
On the washed glass plate with an ITO electrode, the compounds shown in Table 1 were vacuum-deposited to obtain a hole injection layer having a thickness of 40 nm. Subsequently, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl was vacuum-deposited to obtain a 10 nm-thick hole transport layer. Further, a tris (8-hydroxyquinoline) aluminum complex was vacuum-deposited to form a light-emitting layer having a thickness of 50 nm, and a bis (2-methyl-8-hydroxyquinolinato) (1-phenolate) gallium complex was vacuum-deposited. Then, an electron injection layer having a thickness of 30 nm was formed, and an electrode having a thickness of 150 nm was formed thereon by using an alloy in which aluminum and lithium were mixed at a ratio of 25: 1 to obtain an organic EL element. The hole injection layer and the light emitting layer are 10 -6 In the vacuum of Torr, the substrate temperature was deposited at room temperature. This device had the light emission characteristics shown in Table 2.
[0071]
[Table 2]
Figure 0003709637
[0072]
Figure 0003709637
[0073]
Example 53
The compound (38) was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a 40 nm-thick hole injection layer. Subsequently, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl was vacuum-deposited to obtain a 10 nm-thick hole transport layer. Further, N, N, N ′, N ′-[4- (α, α′-dimethylbenzyl) phenyl] -anthranyl-9,10-diamine was vacuum-deposited to form a light-emitting layer having a thickness of 50 nm. A tris (8-hydroxyquinoline) aluminum complex is vacuum-deposited to form an electron-injection layer having a thickness of 40 nm, and an electrode having a thickness of 150 nm is formed thereon using an alloy in which magnesium and silver are mixed at a ratio of 10: 1. The organic EL element was obtained. The hole injection layer and the light emitting layer are 10 -6 Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This device has a light emission luminance of 800 (cd / m) at a DC voltage of 5V. 2 ), Maximum emission luminance of 46000 (cd / m) 2 ), A light emission characteristic of 4.4 (lm / W) was obtained.
[0074]
Example 54
Compound (10) was vacuum-deposited on the washed glass plate with an ITO electrode to obtain a 40 nm thick hole injection layer. Next, compound (2) and rubrene are vacuum-deposited at a weight ratio of 10: 1 to form a light-emitting layer with a thickness of 50 nm, and tris (8-hydroxyquinoline) aluminum complex is vacuum-deposited to give an electron injection with a thickness of 40 nm. A layer was prepared, and an electrode having a film thickness of 150 nm was formed thereon using an alloy in which magnesium and silver were mixed at a ratio of 10: 1 to obtain an organic EL element. The hole injection layer and the light emitting layer are 10 -6 Deposition was performed in a vacuum of Torr at a substrate temperature of room temperature. This device has an emission luminance of 430 (cd / m) at a DC voltage of 5 V. 2 ), Maximum luminance of 31000 (cd / m) 2 ), A light emission characteristic of 4.1 (lm / W) was obtained.
[0075]
Example 55
An organic EL device was produced in the same manner as in Example 53 except that a tris (8-hydroxyquinoline) aluminum complex and quinacridone were vapor-deposited at a weight ratio of 20: 1 to obtain a light-emitting layer having a thickness of 40 nm. This element has a light emission luminance of 610 (cd / m) at a DC voltage of 5 V. 2 ), Maximum emission brightness 39000 (cd / m) 2 ), Emission characteristics with a luminous efficiency of 3.8 (lm / W) were obtained.
[0076]
Comparative Example 1
Example 1 is used except that 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine is used instead of the compound (2) of the hole injection layer. An organic EL device was produced in the same manner, and this device had a luminance of about 160 (cd / m) at a DC voltage of 5V. 2 ), Maximum light emission luminance of 16000 (cd / m) 2 ), Emission characteristics with a luminous efficiency of 1.2 (lm / W) were obtained.
[0077]
Comparative Example 2
Example 53 is used except that 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine is used instead of the compound (38) of the hole injection layer. An organic EL device was produced in the same manner, and this device had a luminance of about 550 (cd / m) at a DC voltage of 5 V. 2 ), Maximum light emission luminance of 15000 (cd / m) 2 ), Emission characteristics with a luminous efficiency of 3.5 (lm / W) were obtained.
[0078]
For all organic EL elements shown in this example, 3 (mA / cm 2 ), It was possible to observe 50% or more of the initial luminance for 1000 hours or more. However, when the devices of Comparative Example 1 and Comparative Example 2 were made to emit light continuously under the same conditions, both were initial in 200 hours. The brightness became 50% or less, and the number of dark spots, which were non-light emitting portions of the device, also increased. The reason for the above results is that since the compound of the present invention is a non-planar compound, it is possible to form an amorphous thin film when forming a thin film, and there are many condensed aromatic compounds in the compound. Since it has a ring, the hole transportability is improved, and the hole injection property and the hole transportability of the organic EL element are improved. Furthermore, since the heat resistance of the hole transport material is also improved, the resistance against heat generation during continuous light emission is also improved. In the compound of the general formula [1], adjacent substituents of the aryl group form a cycloalkyl ring, so that the non-crystallinity is increased and the adhesion between the substrate and the hole injection from the substrate is also improved. Will do.
[0079]
The organic EL device of the present invention achieves improvement in luminous efficiency, luminous luminance and longevity, and is used together with a luminescent material, a doping material, a hole transport material, an electron transport material, a sensitizer, The resin, the electrode material, etc. and the device manufacturing method are not limited.
[0080]
Next, examples in which the hole transport material of the present invention is used for an electrophotographic photoreceptor are shown below.
[0081]
Example 56
4 g of ε-type copper phthalocyanine, 2 g of compound (2), and 14 g of a polyester resin (Toyobo: Byron 200) were dispersed in a ball mill for 5 hours together with 80 g of tetrahydrofuran. This dispersion was coated on an aluminum substrate and dried to prepare a single layer type electrophotographic photosensitive member having a thickness of 20 μm.
[0082]
Example 57
6 g of dibromoanthanthrone, 2 g of compound (3) and 12 g of a polyester resin (Toyobo: Byron 200) were dispersed in a ball mill for 5 hours together with 80 g of tetrahydrofuran. This dispersion was coated on an aluminum substrate and dried to prepare a single layer type electrophotographic photosensitive member having a thickness of 20 μm.
[0083]
Example 58
2 g of N, N′-bis (2,6-dichlorophenyl) -3,4,9,10-perylenedicarboximide and 2 g of polyvinyl butyral resin (Sekisui Chemical: BH-3) were dispersed with 96 g of tetrahydrofuran in a ball mill for 2 hours. . This dispersion was applied onto an aluminum substrate and dried to produce a charge generation layer having a thickness of 0.3 μm. Next, 10 g of the compound (10) and 10 g of a polycarbonate resin (Teijin Chemicals: Panlite L-1250) were dissolved in 80 g of dichloromethane. This coating solution was applied onto the charge generation layer and dried to form a hole transport layer having a thickness of 20 μm, thereby preparing a multilayer electrophotographic photoreceptor.
[0084]
Examples 59-106
2 g of τ-type metal-free phthalocyanine and 2 g of polyvinyl butyral resin (Sekisui Chemical: BH-3) were dispersed with 96 g of tetrahydrofuran in a ball mill for 2 hours. This dispersion was applied onto an aluminum substrate and dried to produce a charge generation layer having a thickness of 0.3 μm. Next, 10 g of the compound shown in Table 3 and 10 g of a polycarbonate resin (Teijin Chemicals: Panlite K-1300) were dissolved in 80 g of dichloromethane. This coating solution was applied onto the charge generation layer and dried to form a hole transport layer having a thickness of 20 μm, thereby producing a multilayer electrophotographic photosensitive member.
[0085]
The electrophotographic characteristics of the electrophotographic photosensitive member were measured by the following method. By using an electrostatic copying paper testing apparatus (Kawaguchi Electric Manufacturing Co., Ltd .: EPA-8100), static mode 2 and corona charging are irradiated with white light of -5.2 (kV) and 5 (lux), and an initial surface potential (V0). , V0 and the ratio of the surface potential (V2) when left in a dark place for 2 seconds (dark decay rate: DDR 2 = V2 / V0), the half-exposure sensitivity (E1 / 2) and the surface potential (VR3) after 3 seconds of light exposure were examined from the time when the charge amount decreased to 1/2 of the initial value after light exposure. Table 3 shows the electrophotographic characteristics of the electrophotographic photosensitive member of this example.
[0086]
[Table 3]
Figure 0003709637
[0087]
Figure 0003709637
[0088]
Since all the electrophotographic photosensitive members shown in this example have a change rate of electrophotographic characteristics such as surface potential and sensitivity and image density before and after repeated use 10,000 times or more, within 2%, It can be seen that the electrophotographic photosensitive member has stable electrophotographic characteristics and can hold a high-quality image.
[0089]
Comparative Example 3
The electrophotographic photosensitivity is the same as in Example 59 except that 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine is used for the hole transport layer. The electrophotographic characteristics of this electrophotographic photosensitive member are as follows: initial potential (V0) =-75 (V), potential holding ratio (DDR2) after 2 seconds (DDR2) = 90 (%), half-exposure sensitivity (E1 /2)=1.0 (lux · s), the residual potential after 3 seconds (VR3) = − 25 (V), which is inferior to the hole transport material of the present invention. Electrophotographic characteristics such as surface potential and sensitivity before and after repeated use of the photoreceptor 10,000 times or more and the image density showed a change rate of 10% or more, and a high-quality image could not be stably obtained. .
[0090]
【The invention's effect】
According to the present invention, a compound having an excellent hole transport ability could be obtained. With the compound provided by the present invention, the organic EL device has higher luminous efficiency, higher luminance, and longer life than conventional ones, and excellent electrophotographic characteristics such as sensitivity, hole transport characteristics, initial surface potential, and dark decay rate. Thus, an electrophotographic photosensitive member with less fatigue due to repeated use could be obtained.

Claims (5)

下記一般式[1]で示される正孔輸送材料。
一般式[1]
Figure 0003709637
[式中、R1 〜R6 は、それぞれ独立に、置換もしくは未置換のアルキル基、置換もしくは未置換の単環基、置換もしくは未置換の縮合多環基、またはR1 とR2 、R3 とR4 、R5 とR6 が一体となって窒素原子を結合手とする縮合多環基を表す。Ar1 〜Ar3 は置換もしくは未置換のアリーレン基を表す。A1 〜A3 は、それぞれ独立に、直接結合、−(CH2 x −Z−(CH2 y −(ただし、Zは、直接結合、酸素原子、硫黄原子を表し、x、yはそれぞれ0〜8の整数を表すが、xとyが共に0となることはない。)、ジメチルメチレン基を表し、ただしA1 〜A3 が同時に直接結合となることはない。]
A hole transport material represented by the following general formula [1].
General formula [1]
Figure 0003709637
[Wherein, R 1 to R 6 each independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted monocyclic group, a substituted or unsubstituted condensed polycyclic group, or R 1 and R 2 , R 3 and R 4 , and R 5 and R 6 are combined to represent a condensed polycyclic group having a nitrogen atom as a bond. Ar 1 to Ar 3 represent a substituted or unsubstituted arylene group. A 1 to A 3 are each independently a direct bond, — (CH 2 ) x —Z— (CH 2 ) y — (where Z represents a direct bond, an oxygen atom, a sulfur atom, and x and y are Each represents an integer of 0 to 8, but both x and y are not 0.), represents a dimethylmethylene group, provided that A 1 to A 3 do not form a direct bond at the same time. ]
一対の電極間に、発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、少なくとも一層が請求項1記載の正孔輸送材料である有機エレクトロルミネッセンス素子。2. The organic electroluminescence device according to claim 1, wherein at least one layer is a hole transport material according to claim 1, wherein a light emitting layer or a plurality of layers of organic compound thin film including a light emitting layer is formed between a pair of electrodes. 一対の電極間に、少なくとも正孔注入層と発光層とを含む有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、正孔注入層が請求項1記載の正孔輸送材料を含有する層である有機エレクトロルミネッセンス素子。In the organic electroluminescent element formed by forming an organic compound thin film including at least a hole injection layer and a light emitting layer between a pair of electrodes, the hole injection layer is a layer containing the hole transport material according to claim 1. An organic electroluminescence device. 一対の電極間に、発光層または発光層を含む複数層の有機化合物薄膜を形成してなる有機エレクトロルミネッセンス素子において、発光層が請求項1記載の正孔輸送材料を含有する層である有機エレクトロルミネッセンス素子。The organic electroluminescent element in which a light emitting layer or a plurality of organic compound thin films including a light emitting layer is formed between a pair of electrodes, wherein the light emitting layer is a layer containing the hole transport material according to claim 1. Luminescence element. 導電性支持体上に、電荷発生材料および正孔輸送材料を使用してなる電子写真感光体において、正孔輸送材料が請求項1記載の正孔輸送材料である電子写真感光体。2. An electrophotographic photosensitive member using a charge generating material and a hole transporting material on a conductive support, wherein the hole transporting material is the hole transporting material according to claim 1.
JP33521696A 1996-12-16 1996-12-16 Hole transport material and use thereof Expired - Fee Related JP3709637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33521696A JP3709637B2 (en) 1996-12-16 1996-12-16 Hole transport material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33521696A JP3709637B2 (en) 1996-12-16 1996-12-16 Hole transport material and use thereof

Publications (2)

Publication Number Publication Date
JPH10168447A JPH10168447A (en) 1998-06-23
JP3709637B2 true JP3709637B2 (en) 2005-10-26

Family

ID=18286070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33521696A Expired - Fee Related JP3709637B2 (en) 1996-12-16 1996-12-16 Hole transport material and use thereof

Country Status (1)

Country Link
JP (1) JP3709637B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141552B2 (en) * 1998-11-19 2008-08-27 セイコーエプソン株式会社 Electroluminescent device and manufacturing method thereof
DE10002424A1 (en) * 2000-01-20 2001-07-26 Siemens Ag Di (het) arylaminothiophene derivatives
KR20050118098A (en) * 2004-03-19 2005-12-15 주식회사 엘지화학 New materials for injecting or transporting holes and organic electroluminescence devices using the same
WO2005090512A1 (en) * 2004-03-19 2005-09-29 Lg Chem, Ltd. New materials for injecting or transporting holes and organic electroluminescence devices using the same
KR101347519B1 (en) 2006-11-24 2014-01-03 이데미쓰 고산 가부시키가이샤 Aromatic amine derivative and organic electroluminescent element using the same
US7842406B2 (en) * 2007-12-14 2010-11-30 Global Oled Technology Llc OLED device with substituted acridone compounds
JP6163745B2 (en) * 2012-02-03 2017-07-19 株式会社リコー Amine compound, electrophotographic photosensitive member, image forming method using the electrophotographic photosensitive member, image forming apparatus, and image forming process cartridge
JP6119424B2 (en) * 2012-06-06 2017-04-26 株式会社リコー Photoconductor, image forming apparatus, cartridge, and image forming method
JP2014186294A (en) * 2013-02-20 2014-10-02 Ricoh Co Ltd Image forming apparatus and process cartridge
JP6123369B2 (en) * 2013-03-12 2017-05-10 株式会社リコー Electrophotographic photoreceptor
TWI607986B (en) * 2016-07-26 2017-12-11 昱鐳光電科技股份有限公司 Novel diamine compound and organic electroluminescent device using the same

Also Published As

Publication number Publication date
JPH10168447A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP2686418B2 (en) Diarylamine derivative, production method and use thereof
JP3593717B2 (en) Novel triphenylamine derivative, its production method and use
JP3593719B2 (en) Novel triphenylamine derivative, its production method and use
EP0699654B1 (en) Hole-transporting material and use thereof
JP3463358B2 (en) Hole transport material and its use
JP3640090B2 (en) Hole transport material and use thereof
JPH0887122A (en) Positive hole transferring material and its use
US5968675A (en) Hole-transporting material and use thereof
US5698740A (en) Hole-transport material
JP3463402B2 (en) Hole transport material and its use
JP3269300B2 (en) Hole transport material and its use
JP3709637B2 (en) Hole transport material and use thereof
JP3296147B2 (en) Triphenylamine polymer, its production method and use
JPH07145372A (en) Hole-transport mateiral and its use
JP3593718B2 (en) Novel triphenylamine derivative, its production method and use
EP0779765B1 (en) Hole-transporting material and use thereof
JP3261930B2 (en) Hole transport material and its use
EP0687133B1 (en) Hole-transporting material and its use
JP3575104B2 (en) Hole transport material and its use
JP3079903B2 (en) Hole transport material and its use
JP3656318B2 (en) Organic electroluminescence device material and organic electroluminescence device using the same
JP3575198B2 (en) Hole transport material and its use
JP4511782B2 (en) Heterocyclic compound having a perfluorinated aromatic group, and electrophotographic photosensitive member, electrophotographic apparatus and organic electroluminescent element using the compound
JP3261881B2 (en) Hole transport material and its use
JP3261882B2 (en) Hole transport material and its use

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees