JP4259768B2 - Battery remaining capacity calculation method - Google Patents

Battery remaining capacity calculation method Download PDF

Info

Publication number
JP4259768B2
JP4259768B2 JP2001031601A JP2001031601A JP4259768B2 JP 4259768 B2 JP4259768 B2 JP 4259768B2 JP 2001031601 A JP2001031601 A JP 2001031601A JP 2001031601 A JP2001031601 A JP 2001031601A JP 4259768 B2 JP4259768 B2 JP 4259768B2
Authority
JP
Japan
Prior art keywords
battery
capacity
discharge
voltage
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031601A
Other languages
Japanese (ja)
Other versions
JP2002236155A (en
Inventor
秀樹 岸
英則 津田
健司 川口
英之 長屋
徹 雨堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001031601A priority Critical patent/JP4259768B2/en
Publication of JP2002236155A publication Critical patent/JP2002236155A/en
Application granted granted Critical
Publication of JP4259768B2 publication Critical patent/JP4259768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池の残容量を演算する方法に関し、とくに、充電容量で学習容量を補正しながら残容量を正確に演算する方法に関する。本明細書において、学習容量とは、電池の修正された満充電容量を意味するものとする。
【0002】
【従来の技術】
現在、ラップトップマイコン等に装着される電池は、充放電される使用状態において、電池の残容量を正確に演算してマイコンに電池の情報として提供する必要がある。マイコンは、使用途中で電源をオフにはできず、決まった操作をしてソフトウェアを終了した後に電源をオフにする必要があるからである。この状態で使用するためには、電池の残容量が少なくなって、残りの使用時間が終了操作をする時間に近くなると、マイコンに警報アラームを出力する必要がある。警報アラームがマイコンに入力された後は、ソフトウェアを終了する操作をし、その後に電源をオフにすることができる。
【0003】
電気機器の電源に使用される電池は、放電末期における残容量をいかに正確にで演算できるかが大切である。放電末期に正常に残容量が表示されず、警報アラームから極めて短時間で過放電になると、マイコン等の電気機器を正常に終了できなくなり、あるいは、ひげそり機などにあっては、残りの使用時間が不正確であると、完全にひげそりが終了しない状態で使用できなくなるからである。
【0004】
【発明が解決しようとする課題】
放電末期の残容量を正確に演算するために、従来の方法は、温度や充放電のレートで細かく放電特性を評価すると共に、電池の特性をパラメーターとして記憶させ、これらに基づいて残容量を演算している。しかしながら、従来の方法では、電池が新しい状態では正確に残容量を演算できるが、電池が劣化するにしたがって、残容量を正確に演算できなくなり、とくに放電末期の残容量を正確に演算できなくなる欠点があった。
【0005】
本発明は、このような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、劣化した電池においても残容量を正確に演算でき、とくに放電末期の残容量をより正確に演算できる残容量演算方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の電池の残容量演算方法は、電池の充電容量から放電容量を減算して電池の残量を演算し、演算した残量と学習容量との比率で残存率を演算する。電池が放電されて電圧が放電警報電圧まで低下することを検出しその後、電池を満充電されるまで充電する制御を行い、電池電圧が放電警報電圧に低下した状態から満充電されるまでの充電容量を補充電容量(CCadd)として演算し、放電警報電圧まで放電された状態における電池の残量である放電警報容量(RClow)に補充電容量(CCadd)を加算した値を、電池の新学習容量(FCCnew)として演算する工程を備える
【0007】
電池の残容量演算方法は、満充電された状態から電池の電圧が放電警報電圧に低下するまでの放電容量(DCmax)を演算し、演算した放電容量(DCmax)を旧学習容量(FCCold)から減算して放電警報容量(RClow)を演算する工程を備える。
【0008】
さらに、残容量演算方法は、温度と放電電流をパラメーターとして、放電警報電圧を変更して検出する工程を備える。温度と放電電流をパラメーターとして変更される放電警報電圧は、テーブルとして記憶し、記憶するテーブルから決定する
【0009】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための残容量演算方法を例示するものであって、本発明は残容量演算方法を以下の方法に特定しない。
【0010】
図1は、本発明の残容量演算方法に使用される組電池の回路図である。この組電池は、電池1と、充放電の電流を電圧に変換する電流/電圧変換部2と、電池1の電圧を検出する電圧検出部3と、電池1の雰囲気温度を検出する温度検出部4と、電流/電圧変換部2の出力信号であるアナログ信号をデジタル信号に変換するA/Dコンバータ11と、電圧検出部3から出力されるアナログ信号をデジタル信号に変換するA/Dコンバータ12と、温度検出部4のアナログ信号である出力信号をデジタル信号に変換するA/Dコンバータ13と、A/Dコンバータ11の出力信号を演算して充放電電流または電力を積算する積算部5と、この積算部5の出力から電池1の残容量を演算する残容量算出部6と、A/Dコンバータ12の出力電圧を記憶している設定電圧に比較するLowBattery検出部7と、A/Dコンバータ11〜13のサンプリング周期を決定するタイマー8と、電池1の放置劣化サイクル劣化判定部9と、電池1を電源として使用する電気機器に、SMBusで電池情報を伝送する通信処理部10とを備える。
【0011】
電池1は、リチウムイオン二次電池またはニッケル−水素電池である。ただ、電池1は、ニッケル−カドミウム電池等の充電できる全ての電池とすることができる。電池1は、ひとつまたは複数の二次電池を直列または並列に接続している。
【0012】
電池1の充放電の電流を電圧に変換する電流/電圧変換部2は、図示しないが、電池と直列に接続している電流検出抵抗と、この電流検出抵抗の両端に発生する電圧を増幅するアンプとを備える。電流検出抵抗は、電池1に流れる電流に比例した電圧が発生するので、電圧で電流を検出することができる。アンプは、+−の信号を増幅できるオペアンプで、出力電圧の+−で充電電流と放電電流を識別する。電流/電圧変換部2の出力信号であるアナログ信号は、A/Dコンバータ11でデジタル信号に変換される。このデジタル信号は、積算部5と、通信処理部10と、LowBattery検出部7とに出力される。
【0013】
電圧検出部3は、電池1の電圧を検出する。検出信号は、A/Dコンバータ12でデジタル信号の電圧信号に変換されてLowBattery検出部7に出力される。LowBattery検出部7は、電池電圧が放電警報電圧まで低下すると、放電警報アラーム信号を、さらに放電が進行して電池電圧が放電終止電圧(E.V)まで低下すると、放電終止電圧信号を残容量算出部6に出力し、さらに、電池1の電圧が過放電電圧(OverDischarge)まで低下すると、過放電電圧信号を出力する。
温度検出部4は、電池1の雰囲気温度を検出する。検出信号は、A/Dコンバータ13でデジタル信号に変換され、変換された温度のデジタル信号は、LowBattery検出部7と、積算部5と、放置劣化サイクル劣化判定部9と、通信処理部10とに出力される。
【0014】
積算部5は、A/Dコンバータ11から入力される電流信号を演算して電池1の残量を演算する。残量は、電池1の充電容量から放電容量を減算して、電流の積算値(Ah)として演算される。充電容量は、電池1の充電電流の積算値で、あるいはこれに充電効率をかけて演算される。放電容量は、放電電流の積算値、あるいは放電効率を考慮して演算される。積算部5は、電流の積算に代わって、電力の積算値(Wh)で残量を演算することもできる。電力の積算値は、充電電力から放電電力を減算して演算される。電力は、A/Dコンバータ11から入力される電流信号に、A/Dコンバータ12から入力される電圧をかけて演算される。
【0015】
さらに積算部5は、演算した残存率(%)を補正する。A/Dコンバータ12から、電池1の電圧が放電警報電圧まで低下したことを知らせる信号が入力されると、積算部5は、電池1の残存率(%)を放電警報電圧に相当する残存率に補正し、さらに放電が進行して電池電圧が放電終止電圧に低下したことを示す信号が入力されると、積算部5は演算した残存率を0に補正する。電池電圧が放電終止電圧まで低下すると、電池1の実際の容量は0になるからである。
【0016】
残容量算出部6は、学習容量(FCC)を演算し、演算した学習容量(FCC)と残量で電池1の残存率(%)を演算する。残量は、積算部5で演算される。電池1の残存率(%)は、残量/学習容量(FCC)の比率で演算される。
【0017】
電池1の学習容量(FCC)は一定ではなく、電池1が劣化するにしたがって減少する。したがって、残容量算出部6は、学習容量(FCC)を補正して、実際の電池1の学習容量(FCC)に演算値を一致させる。電池1の学習容量(FCC)は、電池1を充電するときの積算値で補正する。電池1を放電させるときの積算値では学習容量(FCC)を補正しない。充電電流がほぼ一定しているのに対し、放電電流は大幅に変動するので、充電電流の積算値がより高い精度で学習容量(FCC)を演算できるからである。
【0018】
このことを実現するために、残容量算出部6は、電池1の充放電を制御して学習容量(FCC)を演算する。残容量算出部6は、電池1の充放電を制御するために、組電池からSMBusを介して制御信号を充電器や電気機器に出力する。制御信号は、電池1と直列に接続している充電スイッチ(図示せず)をオンオフに制御して、電池1の充電状態を制御する。
【0019】
残容量算出部6は、電池1が放電されて電圧が放電警報電圧まで低下すると、電池1を満充電されるまで継続して充電するように制御する。電池1が動作状態にある電気機器に接続される状態で充電される場合、電池1の放電電流よりも充電電流が大きくなるようにする。電池電圧が放電警報電圧に低下した状態から満充電されるまでの充電容量は、積算部5で積算されて、補充電容量(CCadd)として算出される。
【0020】
さらに、積算部5は、電池1が充放電される状態において、充電容量から放電容量を減算して、放電警報電圧まで放電されたときの電池1の残量を放電警報容量(RClow)として算出する。放電警報容量(RClow)は、満充電された状態から電池1の電圧が放電警報電圧に低下するまでの放電容量(DCmax)を演算し、演算した放電容量(DCmax)を旧学習容量(FCCold)から減算して算出される。すなわち、電池1の放電警報容量(RClow)は以下の式で算出される。
放電警報容量(RClow)=旧学習容量(FCCold)−放電容量(DCmax)
【0021】
このようにして、放電警報容量(RClow)が算出されると、これに放電警報電圧から満充電されるまでの容量である補充電容量(CCadd)を加算して、新学習容量(FCCnew)が算出される。すなわち、新学習容量(FCCnew)は以下の式で演算される。
新学習容量(FCCnew)=補充電容量(CCadd)+放電警報容量(RClow)
【0022】
新学習容量(FCCnew)が算出されると、学習容量(FCC)は、旧学習容量(FCCold)から新学習容量(FCCnew)に補正される。その後、新学習容量(FCCnew)を基準にして残存率(%)を演算する。
【0023】
ところで、満充電された状態から電池1の電圧が放電警報電圧に低下するまでの放電容量(DCmax)の演算において、より高い精度で放電容量(DCmax)を算出するために放電効率が考慮される。放電効率は、電池1の雰囲気温度と放電電流をパラメーターとして特定される。雰囲気温度と放電電流は、電池電圧が放電警報電圧に低下する直前における温度と放電電流とする。電池1の雰囲気温度と放電電流をパラメーターとする放電効率は、図2に示すテーブルとしてメモリに記憶される。図のテーブルは、3点の温度と、4点の放電電流から放電効率を特定しているが、ここに示す温度の間、さらに放電電流の間の放電効率は、補間して算出することができる。簡単には直線補間して、温度と電流の間の放電効率を算出できる。この図の放電効率は、A、B、C、Dは100〜70%の範囲で順番に小さくしている。A〜Dの放電効率は、電池1のタイプを考慮して最適値に決定される。
【0024】
放電警報電圧は、好ましくは、電池1の残存率(%)が0〜8%となる電圧に特定される。放電警報電圧を残存率(%)が0%となる電圧に設定すると、放電終止電圧に等しくなる。この電圧に設定すると、放電警報アラーム信号と放電終止電圧信号が一緒に出力される。好ましくは、放電警報電圧を放電終止電圧よりも高く設定して、放電警報電圧になったときの残存率(%)を0%よりも大きくする。
【0025】
放電警報電圧は、温度と放電電流で変化するので、温度と放電電流をパラメーターとして変更する。温度と放電電流をパラメーターとする放電警報電圧は、放電効率と同じように、図3に示すテーブルとしてメモリに記憶される。図のテーブルは、3点の温度と、4点の放電電流から放電効率を特定しているが、ここに示す温度の間、さらに放電電流の間の放電警報電圧は、補間して算出することができる。簡単には直線補間して、温度と電流の間の放電警報電圧を算出できる。この図は、リチウムイオン二次電池1の放電警報電圧を示すもので、A、B、C、Dを3.7〜3.0Vの範囲で順番で小さくしている。A〜Dの放電警報電圧は、電池1に最適な値に決定する。
【0026】
電池1が放電されて電池1の電圧が放電警報電圧になると、LowBattery検出部7から残容量算出部6に放電警報アラーム信号が出力され、さらに、放電が進行して放電終止電圧に低下すると、放電終止電圧になったことを示す放電終止電圧信号が出力される。電池1が満充電されると、電池1の電圧が満充電電圧まで上昇するので、この信号がA/Dコンバータ12から残容量算出部6に出力される。
【0027】
放置劣化サイクル劣化判定部9は、電池1を使用しないで放置して劣化するときに、学習容量(FCC)が減少するのを補正する。補正した学習容量(FCC)は残容量算出部6に出力される。
【0028】
通信処理部10は、残容量算出部6で演算された残容量と、電圧検出部3で検出した電池電圧と、温度検出部4で検出した温度を、装着している機器にSMBusで伝送する。
【0029】
以上の組電池は、マイクロコンピューター等の電気機器に装着される状態で、以下の動作をして、残容量を電気機器に伝送する。
(1) 電池1が放電されて、電池1の電圧が放電警報電圧まで低下すると、放電警報アラーム信号が出力される。放電警報電圧は、図3のテーブルで示すように、電池1の雰囲気温度と放電電流で特定される電圧に変更して検出される。
電池1が放電されるとき、積算部5は、満充電からの放電容量(DCmax)を積算している。放電容量(DCmax)は、電池1の雰囲気温度と放電電流から特定される放電効率を考慮して演算される。演算された放電容量(DCmax)が、旧学習容量(FCCold)から減算されて、放電警報容量(RClow)が演算される。
【0030】
(2) 電池1の電圧が放電警報電圧まで低下すると、電池1の充電が開始され、満充電されるまで継続して充電される。放電警報電圧から満充電されまでの充電容量が、補充電容量(CCadd)として演算される。補充電容量(CCadd)は、(1)の工程で演算された放電警報容量(RClow)に加算され、新学習容量(FCCnew)が演算される。新学習容量(FCCnew)が演算されると、その後はこの新学習容量(FCCnew)を基準にして残存率(%)が演算される。残存率(%)は、電池1の残量/新学習容量(FCCnew)の割合で演算される。残量は、充電容量から放電容量を減算して演算される。
【0031】
【発明の効果】
本発明の電池の残容量演算方法は、劣化した電池においても残容量を正確に演算できる特長がある。それは、本発明の残容量演算方法が、放電警報電圧まで放電された電池を満充電して、放電警報電圧から満充電されるまでの充電容量を演算して補充電容量(CCadd)とし、放電警報電圧まで放電された電池の残量である放電警報容量(RClow)に補充電容量(CCadd)を加算した値を、電池の新学習容量(FCCnew)としているからである。この残容量演算方法は、放電末期の電池の残量である放電警報容量(RClow)に補充電容量(CCadd)を加算して電池の新学習容量(FCCnew)を演算するので、劣化した電池においても、残容量を、とくに放電末期の残容量をより正確に演算できる特長が実現できる。
【図面の簡単な説明】
【図1】本発明の実施例の残容量演算方法に使用される組電池の回路図
【図2】温度と放電電流をパラメーターとする放電効率のテーブルの一例を示す図
【図3】温度と放電電流をパラメーターとする放電警報電圧のテーブルの一例を示す図
【符号の説明】
1…電池
2…電流/電圧変換部
3…電圧検出部
4…温度検出部
5…積算部
6…残容量算出部
7…LowBattery検出部
8…タイマー
9…放置劣化サイクル劣化判定部
10…通信処理部
11…A/Dコンバータ
12…A/Dコンバータ
13…A/Dコンバータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for calculating a remaining capacity of a battery, and more particularly to a method for accurately calculating a remaining capacity while correcting a learning capacity with a charging capacity. In this specification, the learning capacity means a corrected full charge capacity of the battery.
[0002]
[Prior art]
Currently, a battery mounted on a laptop microcomputer or the like needs to accurately calculate the remaining capacity of the battery and provide it to the microcomputer as battery information in a charged and discharged usage state. This is because the microcomputer cannot be turned off during use, and it is necessary to turn off the power after exiting the software by performing a fixed operation. In order to use the battery in this state, it is necessary to output an alarm alarm to the microcomputer when the remaining capacity of the battery decreases and the remaining usage time is close to the time for the end operation. After the alarm / alarm is input to the microcomputer, the software can be terminated, and then the power can be turned off.
[0003]
It is important to accurately calculate the remaining capacity of the battery used for the power source of the electrical device at the end of discharge. If the remaining capacity is not normally displayed at the end of discharge and overdischarge occurs in an extremely short time after an alarm alarm, it will not be possible to terminate the electrical equipment such as a microcomputer normally, or the remaining usage time in a shaving machine etc. This is because if it is inaccurate, it cannot be used without completely shaving.
[0004]
[Problems to be solved by the invention]
In order to accurately calculate the remaining capacity at the end of discharge, the conventional method evaluates the discharge characteristics in detail according to the temperature and charge / discharge rate, stores the battery characteristics as parameters, and calculates the remaining capacity based on these. is doing. However, with the conventional method, the remaining capacity can be calculated accurately when the battery is new. However, as the battery deteriorates, the remaining capacity cannot be calculated accurately. In particular, the remaining capacity at the end of discharge cannot be calculated accurately. was there.
[0005]
The present invention has been developed for the purpose of solving such drawbacks. An important object of the present invention is to provide a remaining capacity calculation method capable of accurately calculating the remaining capacity even in a deteriorated battery, and more specifically calculating the remaining capacity at the end of discharge.
[0006]
[Means for Solving the Problems]
In the battery remaining capacity calculating method of the present invention, the remaining capacity of the battery is calculated by subtracting the discharging capacity from the charging capacity of the battery, and the remaining rate is calculated by the ratio between the calculated remaining capacity and the learning capacity. Detects that the battery is discharged and the voltage drops to the discharge alarm voltage, and then performs control to charge the battery until it is fully charged, until the battery voltage drops to the discharge alarm voltage until it is fully charged. It was calculated by the charge capacity and the accessory charge capacity (CCadd), obtained by adding the supplemental charging capacity (CCadd) to a remaining amount of a battery in a state of being discharged to a discharge alarm voltage discharge alarm volume (RClow) value, battery comprising the step of computing as a new learning capacity (FCCnew).
[0007]
The battery remaining capacity calculation method calculates the discharge capacity (DCmax) from the fully charged state until the battery voltage drops to the discharge alarm voltage, and calculates the calculated discharge capacity (DCmax) from the old learning capacity (FCCold). Subtracting and calculating a discharge alarm capacity (RClow) .
[0008]
Further, the remaining capacity calculation method includes a step of detecting by changing the discharge alarm voltage using the temperature and the discharge current as parameters. The discharge alarm voltage that is changed using the temperature and the discharge current as parameters is stored as a table, and is determined from the stored table.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a remaining capacity calculation method for embodying the technical idea of the present invention, and the present invention does not specify the remaining capacity calculation method as the following method.
[0010]
FIG. 1 is a circuit diagram of an assembled battery used in the remaining capacity calculation method of the present invention. This assembled battery includes a battery 1, a current / voltage converter 2 that converts charge / discharge current into voltage, a voltage detector 3 that detects the voltage of the battery 1, and a temperature detector that detects the ambient temperature of the battery 1. 4, an A / D converter 11 that converts an analog signal that is an output signal of the current / voltage converter 2 into a digital signal, and an A / D converter 12 that converts an analog signal output from the voltage detector 3 into a digital signal. An A / D converter 13 that converts an output signal that is an analog signal of the temperature detection unit 4 into a digital signal; an integration unit 5 that calculates the output signal of the A / D converter 11 and integrates the charge / discharge current or power; The remaining capacity calculation unit 6 that calculates the remaining capacity of the battery 1 from the output of the integration unit 5, the LowBattery detection unit 7 that compares the output voltage of the A / D converter 12 with the stored voltage, and the A / D converter The timer 8 which determines the sampling period of 11-13, the neglected deterioration cycle deterioration determination part 9 of the battery 1, and the communication processing part 10 which transmits battery information by SMBus to the electric equipment which uses the battery 1 as a power supply are provided. .
[0011]
The battery 1 is a lithium ion secondary battery or a nickel-hydrogen battery. However, the battery 1 can be any rechargeable battery such as a nickel-cadmium battery. The battery 1 has one or a plurality of secondary batteries connected in series or in parallel.
[0012]
Although not shown, the current / voltage conversion unit 2 that converts the charge / discharge current of the battery 1 into a voltage amplifies the current detection resistor connected in series with the battery and the voltage generated at both ends of the current detection resistor. With an amplifier. Since the current detection resistor generates a voltage proportional to the current flowing through the battery 1, the current can be detected by the voltage. The amplifier is an operational amplifier capable of amplifying a +-signal, and identifies a charging current and a discharging current by +-of the output voltage. An analog signal that is an output signal of the current / voltage converter 2 is converted into a digital signal by the A / D converter 11. This digital signal is output to the integration unit 5, the communication processing unit 10, and the LowBattery detection unit 7.
[0013]
The voltage detection unit 3 detects the voltage of the battery 1. The detection signal is converted into a digital voltage signal by the A / D converter 12 and output to the LowBattery detection unit 7. When the battery voltage drops to the discharge alarm voltage, the LowBattery detection unit 7 outputs the discharge alarm alarm signal, and when the battery voltage further drops to the discharge end voltage (EV) as the discharge proceeds, the discharge end voltage signal is output. When the voltage of the battery 1 is reduced to the overdischarge voltage (OverDischarge), the overdischarge voltage signal is output.
The temperature detection unit 4 detects the ambient temperature of the battery 1. The detection signal is converted into a digital signal by the A / D converter 13, and the converted digital signal of the temperature is a LowBattery detection unit 7, an integration unit 5, a neglected deterioration cycle deterioration determination unit 9, and a communication processing unit 10. Is output.
[0014]
The integrating unit 5 calculates the remaining amount of the battery 1 by calculating the current signal input from the A / D converter 11. The remaining amount is calculated as an integrated value (Ah) of current by subtracting the discharge capacity from the charge capacity of the battery 1. The charging capacity is calculated by an integrated value of the charging current of the battery 1 or by multiplying this by charging efficiency. The discharge capacity is calculated in consideration of the integrated value of the discharge current or the discharge efficiency. The integrating unit 5 can also calculate the remaining amount with the integrated value (Wh) of electric power instead of integrating the electric current. The integrated value of power is calculated by subtracting discharge power from charge power. The power is calculated by multiplying the current signal input from the A / D converter 11 by the voltage input from the A / D converter 12.
[0015]
Furthermore, the integrating unit 5 corrects the calculated remaining rate (%). When a signal notifying that the voltage of the battery 1 has decreased to the discharge alarm voltage is input from the A / D converter 12, the integrating unit 5 sets the remaining rate (%) of the battery 1 to the remaining rate corresponding to the discharge alarm voltage. When the signal indicating that the battery discharge has further progressed and the battery voltage has decreased to the discharge end voltage is input, the integrating unit 5 corrects the calculated remaining rate to zero. This is because the actual capacity of the battery 1 becomes zero when the battery voltage decreases to the discharge end voltage.
[0016]
The remaining capacity calculation unit 6 calculates a learning capacity (FCC), and calculates a remaining rate (%) of the battery 1 based on the calculated learning capacity (FCC) and the remaining capacity. The remaining amount is calculated by the integrating unit 5. The remaining rate (%) of the battery 1 is calculated by the ratio of remaining amount / learning capacity (FCC).
[0017]
The learning capacity (FCC) of the battery 1 is not constant and decreases as the battery 1 deteriorates. Therefore, the remaining capacity calculation unit 6 corrects the learning capacity (FCC) so that the calculated value matches the actual learning capacity (FCC) of the battery 1. The learning capacity (FCC) of the battery 1 is corrected by the integrated value when the battery 1 is charged. The learning capacity (FCC) is not corrected with the integrated value when the battery 1 is discharged. This is because the charging current is substantially constant while the discharging current varies greatly, so that the learning capacity (FCC) can be calculated with higher accuracy of the integrated value of the charging current.
[0018]
In order to realize this, the remaining capacity calculation unit 6 controls the charging / discharging of the battery 1 to calculate the learning capacity (FCC). The remaining capacity calculation unit 6 outputs a control signal from the assembled battery to the charger or the electric device via the SMBus in order to control charging / discharging of the battery 1. The control signal controls a charge state of the battery 1 by controlling a charge switch (not shown) connected in series with the battery 1 to be turned on and off.
[0019]
When the battery 1 is discharged and the voltage drops to the discharge alarm voltage, the remaining capacity calculation unit 6 controls to continuously charge the battery 1 until it is fully charged. When the battery 1 is charged while being connected to an electric device that is in an operating state, the charging current is set to be larger than the discharging current of the battery 1. The charge capacity from the state where the battery voltage is reduced to the discharge alarm voltage until the battery is fully charged is integrated by the integration unit 5 and calculated as a supplementary charge capacity (CCadd).
[0020]
Further, the integrating unit 5 subtracts the discharge capacity from the charge capacity in a state where the battery 1 is charged and discharged, and calculates the remaining amount of the battery 1 when discharged to the discharge alarm voltage as the discharge alarm capacity (RClow). To do. The discharge alarm capacity (RClow) calculates the discharge capacity (DCmax) from the fully charged state until the voltage of the battery 1 drops to the discharge alarm voltage, and the calculated discharge capacity (DCmax) is the old learning capacity (FCCold). Subtracted from That is, the discharge alarm capacity (RClow) of the battery 1 is calculated by the following formula.
Discharge alarm capacity (RClow) = Old learning capacity (FCCold)-Discharge capacity (DCmax)
[0021]
When the discharge alarm capacity (RClow) is calculated in this way, the supplementary charge capacity (CCadd), which is the capacity from the discharge alarm voltage until the battery is fully charged, is added to the new alarm capacity (FCCnew). Calculated. That is, the new learning capacity (FCCnew) is calculated by the following equation.
New learning capacity (FCCnew) = supplementary charging capacity (CCadd) + discharge alarm capacity (RClow)
[0022]
When the new learning capacity (FCCnew) is calculated, the learning capacity (FCC) is corrected from the old learning capacity (FCCold) to the new learning capacity (FCCnew). Thereafter, the remaining rate (%) is calculated based on the new learning capacity (FCCnew).
[0023]
By the way, in the calculation of the discharge capacity (DCmax) from the fully charged state until the voltage of the battery 1 drops to the discharge alarm voltage, the discharge efficiency is considered in order to calculate the discharge capacity (DCmax) with higher accuracy. . The discharge efficiency is specified by using the ambient temperature and discharge current of the battery 1 as parameters. The ambient temperature and discharge current are the temperature and discharge current immediately before the battery voltage drops to the discharge alarm voltage. The discharge efficiency using the ambient temperature and discharge current of the battery 1 as parameters is stored in a memory as a table shown in FIG. The table in the figure specifies the discharge efficiency from the three temperatures and the four discharge currents. The discharge efficiency between the temperatures shown here and between the discharge currents can be calculated by interpolation. it can. In simple terms, linear interpolation can be used to calculate the discharge efficiency between temperature and current. The discharge efficiency of this figure is made smaller in the order of A, B, C, and D in the range of 100 to 70%. The discharge efficiency of A to D is determined to an optimum value in consideration of the type of the battery 1.
[0024]
The discharge alarm voltage is preferably specified as a voltage at which the remaining rate (%) of the battery 1 is 0 to 8%. When the discharge alarm voltage is set to a voltage at which the remaining rate (%) is 0%, it becomes equal to the discharge end voltage. When this voltage is set, a discharge alarm alarm signal and a discharge end voltage signal are output together. Preferably, the discharge alarm voltage is set higher than the discharge end voltage, and the remaining rate (%) when the discharge alarm voltage is reached is set to be greater than 0%.
[0025]
Since the discharge alarm voltage changes with temperature and discharge current, the temperature and discharge current are changed as parameters. The discharge alarm voltage using the temperature and the discharge current as parameters is stored in the memory as a table shown in FIG. 3 in the same manner as the discharge efficiency. The table in the figure specifies the discharge efficiency from the three temperatures and the four discharge currents. The discharge alarm voltage between the temperatures shown here and between the discharge currents should be calculated by interpolation. Can do. A discharge alarm voltage between temperature and current can be calculated simply by linear interpolation. This figure shows the discharge alarm voltage of the lithium ion secondary battery 1, and A, B, C, and D are made smaller in the order of 3.7 to 3.0V. The discharge alarm voltages A to D are determined to be optimum values for the battery 1.
[0026]
When the battery 1 is discharged and the voltage of the battery 1 becomes a discharge alarm voltage, a discharge alarm alarm signal is output from the LowBattery detector 7 to the remaining capacity calculator 6, and further, when the discharge progresses and decreases to the discharge end voltage, A discharge end voltage signal indicating that the discharge end voltage has been reached is output. When the battery 1 is fully charged, the voltage of the battery 1 rises to the full charge voltage, and this signal is output from the A / D converter 12 to the remaining capacity calculation unit 6.
[0027]
The neglected deterioration cycle deterioration determining unit 9 corrects the decrease in the learning capacity (FCC) when the battery 1 is left without being used and deteriorated. The corrected learning capacity (FCC) is output to the remaining capacity calculation unit 6.
[0028]
The communication processing unit 10 transmits the remaining capacity calculated by the remaining capacity calculating unit 6, the battery voltage detected by the voltage detecting unit 3, and the temperature detected by the temperature detecting unit 4 to the wearing device by SMBus. .
[0029]
The assembled battery described above performs the following operation in a state where it is mounted on an electric device such as a microcomputer, and transmits the remaining capacity to the electric device.
(1) When the battery 1 is discharged and the voltage of the battery 1 drops to the discharge alarm voltage, a discharge alarm alarm signal is output. As shown in the table of FIG. 3, the discharge alarm voltage is detected by changing to a voltage specified by the ambient temperature and the discharge current of the battery 1.
When the battery 1 is discharged, the integration unit 5 integrates the discharge capacity (DCmax) from full charge. The discharge capacity (DCmax) is calculated in consideration of the discharge efficiency specified from the ambient temperature of the battery 1 and the discharge current. The calculated discharge capacity (DCmax) is subtracted from the old learning capacity (FCCold) to calculate the discharge alarm capacity (RClow).
[0030]
(2) When the voltage of the battery 1 drops to the discharge alarm voltage, charging of the battery 1 is started and the battery 1 is continuously charged until it is fully charged. The charge capacity from the discharge alarm voltage until full charge is calculated as the supplementary charge capacity (CCadd). The auxiliary charge capacity (CCadd) is added to the discharge alarm capacity (RClow) calculated in the step (1), and a new learning capacity (FCCnew) is calculated. When the new learning capacity (FCCnew) is calculated, the remaining rate (%) is calculated based on the new learning capacity (FCCnew). The remaining rate (%) is calculated by the ratio of the remaining amount of the battery 1 / new learning capacity (FCCnew). The remaining amount is calculated by subtracting the discharge capacity from the charge capacity.
[0031]
【The invention's effect】
The battery remaining capacity calculation method of the present invention has an advantage that the remaining capacity can be accurately calculated even in a deteriorated battery. The remaining capacity calculation method of the present invention calculates the charge capacity until the battery is fully charged from the discharge alarm voltage by fully charging the discharged battery up to the discharge alarm voltage, and sets it as the auxiliary charge capacity (CCadd). This is because a value obtained by adding the supplementary charging capacity (CCadd) to the discharge alarm capacity (RClow), which is the remaining amount of the battery discharged to the alarm voltage, is set as the new learning capacity (FCCnew) of the battery. This remaining capacity calculation method calculates the new learning capacity (FCCnew) of the battery by adding the supplementary charging capacity (CCadd) to the discharge alarm capacity (RClow), which is the remaining battery capacity at the end of discharge, so that in a deteriorated battery However, it is possible to realize a feature that can more accurately calculate the remaining capacity, particularly the remaining capacity at the end of discharge.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an assembled battery used in a remaining capacity calculation method according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of a table of discharge efficiency using temperature and discharge current as parameters. Figure showing an example of the discharge alarm voltage table with the discharge current as a parameter.
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Current / voltage conversion part 3 ... Voltage detection part 4 ... Temperature detection part 5 ... Accumulation part 6 ... Remaining capacity calculation part 7 ... LowBattery detection part 8 ... Timer 9 ... Leaving deterioration cycle deterioration determination part 10 ... Communication processing Part 11 ... A / D converter 12 ... A / D converter 13 ... A / D converter

Claims (4)

電池の充電容量から放電容量を減算して電池の残量を演算し、演算した残量と学習容量との比率で残存率を演算する電池の残容量演算方法において、
電池が放電されて電圧が放電警報電圧まで低下することを検出しその後、電池を満充電されるまで充電する制御を行い、電池電圧が放電警報電圧に低下した状態から満充電されるまでの充電容量を補充電容量(CCadd)として演算し、放電警報電圧まで放電された状態における電池の残量である放電警報容量(RClow)に補充電容量(CCadd)を加算した値を、電池の新学習容量(FCCnew)として演算する工程を備えることを特徴とする電池の残容量演算方法。
In the battery remaining capacity calculation method of calculating the remaining capacity of the battery by subtracting the discharge capacity from the charge capacity of the battery, and calculating the remaining rate by the ratio of the calculated remaining capacity and the learning capacity,
Detects that the battery is discharged and the voltage drops to the discharge alarm voltage, and then performs control to charge the battery until it is fully charged, until the battery voltage drops to the discharge alarm voltage until it is fully charged. calculated by the charge capacity and the accessory charge capacity (CCadd), a value obtained by adding the supplemental charging capacity (CCadd) to a remaining amount of a battery in a state of being discharged to a discharge alarm voltage discharge alarm volume (RClow), battery remaining capacity calculation method of a battery characterized by comprising the step of calculating as a new learning capacity (FCCnew).
満充電された状態から電池の電圧が放電警報電圧に低下するまでの放電容量(DCmax)を演算し、演算した放電容量(DCmax)を旧学習容量(FCCold)から減算して放電警報容量(RClow)を演算する工程を備える請求項1に記載される電池の残容量演算方法。Calculate the discharge capacity (DCmax) from the fully charged state until the battery voltage drops to the discharge alarm voltage, and subtract the calculated discharge capacity (DCmax) from the old learning capacity (FCCold) to obtain the discharge alarm capacity (RClow). remaining capacity calculation method of a battery as claimed in claim 1 comprising the step of calculating a). 放電警報電圧を、温度と放電電流をパラメーターとして変更して検出する工程を備える請求項1に記載される電池の残容量演算方法。The battery remaining capacity calculation method according to claim 1, further comprising a step of detecting the discharge alarm voltage by changing the temperature and the discharge current as parameters. 温度と放電電流をパラメーターとする放電警報電圧をテーブルとして記憶し、記憶するテーブルから放電警報電圧を決定する工程を備える請求項に記載される電池の残容量演算方法。The battery remaining capacity calculation method according to claim 3 , further comprising a step of storing a discharge alarm voltage having parameters of temperature and discharge current as a table and determining the discharge alarm voltage from the stored table.
JP2001031601A 2001-02-07 2001-02-07 Battery remaining capacity calculation method Expired - Fee Related JP4259768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031601A JP4259768B2 (en) 2001-02-07 2001-02-07 Battery remaining capacity calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031601A JP4259768B2 (en) 2001-02-07 2001-02-07 Battery remaining capacity calculation method

Publications (2)

Publication Number Publication Date
JP2002236155A JP2002236155A (en) 2002-08-23
JP4259768B2 true JP4259768B2 (en) 2009-04-30

Family

ID=18895665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031601A Expired - Fee Related JP4259768B2 (en) 2001-02-07 2001-02-07 Battery remaining capacity calculation method

Country Status (1)

Country Link
JP (1) JP4259768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064026A (en) * 2012-10-24 2013-04-24 重庆小康工业集团股份有限公司 Vehicle battery remaining capacity monitoring method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660367B2 (en) * 2005-12-02 2011-03-30 三洋電機株式会社 Rechargeable battery remaining capacity detection method
US7723958B2 (en) 2006-03-31 2010-05-25 Valence Technology, Inc. Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
JP2007322353A (en) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd Battery capacity determining device, method, and battery pack using the same
JP5125303B2 (en) * 2007-08-10 2013-01-23 ソニー株式会社 Battery pack, electronic device, and method for deriving remaining capacity display
US10444296B2 (en) 2014-09-12 2019-10-15 Nec Corporation Control device, control method, and recording medium

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755903A (en) * 1993-06-08 1995-03-03 Honda Motor Co Ltd Residual capacity monitor for battery
JPH077858A (en) * 1993-06-17 1995-01-10 Sanyo Electric Co Ltd Electronic equipment
JPH07163058A (en) * 1993-12-07 1995-06-23 Nec Corp Battery life signalling system
JP3272874B2 (en) * 1994-07-27 2002-04-08 新電元工業株式会社 Battery capacity / remaining time display
JPH10268985A (en) * 1997-03-27 1998-10-09 Toshiba Corp Device and method for controlling power source
JP3392693B2 (en) * 1997-03-31 2003-03-31 三洋電機株式会社 Rechargeable battery capacity detection method
JP3375511B2 (en) * 1997-04-14 2003-02-10 本田技研工業株式会社 Battery remaining capacity detection device
JP3716619B2 (en) * 1998-05-14 2005-11-16 日産自動車株式会社 Battery remaining capacity meter
JPH11344544A (en) * 1998-06-03 1999-12-14 Fuji Film Celltec Kk Method for measuring battery capacity of battery pack
JP3762104B2 (en) * 1998-07-02 2006-04-05 株式会社マキタ Electric tool charging system
JP4448206B2 (en) * 1998-11-27 2010-04-07 株式会社ガスター Battery consumption level judging device and bath pot incorporating the device
JP2000195567A (en) * 1998-12-28 2000-07-14 Yamaha Motor Co Ltd Battery pack
JP3686776B2 (en) * 1999-03-30 2005-08-24 日立バッテリー販売サービス株式会社 Overdischarge prevention device for storage battery
JP2001281306A (en) * 2000-03-28 2001-10-10 Mitsubishi Electric Corp Chargeable battery residual capacity detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064026A (en) * 2012-10-24 2013-04-24 重庆小康工业集团股份有限公司 Vehicle battery remaining capacity monitoring method

Also Published As

Publication number Publication date
JP2002236155A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
US7974796B2 (en) Fully-charged battery capacity detection method
US20100156356A1 (en) Method of quick charging lithium-based secondary battery and electronic device using same
US10527679B2 (en) Rechargeable battery remaining capacity detection circuit, electronic machine and vehicle using the same, and state of charge detection method
JP2002236154A (en) Remaining capacity correction method of battery
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
JP2008241358A (en) Full capacity detection method of battery
JP2009261174A (en) Charging system, charger and method of controlling the same, and program
JPH117984A (en) Capacity detecting method for secondary battery
JP2015155859A (en) Battery residual amount estimation device, battery pack, power storage device, electric vehicle and battery residual amount estimation method
US20160197506A1 (en) Battery pack
KR20130039681A (en) Battery status measuring method and battery status measuring apparatus
JP2011053088A (en) Method for computing residual capacity of secondary battery and secondary battery device
US12055591B2 (en) Battery management controllers capable of determining estimate of state of charge
JP4129109B2 (en) Charge control apparatus and method
JP2002298932A (en) Operation method of residual capacity of battery
JP2002359009A (en) Charger
WO2005093446A1 (en) Method and equipment for estimating residual capacity of storage battery
JP4016881B2 (en) Battery level measuring device
JP4259768B2 (en) Battery remaining capacity calculation method
JPH1094187A (en) Battery charger
JP2021150076A (en) Power storage device
JP2011038878A (en) Deterioration degree determination method for secondary battery and secondary battery
JP2006177764A (en) Learning capacity correcting method of battery
JP2001309570A (en) How to adjust battery capacity
JP3551084B2 (en) Secondary battery state management method and battery pack using this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees