JP5852422B2 - Purification method of ultra-high purity nitrogen gas - Google Patents
Purification method of ultra-high purity nitrogen gas Download PDFInfo
- Publication number
- JP5852422B2 JP5852422B2 JP2011258366A JP2011258366A JP5852422B2 JP 5852422 B2 JP5852422 B2 JP 5852422B2 JP 2011258366 A JP2011258366 A JP 2011258366A JP 2011258366 A JP2011258366 A JP 2011258366A JP 5852422 B2 JP5852422 B2 JP 5852422B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- oxygen
- separation membrane
- removal
- trace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims description 103
- 229910001873 dinitrogen Inorganic materials 0.000 title claims description 39
- 238000000034 method Methods 0.000 title claims description 30
- 238000000746 purification Methods 0.000 title claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 71
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 70
- 239000001301 oxygen Substances 0.000 claims description 70
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 53
- 239000012528 membrane Substances 0.000 claims description 50
- 229910001868 water Inorganic materials 0.000 claims description 49
- 238000000926 separation method Methods 0.000 claims description 44
- 229910052757 nitrogen Inorganic materials 0.000 claims description 32
- 238000001179 sorption measurement Methods 0.000 claims description 32
- 229930195733 hydrocarbon Natural products 0.000 claims description 28
- 150000002430 hydrocarbons Chemical class 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 26
- 239000004215 Carbon black (E152) Substances 0.000 claims description 21
- 239000012535 impurity Substances 0.000 claims description 18
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 239000003054 catalyst Substances 0.000 claims description 13
- OLBVUFHMDRJKTK-UHFFFAOYSA-N [N].[O] Chemical compound [N].[O] OLBVUFHMDRJKTK-UHFFFAOYSA-N 0.000 claims description 11
- 239000003595 mist Substances 0.000 claims description 11
- 239000005416 organic matter Substances 0.000 claims description 5
- 239000002274 desiccant Substances 0.000 claims 1
- 238000011282 treatment Methods 0.000 description 14
- 239000000126 substance Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000012510 hollow fiber Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000006392 deoxygenation reaction Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 229910000619 316 stainless steel Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229940123973 Oxygen scavenger Drugs 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005264 electron capture Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000003230 hygroscopic agent Substances 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Drying Of Gases (AREA)
Description
本発明は、圧縮空気を用いた超高純度窒素ガスの精製方法に関するものである。 The present invention relates to a method for purifying ultra-high purity nitrogen gas using compressed air.
大気中の主成分は窒素(80%)および酸素(20%)であり、その他、アルゴン、水、二酸化炭素、一酸化炭素、炭化水素類その他が、微量に存在する。ガス成分の分析において、検出器を電子捕獲型検出器(以下ECDという。)とした場合、ECDガスクロマトグラフにおける主たる妨害成分は酸素および水であり、水素炎イオン化検出器(以下FIDという。)を用いる場合は、メタンないし炭化水素類が妨害成分である。つまり、ガス成分の分析に用いられる窒素を精製する際には、酸素、水、メタン、炭化水素を十分なレベルまでに取り除くことが求められる。 The main components in the atmosphere are nitrogen (80%) and oxygen (20%), and there are also trace amounts of argon, water, carbon dioxide, carbon monoxide, hydrocarbons and others. In the analysis of gas components, if the detector is an electron capture detector (hereinafter referred to as ECD), the main interfering components in the ECD gas chromatograph are oxygen and water, and a flame ionization detector (hereinafter referred to as FID). When used, methane or hydrocarbons are interfering components. That is, when purifying nitrogen used for analysis of gas components, it is required to remove oxygen, water, methane, and hydrocarbons to a sufficient level.
ガスクロマトグラフに使用する窒素キャリヤーガスは、通常高圧ボンベに充填された純度99.999%以上の高純度仕様の製品を使用する。特に、大気中のメタン、亜酸化窒素のようにppmレベル乃至ppbレベルのガス試料の分析は、高感度、高S/N比検出が求められるため、上記の高純度窒素ガスをさらに、活性炭微粉末、モレキュラーシーブ(ゼオライト空孔微粉末)等によって共雑成分を除去した、超高純度ガスを必要とする。 The nitrogen carrier gas used for the gas chromatograph is usually a high-purity product with a purity of 99.999% or more packed in a high-pressure cylinder. In particular, analysis of gas samples of ppm level to ppb level such as methane and nitrous oxide in the atmosphere requires high sensitivity and high S / N ratio detection. Ultra high-purity gas from which coexisting components are removed by powder, molecular sieve (zeolite pore fine powder) or the like is required.
従来、空気から窒素ガスを分離する手段として、圧力変動吸着(以下PSAという。)による分離方法がある。PSA法を利用したPSA装置は、吸着剤を充填した吸着塔に加圧した空気を供給して、空気中の酸素分子を吸着剤に吸着させ、吸着されなかった窒素ガスを分離して、窒素ガスを得ることができる。そして、吸着された酸素分子は吸着塔圧力を減圧することにより、容易に脱着させることができる。このようなPSA法は、容易に窒素ガスを分離する方法として様々な分野で使用されている。PSA装置では、残存酸素ガス濃度が1000ppm以下、すなわち99.9%以上の高純度の窒素ガスを効率よく製造できる。 Conventionally, as a means for separating nitrogen gas from air, there is a separation method by pressure fluctuation adsorption (hereinafter referred to as PSA). A PSA apparatus using the PSA method supplies pressurized air to an adsorption tower packed with an adsorbent, adsorbs oxygen molecules in the air to the adsorbent, separates non-adsorbed nitrogen gas, and removes nitrogen. Gas can be obtained. The adsorbed oxygen molecules can be easily desorbed by reducing the pressure of the adsorption tower. Such a PSA method is used in various fields as a method for easily separating nitrogen gas. The PSA apparatus can efficiently produce high-purity nitrogen gas having a residual oxygen gas concentration of 1000 ppm or less, that is, 99.9% or more.
しかし、さらに高純度の窒素ガスを製造するためには、PSA法のみでは難しい。そのため、残存する酸素を水素と結合させて残存酸素濃度を減少させる精製装置をさらに使用して、高純度の窒素ガスを製造している窒素ガスの製造方法が開示されている(特許文献1を参照。)。該窒素ガスの製造方法では、PSA法により酸素を除去し、残存する酸素と水素とを水蒸気に反応させて、水蒸気を除去している。特許文献1に開示の窒素ガスの製造方法によれば、99.999%以上の窒素ガス濃度を可能としている。残存する酸素を水素と反応させて水に精製する場合、窒素ガス中に存在する精製される水を除去するための除去装置としては、たとえば膜式除湿装置やPSA式除湿装置などが挙げられる。しかしながら、上記の窒素ガスの製造方法では、精製装置で反応してなる水蒸気を冷却するために大きな電力が必要であるという問題がある。 However, it is difficult to produce higher purity nitrogen gas only by the PSA method. For this reason, a method for producing nitrogen gas is disclosed in which a high-purity nitrogen gas is produced by further using a purifier that combines residual oxygen with hydrogen to reduce the residual oxygen concentration (see Patent Document 1). reference.). In the method for producing nitrogen gas, oxygen is removed by the PSA method, and the remaining oxygen and hydrogen are reacted with water vapor to remove water vapor. According to the method for producing nitrogen gas disclosed in Patent Document 1, a nitrogen gas concentration of 99.999% or more is possible. When the remaining oxygen is reacted with hydrogen to be purified into water, examples of the removing device for removing the purified water present in the nitrogen gas include a membrane dehumidifier and a PSA dehumidifier. However, the above-described method for producing nitrogen gas has a problem that a large amount of electric power is required to cool the water vapor formed by the reaction in the purification apparatus.
また、空気中の酸素を吸着剤により吸着させる吸着工程が圧力変動吸着装置で行なわれ、前記吸着工程後の第1ガス中に含有されている残存酸素を、水素と反応させて水分に変えることにより、酸素を除去する精製工程と、前記精製工程後の第2ガス中から、水分が除去された高純度窒素ガスと前記除去された水分を含有するパージガスとを膜式除湿装置で分離する除湿工程と、前記パージガスを用いて、前記吸着剤を再生する再生工程とを備える、高純度窒素ガスの製造方法が提案されている(特許文献2を参照。)。しかし該製造方法に用いる装置は、圧縮機、吸着塔、製品槽、精製装置、除湿装置、高純度窒素ガスタンク、パージガスを吸着塔に供給する配管とを備えた大掛かりな装置である。 In addition, an adsorption process for adsorbing oxygen in the air with an adsorbent is performed by a pressure fluctuation adsorption device, and the residual oxygen contained in the first gas after the adsorption process is reacted with hydrogen to change to moisture. And a dehumidifying device that separates the high-purity nitrogen gas from which moisture has been removed and the purge gas containing the removed moisture from the second gas after the purification step by a membrane dehumidifier. There has been proposed a method for producing high-purity nitrogen gas, which includes a process and a regeneration process for regenerating the adsorbent using the purge gas (see Patent Document 2). However, the apparatus used in the production method is a large-scale apparatus including a compressor, an adsorption tower, a product tank, a purification apparatus, a dehumidifier, a high-purity nitrogen gas tank, and a pipe for supplying purge gas to the adsorption tower.
さらに、大気を圧縮するコンプレッサーと、大気中の塵を除去するフィルターと、圧縮空気中の窒素成分と酸素成分とを分離させる中空糸が束ねられた中空糸膜と、中空糸膜から分離されて窒素成分中に含まれる微量酸素を除去し、高純度の窒素ガスを製造する脱酸素装置とを具備してなる高純度窒素ガスの製造装置であって、前記脱酸素装置に充填される脱酸素剤が、酸素欠陥を有する酸化セリウム系脱酸素剤を用いる方法が提案されている(特許文献3を参照。)。しかし前記方法も、コンプレッサーにより圧縮され空気タンクに貯蔵された空気が、圧縮空気配管を介して圧縮空気内の異物を除去するプレフィルターやミクロミストフィルター等のフィルターを経由し、中空糸膜に送り込まれる大型の装置である。 Furthermore, a compressor that compresses the atmosphere, a filter that removes dust in the atmosphere, a hollow fiber membrane bundled with hollow fibers that separate nitrogen and oxygen components in the compressed air, and a hollow fiber membrane that is separated from the hollow fiber membrane A high-purity nitrogen gas production apparatus comprising a deoxygenation apparatus for removing a trace amount of oxygen contained in a nitrogen component and producing high-purity nitrogen gas, wherein the deoxygenation apparatus is charged with the deoxygenation apparatus. A method has been proposed in which the agent uses a cerium oxide-based oxygen scavenger having oxygen defects (see Patent Document 3). However, in the above method as well, the air compressed by the compressor and stored in the air tank is sent to the hollow fiber membrane via a compressed air pipe through a filter such as a prefilter or a micromist filter that removes foreign matter in the compressed air. It is a large device.
前記の高純度窒素ガスの製造は、いずれも大型の装置を必要とし、実験室等に設けることは適当ではない。一方、消防法等の安全保安上の観点からは、高圧ガスの取り扱いには種々の制約があり、可能な限り高圧ガスボンベの保有数は少なくすることが好ましい。また、ランニングコスト、輸送コストの観点からも、大気中に80%存在する窒素を、使用する現場において精製し、活用することが望まれていた。 The production of the high-purity nitrogen gas requires a large apparatus and is not suitable to be installed in a laboratory or the like. On the other hand, from the viewpoint of safety and security such as the Fire Service Act, there are various restrictions on the handling of high-pressure gas, and it is preferable to reduce the number of high-pressure gas cylinders as much as possible. Further, from the viewpoint of running cost and transportation cost, it has been desired to purify and utilize nitrogen present in the atmosphere at 80% in the atmosphere.
本発明は、ガスボンベを使用せずに99.999%以上の超高純度窒素ガスを製造することを課題とする。 An object of the present invention is to produce 99.999% or more ultra-high purity nitrogen gas without using a gas cylinder.
本発明によれば、 According to the present invention,
コンプレッサーにより5〜8気圧に圧縮された空気が、モイスチャートラップ及びオイルミストラップを通過する第1の工程と、前記第1の工程の後に水分離膜内蔵管を通過する第2の工程と、前記第2の工程の後に炭化水素除去管および酸素窒素分離膜内蔵管を繰り返し通過する第3の工程と、を有する高純度窒素ガスの精製方法が提供される。 A first step in which the air compressed to 5 to 8 atm by the compressor passes through the moisture chart wrap and the oil mist strap; a second step in which the air passes through the water separation membrane built-in pipe after the first step; And a third step of repeatedly passing the hydrocarbon removal pipe and the oxygen-nitrogen separation membrane built-in pipe after the second step.
また、本発明によれば、 Moreover, according to the present invention,
空気を5〜8気圧に圧縮するコンプレッサーを2段直列となったモイスチャートラップに連結し、次にオイルミストラップに連結し、次に水分離膜内蔵管に連結し、次に炭化水素除去管および酸素窒素分離膜内蔵管に少なくとも反復連結し、次に微量不純物吸着管および微量酸素・水除去管に連結した、高純度窒素ガスが連続的に供給される装置が提供される。 A compressor that compresses air to 5-8 atmospheres is connected to a Moisture wrap in two-stage series, then connected to an oil mist strap, then connected to a water separation membrane built-in tube, and then a hydrocarbon removal tube and There is provided an apparatus for continuously supplying high-purity nitrogen gas, which is connected at least repeatedly to a tube with a built-in oxygen-nitrogen separation membrane and then connected to a trace impurity adsorption tube and a trace oxygen / water removal tube.
また、本発明によれば、 Moreover, according to the present invention,
空気を5〜8気圧に圧縮するコンプレッサーと、モイスチャートラップと、オイルミストラップと、水分離膜内蔵管と、炭化水素除去管と、酸素窒素分離膜内蔵管と、微量不純物吸着管および微量酸素・水除去管と、をこの順に連結し、 Compressor that compresses air to 5 to 8 atmospheres, Moisture wrap, oil mist strap, water separation membrane built-in tube, hydrocarbon removal tube, oxygen nitrogen separation membrane built-in tube, trace impurity adsorption tube, trace oxygen, Connect the water removal pipe in this order,
前記酸素窒素分離膜内蔵管を通過したガスが、前記微量不純物吸着管および前記微量酸素・水除去管を通過する前に、前記炭化水素除去管に戻る経路が存在する装置が提供される。 There is provided an apparatus in which a path through which the gas that has passed through the oxygen / nitrogen separation membrane built-in pipe returns to the hydrocarbon removal pipe before passing through the trace impurity adsorption pipe and the trace oxygen / water removal pipe is provided.
本発明により、99.999%以上の超高純度窒素ガスを、ガスボンベを使用せずに製造することができる。高圧窒素ボンベを使用しないことにより、大幅にコストが縮減されるほかに、研究所・事業所等における安全管理へも貢献できる。また、離島、遠隔地等ガスボンベの頻繁な運搬に適さない場所においても、超高純度窒素ガスの簡易な利用を可能とする。 According to the present invention, 99.999% or more of ultra-high purity nitrogen gas can be produced without using a gas cylinder. By not using a high-pressure nitrogen cylinder, the cost can be greatly reduced, and it can also contribute to safety management in laboratories and offices. In addition, it enables simple use of ultra-high purity nitrogen gas even in places that are not suitable for frequent transportation of gas cylinders such as remote islands and remote areas.
本発明は、酸素・窒素分離膜を用いて精製した99%程度の窒素純度のガスを、酸素のさらなる除去のため、残留酸素と混入しているメタン等の有機物との燃焼反応を活用することとし、この燃焼過程で発生する水もまた、分離膜で除去することを特徴とする。以下本発明の実施の態様について詳説する。 The present invention utilizes a combustion reaction between residual oxygen and mixed organic matter such as methane for further removal of oxygen from a 99% pure nitrogen gas purified using an oxygen / nitrogen separation membrane. The water generated in the combustion process is also removed by the separation membrane. Hereinafter, embodiments of the present invention will be described in detail.
本発明の窒素ガス精製方法について、工程の概念図を図1に示した。図1において隣接する管の間に往復の矢印がある場合は、管の順序が前後することが許されることを示し、吸湿剤管から炭化水素除去管への外周の矢印は反復処理を示す。図1に示す本精製工程は、室内の空気に対して酸素、水、炭化水素を完全に除去することができる。以下本発明について工程の各処理を説明する。 The conceptual diagram of the process about the nitrogen gas purification method of this invention was shown in FIG. In FIG. 1, if there is a reciprocating arrow between adjacent tubes, this indicates that the tube order is allowed to go back and forth, and the outer arrow from the humectant tube to the hydrocarbon removal tube indicates an iterative process. The main purification process shown in FIG. 1 can completely remove oxygen, water, and hydrocarbons from indoor air. Hereinafter, each process of a process is demonstrated about this invention.
<コンプレッサーによる空気の圧縮>
室内の空気を用い、コンプレッサーを使用して、5〜8気圧に空気を圧縮する。コンプレッサーは空気を5〜8気圧に圧縮できるものであれば、いずれのコンプレッサーも使用することができるが、オイルミストの混入を避けるためにオイルフリーのコンプレッサーが好ましい。
<Compression of air with a compressor>
Using room air, compress the air to 5-8 atmospheres using a compressor. Any compressor can be used as long as it can compress air to 5 to 8 atm. However, an oil-free compressor is preferable in order to avoid mixing oil mist.
該圧縮された空気に対して以下の処理を行うが、圧縮空気の圧力により、一の処理から次工程への空気は通気管の連結のみで自動的に送られる。また圧縮空気の通気管としては、不純物の残留を防ぎ、触媒等加熱処理後のガスの冷却のために、外径3mm〜10mmのステンレス製管乃至ポリテトラフルオロエチレン製管を用いることが好ましく、316ステンレスを用いることがより好ましい。 The following processing is performed on the compressed air. Depending on the pressure of the compressed air, the air from one processing to the next process is automatically sent only by connecting the vent pipe. In addition, as a compressed air vent pipe, it is preferable to use a stainless steel pipe or a polytetrafluoroethylene pipe having an outer diameter of 3 mm to 10 mm in order to prevent impurities from remaining and cool the gas after heat treatment such as a catalyst, More preferably, 316 stainless steel is used.
<モイスチャートラップによる水分の除去>
前記により圧縮した空気から、モイスチャートラップにより水分を除去する。本発明のモイスチャートラップは、5μmまでのダストが除去できるモイスチャートラップであり、ろ過度0.5μm以下のポリプロピレン製エレメントを有していることが好ましく、CKD社製、商品名;F3000型が特に好ましい。該モイスチャートラップを用いるときは、2段直列とすることが好ましい。
<Removal of moisture with moisture chart wrap>
Moisture is removed from the compressed air by means of a moisture chart wrap. The moisture chart wrap of the present invention is a moisture chart wrap capable of removing dusts up to 5 μm, and preferably has a polypropylene element having a filtration degree of 0.5 μm or less, and a product name; F3000 type manufactured by CKD is particularly preferable. When the moisture chart wrap is used, it is preferable to use two stages in series.
<オイルミストラップによる油分の除去>
前記モイスチャートラップにより水分が大まかに除去された圧縮空気について、オイルミストラップにより油分を除去する。本発明のオイルミストラップは、油分を0.01mg/m3以下まで除去できる機能を有するオイルミストラップであり、ろ過度0.01μm以下の繊維フィルターを備えることが好ましく、CKD社製、商品名;M3000型が特に好ましい。なお当該「モイスチャートラップによる水分の除去」と前記「オイルミストラップによる油分の除去」は処理工程順序が異なっても構わない。
<Removal of oil with oil mist strap>
About the compressed air from which water | moisture content was removed roughly by the said moisture chart wrap, an oil component is removed by an oil mistrap. The oil mistrap of the present invention is an oil mistrap having a function capable of removing oil to 0.01 mg / m 3 or less, and preferably includes a fiber filter having a filtration degree of 0.01 μm or less. A mold is particularly preferred. The “removal of moisture by the moisture chart wrap” and the “removal of oil by the oil mist strap” may have different processing step sequences.
<水分離膜内蔵管による乾燥空気精製>
前記モイスチャートラップ及びオイルミストラップにより水分及び油分が除去された圧縮空気について、水分離膜内蔵管を用いることにより乾燥空気を精製する。本発明の水分離膜は、前記圧縮空気について水分を更に出口空気露点-30℃以下まで除去し得るものであり、孔径が450〜550μmの芳香族ポリイミド製の中空糸膜を備えることが好ましく、中でも宇部興産製、商品名;UMS-B2Vが特に好ましい。
<Drying air purification using a water separation membrane built-in tube>
For the compressed air from which moisture and oil have been removed by the Moisture wrap and the oil mistrap, the dry air is purified by using a water separation membrane built-in tube. The water separation membrane of the present invention is capable of further removing moisture from the compressed air to an outlet air dew point of −30 ° C. or less, and preferably comprises a hollow fiber membrane made of aromatic polyimide having a pore diameter of 450 to 550 μm, Among them, Ube Industries product name; UMS-B2V is particularly preferable.
<炭化水素除去管による微量有機物除去>
前記水分離膜内蔵管を用い、出口空気露点-30℃以下の乾燥空気について、炭化水素除去管を用い、微量の残存有機物を吸着により除去する。本発明の炭化水素除去管は、径2〜6mmの顆粒状活性炭が充填され、微量の残存有機物を吸着除去する炭化水素除去管であり、中でも島津製作所製、商品名;221-05619-01が特に好ましい。
<Removal of trace organic substances by hydrocarbon removal pipe>
Using the water separation membrane built-in tube, a trace amount of residual organic substances are removed by adsorption using a hydrocarbon removal tube for the dry air having an outlet air dew point of −30 ° C. or lower. The hydrocarbon removal pipe of the present invention is a hydrocarbon removal pipe that is filled with granular activated carbon having a diameter of 2 to 6 mm and adsorbs and removes a small amount of residual organic matter. Particularly preferred.
<酸素窒素分離膜内蔵管による酸素除去>
前記、炭化水素除去管を用い、微量の残存有機物が吸着除去された乾燥空気について、酸素窒素分離膜内蔵管を用いることにより酸素を除去する。本発明の酸素窒素分離膜内蔵管は、孔径が450〜550μmのポリイミド製の中空糸製分離膜を備えた管であり、中でも宇部興産製、商品名;UBE NM-B01Aが特に好ましい。
<Oxygen removal with a built-in oxygen / nitrogen separation membrane>
Oxygen is removed from the dry air from which a small amount of residual organic substances are adsorbed and removed by using the hydrocarbon / nitrogen removal pipe, by using the oxygen / nitrogen separation membrane-containing pipe. The oxygen / nitrogen separation membrane built-in tube of the present invention is a tube provided with a polyimide hollow fiber separation membrane having a pore diameter of 450 to 550 μm, among which UBE NM-B01A is particularly preferable.
<反復処理>
前記「酸素窒素分離膜による酸素除去」処理後の圧縮空気について、少なくとも前記「炭化水素除去管による微量有機物除去」及び「酸素窒素分離膜内蔵管による酸素除去」の処理を反復する。以上の処理により、窒素の純度が99.999%の空気を得ることができる。
<Repetition processing>
For the compressed air after the “oxygen removal by the oxygen-nitrogen separation membrane” process, at least the “removal of trace organic substances by the hydrocarbon removal tube” and the “oxygen removal by the oxygen-nitrogen separation membrane built-in tube” are repeated. By the above treatment, air having a purity of nitrogen of 99.999% can be obtained.
前記「酸素窒素分離膜内蔵管による酸素除去」処理後の圧縮空気について、下記の「有機物燃焼触媒管による有機物除去」と「吸湿剤管によるCO2吸着除去」とを行うことが好ましい。当該両処理を行うことにより、「炭化水素除去管」及び「酸素窒素分離膜内蔵管」の寿命を延ばすことができ、コスト削減となる。なお前記「炭化水素除去管による微量有機物除去」及び「酸素窒素分離膜内蔵管による酸素除去」の反復処理は、下記「有機物燃焼触媒管による有機物除去」と「吸湿剤管によるCO2吸着除去」との処理を含めて行うことが更に好ましい。 It is preferable to perform the following “removal of organic matter by the organic matter combustion catalyst tube” and “removal of CO 2 adsorption by the hygroscopic agent tube” for the compressed air after the “oxygen removal by the oxygen-nitrogen separation membrane built-in tube” treatment. By performing both the treatments, the lifetimes of the “hydrocarbon removal pipe” and the “oxygen / nitrogen separation membrane built-in pipe” can be extended, resulting in cost reduction. In addition, the repeated treatments of “removal of trace organic substances by the hydrocarbon removal pipe” and “oxygen removal by the oxygen / nitrogen separation membrane built-in pipe” are the following “removal of organic substances by the organic combustion catalyst pipe” and “CO 2 adsorption removal by the hygroscopic pipe”. It is more preferable to carry out the process including
<有機物燃焼触媒管による有機物除去>
前記「酸素窒素分離膜内蔵管による酸素除去」処理後の圧縮空気について、有機物燃焼触媒管を用いることにより、炭化水素を焼却除去する。本発明の有機物燃焼触媒管は、粒径1〜3mmのアルミナ処理を施した白金触媒を充填した燃焼管であり、中でも島津製作所製、商品名; HCトラップが特に好ましい。本過程により炭化水素が焼却除去された空気には、燃焼により発生するCO2、H2Oが含まれる。
<Removal of organic substances using organic substance combustion catalyst tube>
About the compressed air after the “oxygen removal by the oxygen / nitrogen separation membrane built-in pipe” treatment, hydrocarbons are incinerated and removed by using an organic combustion catalyst pipe. The organic combustion catalyst tube of the present invention is a combustion tube filled with a platinum catalyst subjected to alumina treatment having a particle size of 1 to 3 mm. Among them, a product name manufactured by Shimadzu Corporation; HC trap is particularly preferable. The air from which hydrocarbons have been removed by incineration through this process contains CO 2 and H 2 O generated by combustion.
<吸湿剤管によるCO2吸着除去>
前記有機物燃焼触媒管を用い炭化水素が除去された空気について、吸湿剤管を用いることにより、水、CO2を吸着除去する。本発明の吸湿剤管は、モレキュラーシーブ(5A)が充填された吸湿剤管であり、再生可能な機能を有する吸湿剤管がより好ましく、中でも島津製作所製、商品名;A11-00020-01が特に好ましい。
<CO 2 adsorption removal by a hygroscopic tube>
The air from which hydrocarbons have been removed using the organic combustion catalyst tube is used to adsorb and remove water and CO 2 by using a moisture absorbent tube. The hygroscopic tube of the present invention is a hygroscopic tube filled with molecular sieve (5A), more preferably a hygroscopic tube having a reproducible function, and among them, the product name; A11-00020-01, manufactured by Shimadzu Corporation Particularly preferred.
前記により得られる窒素純度が99.999%の空気をさらに超高純度とするために、以下の処理を行うことが好ましい。 In order to make the air having a nitrogen purity of 99.999% obtained as described above more highly pure, the following treatment is preferably performed.
<微量酸素・水除去管による酸素・水除去>
前記窒素純度が99.999%の圧縮空気について、微量酸素・水除去管を用いることにより、残存する微量の酸素・水を吸着により除去する。本発明の微量酸素・水除去管は、Nanochem樹脂が充填され、残存する微量の酸素・水を吸着除去する除去管であり、中でもSUPELCO製、商品名;OMI-4が特に好ましい。
<Oxygen / water removal by trace oxygen / water removal tube>
For the compressed air having a nitrogen purity of 99.999%, a trace amount of oxygen / water is removed by adsorption by using a trace amount oxygen / water removal tube. The trace oxygen / water removal tube of the present invention is a removal tube filled with Nanochem resin and adsorbs and removes a trace amount of remaining oxygen / water. Among them, the product name; OMI-4 manufactured by SUPELCO is particularly preferable.
<微量不純物吸着管による微量成分除去>
前記微量酸素・水除去管により、残存する微量の酸素・水が吸着除去された圧縮空気について、微量不純物吸着管を用いることにより、残存する微量の成分を除去する。本発明の微量不純物吸着管は、ジルコニウムが充填され、残存する微量の成分を除去する除去管であり、中でもSUPELCO製、商品名;23800-Uが特に好ましい。
<Removal of trace components by trace impurity adsorption tube>
For the compressed air from which the remaining trace amount of oxygen / water is adsorbed and removed by the trace oxygen / water removal tube, the trace amount of the remaining component is removed by using the trace impurity adsorption tube. The trace impurity adsorption tube of the present invention is a removal tube that is filled with zirconium and removes a trace amount of remaining components. Among them, a product name; 23800-U manufactured by SUPELCO is particularly preferable.
なお、前記「微量酸素・水除去管による酸素・水除去」と「微量不純物吸着管による酸素・水除去」の処理工程は、処理工程順序が異なっても構わない。前記の各処理により窒素の純度は、希ガスを除き99.9999%以上となり、O2の濃度はECD-GCの検出下限以下となる。 The processing steps of the “oxygen / water removal by the trace oxygen / water removal pipe” and the “oxygen / water removal by the trace impurity adsorption pipe” may be different from each other. By each of the above treatments, the purity of nitrogen becomes 99.9999% or more excluding rare gases, and the concentration of O 2 becomes less than the detection lower limit of ECD-GC.
なお前記「微量不純物吸着管による有機物除去」又は「微量酸素・水除去管による酸素・水除去」のうち後の処理工程には、1ppmのO2を検出する能力を有する酸素インジケーターを付属させることが好ましい。前記酸素インジケーターのフィルターが変色していないことにより、精製された窒素ガスのO2濃度が1ppm以下であることを認識できる。 In addition, an oxygen indicator having the ability to detect 1 ppm of O 2 should be attached to the subsequent processing steps of the “removal of organic substances by the trace impurity adsorption tube” or the “removal of oxygen and water by the trace oxygen / water removal tube”. Is preferred. It can be recognized that the O 2 concentration of the purified nitrogen gas is 1 ppm or less because the filter of the oxygen indicator is not discolored.
前記の各処理を直列に接続することにより、99.9999%以上の高純度精製窒素を得ることができる。また本過程終了後の空気は、200〜400kPaで直接ガスクロマトグラフへ等への供給が可能である。 High purity purified nitrogen of 99.9999% or more can be obtained by connecting the above treatments in series. The air after the completion of this process can be directly supplied to a gas chromatograph at 200 to 400 kPa.
なお、大気中の主要成分のうち、アルゴンは元素であるため、原理的に化学反応による除去は不可能であるが、ガスクロマトグラフィーにおいては、検出感度に影響しない。 Of the main components in the atmosphere, argon is an element, and therefore cannot be removed by a chemical reaction in principle. However, in gas chromatography, detection sensitivity is not affected.
本発明について、以下の実施例でさらに具体的に説明するが、本発明は実施例の記載に限定されるものではない。
<STEP-1 空気の圧縮>
室内の空気から、日立ベビコン社製、商品名;無給油式スーパーオイルフリーコンプレッサー、型式;0.4LE-8Sを使用し、圧縮空気出力を600kPaの圧縮空気を製造して、以下の各処理に用いた。圧縮空気の通気管としては外径5mmの316ステンレス製管を用いた。
The present invention will be described more specifically in the following examples, but the present invention is not limited to the description of the examples.
<STEP-1 Air Compression>
From indoor air, manufactured by Hitachi Bebicon, product name: oil-free super oil-free compressor, model: 0.4LE-8S, compressed air output of 600 kPa is produced and used for the following treatments It was. A 316 stainless steel tube having an outer diameter of 5 mm was used as a compressed air ventilation tube.
<STEP-2 モイスチャートラップによる水分の除去>
前記の圧縮空気を、モイスチャートラップとしてCKD社製エアフィルター、商品名;F3000型を2段直列に用い、水分を除去した。
<STEP-2 Moisture removal with moisture chart wrap>
The above compressed air was used as a moisture chart wrap to remove moisture by using an air filter manufactured by CKD, trade name: F3000 type in two stages in series.
<STEP-3 オイルミストラップによる油分の除去>
前記STEP-2後の圧縮空気を、オイルミストラップとしてCKD社製エアフィルター、商品名;M3000型を用い、油分を除去した。
<STEP-3 Oil removal with oil mist strap>
The compressed air after STEP-2 was used as an oil mistrap using an air filter manufactured by CKD, trade name: M3000 type to remove oil.
<STEP-4 水分離膜内蔵管による乾燥空気精製>
前記STEP-3後の圧縮空気を、水分離膜を用いることにより水分を完全に除去した。該水分離膜としては、宇部興産製、商品名;UMS-B2Vを用いた。
<STEP-4 Purification of dry air using a tube with built-in water separation membrane>
Water was completely removed from the compressed air after STEP-3 by using a water separation membrane. As the water separation membrane, Ube Industries, trade name: UMS-B2V was used.
<STEP-5 炭化水素除去管による微量有機物除去>
前記STEP-4後の圧縮空気を、活性炭を充填した炭化水素除去管を用いることにより、微量の残存有機物を吸着により除去した。該活性炭充填管として、島津製作所製、商品名;221-05619-01を用いた。本処理により、窒素の純度が99.99%(残存O2量0.01%)の空気が得られた。
<STEP-5 Removal of trace organic substances by hydrocarbon removal pipe>
The compressed air after STEP-4 was removed by adsorption with a trace amount of residual organic substances by using a hydrocarbon removal tube filled with activated carbon. As the activated carbon filling tube, Shimadzu Corporation trade name: 221-05619-01 was used. By this treatment, air having a nitrogen purity of 99.99% (residual O 2 content 0.01%) was obtained.
<STEP-6 酸素窒素分離膜内蔵管による酸素除去>
前記STEP-5後の圧縮空気を、酸素窒素分離膜内蔵管を用いることにより、残存酸素を膜分離により除去した。該酸素窒素分離膜内蔵管として、宇部興産製、商品名;NM-B01Aを用いた。
<STEP-6 Oxygen removal by oxygen-nitrogen separation membrane built-in tube>
The compressed air after STEP-5 was removed by membrane separation by using an oxygen / nitrogen separation membrane built-in tube. As the oxygen / nitrogen separation membrane built-in tube, Ube Industries, trade name: NM-B01A was used.
<STEP-7 有機物燃焼触媒管による有機物除去>
前記STEP-6後の圧縮空気を、有機物燃焼触媒管を用いることにより、炭化水素を焼却除去した。有機物燃焼触媒管として、島津製作所製、商品名; HCトラップを用いた。
<STEP-7 Organic substance removal with organic combustion catalyst tube>
The compressed air after STEP-6 was incinerated and removed by using an organic combustion catalyst tube. As an organic combustion catalyst tube, Shimadzu Corporation product name; HC trap was used.
<STEP-8 吸湿剤管によるCO2吸着除去>
前記STEP-7後の圧縮空気を、吸湿剤管を用いることにより、CO2を吸着により除去した。吸湿剤管として、島津製作所製、商品名;A11-00020-01を用いた。
<STEP-8 Removal of CO 2 adsorption with hygroscopic tube>
The compressed air after the STEP-7, by using a moisture absorbent tube, the CO 2 is removed by adsorption. A product name; A11-00020-01 manufactured by Shimadzu Corporation was used as the hygroscopic tube.
<STEP-9〜12 反復処理>
前記STEP-8後の圧縮空気について、前記STEP-5からSTEP-8までの処理を、反復処理した。該反復処理により、窒素の純度が99.999%の空気が得られたが、0.001%のO2が残存した。また本処理後の圧縮空気の出力は、400kPaであった。
<STEP-9-12 Iterative processing>
For the compressed air after STEP-8, the processing from STEP-5 to STEP-8 was repeated. The repeated treatment resulted in air with a nitrogen purity of 99.999%, but 0.001% O 2 remained. Moreover, the output of the compressed air after this process was 400 kPa.
<STEP-13 微量不純物吸着管による微量成分除去>
前記反復処理後の圧縮空気について、微量不純物吸着管を用いることにより、残存する微量の成分を除去した。該微量不純物吸着管として、SUPELCO製、商品名;23800-Uを用いた。本処理により窒素の純度は、希ガスを除き99.9999%以上となり、O2の濃度は0.0001%と推定された。
<STEP-13 Removal of trace components by trace impurity adsorption tube>
About the compressed air after the said repeated process, the trace amount component which remained was removed by using a trace amount impurity adsorption tube. As the trace impurity adsorption tube, product name: 23800-U manufactured by SUPELCO was used. By this treatment, the purity of nitrogen was 99.9999% or more excluding rare gases, and the O 2 concentration was estimated to be 0.0001%.
<STEP-14 微量酸素・水除去管による酸素・水除去>
前記STEP-13後の圧縮空気を、酸素・窒素分離膜を用い残存酸素を除去した。該酸素・窒素分離膜として、酸素インジケーター付きのSUPELCO製、商品名;OMI-4を用いた。
<STEP-14 Oxygen / water removal by trace oxygen / water removal tube>
Residual oxygen was removed from the compressed air after STEP-13 using an oxygen / nitrogen separation membrane. As the oxygen / nitrogen separation membrane, a product name; OMI-4 manufactured by SUPELCO with an oxygen indicator was used.
前記微量酸素・水除去管処理により、前記酸素インジケーターのフィルターが変色しないことから、窒素の純度が99.9999%以上の精製窒素ガスが得られ、O2の濃度はECDガスクロマトグラフの検出下限以下であった。 Since the oxygen indicator filter is not discolored by the trace oxygen / water removal tube treatment, purified nitrogen gas having a purity of nitrogen of 99.9999% or more is obtained, and the O 2 concentration is below the detection limit of the ECD gas chromatograph. Met.
前記のSTEP-0からSTEP-14までの処理を行うことにより、99.9999%以上の高純度窒素ガスが、300kPaの圧力で、直接ガスクロマトグラフへ供給されることができた。
以下、参考形態の例を付記する。
1. 室内の空気をコンプレッサーにより5〜8気圧に圧縮した空気を、モイスチャートラップ及びオイルミストラップを通過させる第1の工程と、水分離膜内蔵管を通過させる第2の工程と、炭化水素除去管および酸素窒素分離膜内蔵管を少なくとも反復通過させる第3の工程とからなることを特徴とする高純度窒素ガスの精製方法。
2. 前記第3の工程後に微量不純物吸着管および微量酸素・水除去管を通過させる第4の工程が含まれる1に記載の高純度窒素ガスの精製方法。
3. 前記第2の工程後で、第3の工程の前又は後に、有機物燃焼触媒管および吸湿剤管を通過させる工程が含まれる1又は2に記載の高純度窒素ガスの精製方法。
4. 室内の空気をコンプレッサーにより5〜8気圧に圧縮した空気を、モイスチャートラップを2段直列し、次にオイルミストラップに連結し、次に水分離膜内蔵管に連結し、次に炭化水素除去管および酸素窒素分離膜内蔵管に少なくとも反復連結し、次に微量不純物除去管および微量酸素・水除去管に連結した、高純度窒素ガスが連続的に供給される装置。
By performing the processing from STEP-0 to STEP-14, 99.9999% or more of high purity nitrogen gas could be directly supplied to the gas chromatograph at a pressure of 300 kPa.
Hereinafter, examples of the reference form will be added.
1. A first step in which the air compressed to 5 to 8 atm by the compressor is passed through the moisture chart wrap and the oil mist strap, a second step in which the air is passed through the water separation membrane built-in pipe, a hydrocarbon removal pipe and A method for purifying high-purity nitrogen gas, comprising: a third step of repeatedly passing the oxygen-nitrogen separation membrane-containing tube at least.
2. 2. The method for purifying high-purity nitrogen gas according to 1, comprising a fourth step of passing through a trace impurity adsorption tube and a trace oxygen / water removal tube after the third step.
3. The method for purifying high-purity nitrogen gas according to 1 or 2, comprising a step of allowing the organic combustion catalyst tube and the hygroscopic tube to pass after the second step and before or after the third step.
4). The air compressed to 5-8 atm by the compressor in the room air is connected in series with two stages of moisture chart wrap, then connected to the oil mist strap, then connected to the water separation membrane built-in pipe, and then to the hydrocarbon removal pipe And a device for continuously supplying high-purity nitrogen gas connected at least repeatedly to a tube with a built-in oxygen / nitrogen separation membrane and then connected to a trace impurity removal tube and a trace oxygen / water removal tube.
本発明により、99.999%以上の高純度窒素ガスを、ガスボンベを使用せずに製造することができることから、研究所・事業所等における利用が期待され、離島、遠隔地等ガスボンベの頻繁な運搬に適さない場所においても、超高純度窒素ガスの簡易な利用が可能となる。 According to the present invention, 99.999% or more of high-purity nitrogen gas can be produced without using a gas cylinder, so that it is expected to be used in laboratories and offices. Even in an unsuitable place, simple utilization of ultra-high purity nitrogen gas becomes possible.
Claims (5)
前記酸素窒素分離膜内蔵管を通過したガスが、前記微量不純物吸着管および前記微量酸素・水除去管を通過する前に、前記炭化水素除去管に戻る経路が存在する装置。 An apparatus in which there is a path for the gas that has passed through the oxygen / nitrogen separation membrane built-in pipe to return to the hydrocarbon removal pipe before passing through the trace impurity adsorption pipe and the trace oxygen / water removal pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011258366A JP5852422B2 (en) | 2011-11-26 | 2011-11-26 | Purification method of ultra-high purity nitrogen gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011258366A JP5852422B2 (en) | 2011-11-26 | 2011-11-26 | Purification method of ultra-high purity nitrogen gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013112547A JP2013112547A (en) | 2013-06-10 |
JP5852422B2 true JP5852422B2 (en) | 2016-02-03 |
Family
ID=48708433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011258366A Active JP5852422B2 (en) | 2011-11-26 | 2011-11-26 | Purification method of ultra-high purity nitrogen gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5852422B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021088484A (en) * | 2019-12-04 | 2021-06-10 | 国立研究開発法人農業・食品産業技術総合研究機構 | Methane removal device, high purity nitrogen supply system, gas chromatograph analysis system, and catalyst function regeneration method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104986741A (en) * | 2015-07-15 | 2015-10-21 | 江苏振宇环保科技有限公司 | Method for purifying nitrogen prepared from air |
CN108167845B (en) * | 2017-12-05 | 2021-02-12 | 广州市万屋净环保科技有限公司 | Indoor pollutant burning decomposition device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4817391A (en) * | 1987-11-02 | 1989-04-04 | Elman Roe | Method and apparatus for producing a controlled atmosphere |
JP2640513B2 (en) * | 1988-10-31 | 1997-08-13 | 日本パイオニクス株式会社 | Inert gas purification equipment |
FR2639250B1 (en) * | 1988-11-24 | 1990-12-28 | Air Liquide | |
US4931070A (en) * | 1989-05-12 | 1990-06-05 | Union Carbide Corporation | Process and system for the production of dry, high purity nitrogen |
JPH0365213A (en) * | 1989-08-01 | 1991-03-20 | Matsushita Electric Ind Co Ltd | Nitrogen concentrating apparatus |
US5122355A (en) * | 1990-06-06 | 1992-06-16 | Union Carbide Industrial Gases Technology Corporation | Membrane nitrogen process and system |
US5169412A (en) * | 1991-11-20 | 1992-12-08 | Praxair Technology Inc. | Membrane air drying and separation operations |
US5318759A (en) * | 1992-10-21 | 1994-06-07 | Praxair Technology, Inc. | Membrane/PSA-deoxo process for nitrogen production |
JP3143746B1 (en) * | 1999-12-08 | 2001-03-07 | 西芝電機株式会社 | Separation membrane type gas generator |
JP2001206707A (en) * | 2000-01-19 | 2001-07-31 | Nippon Mitsubishi Oil Corp | Nitrogen filling device |
JP2005320221A (en) * | 2004-05-06 | 2005-11-17 | Fukuhara Co Ltd | Method and apparatus for producing nitrogen gas |
JP4976207B2 (en) * | 2007-06-15 | 2012-07-18 | 三井金属鉱業株式会社 | Equipment for removing oxygen in gas and producing high purity nitrogen gas |
-
2011
- 2011-11-26 JP JP2011258366A patent/JP5852422B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021088484A (en) * | 2019-12-04 | 2021-06-10 | 国立研究開発法人農業・食品産業技術総合研究機構 | Methane removal device, high purity nitrogen supply system, gas chromatograph analysis system, and catalyst function regeneration method |
Also Published As
Publication number | Publication date |
---|---|
JP2013112547A (en) | 2013-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3308248B2 (en) | Purification of air | |
EP0358915B1 (en) | Prevention of membrane degradation | |
US20080264254A1 (en) | Novel sorbents and purification and bulk separation of gas streams | |
US3659400A (en) | Carbon dioxide removal from breathable atmospheres | |
JP2008100222A (en) | Performance stability in shallow beds in pressure swing adsorption systems | |
JPH04298216A (en) | Adsorption method for removing oil vapor from steam-contained feed gas | |
JP2007069209A (en) | Gas purification method | |
CN103517720B (en) | Dual-element pressure swing adsorption air cleaning system and method | |
CA2925555C (en) | Carbon dioxide recovery | |
MX2010011017A (en) | Carbon dioxide recovery. | |
JPH10323527A (en) | Gas purity device and method | |
JP2003311148A (en) | Adsorbent, and method and apparatus for purifying gas | |
WO2010021127A1 (en) | Xenon adsorbent, xenon enrichment method, xenon enrichment device, and air liquefaction and separation device | |
KR102199235B1 (en) | Adsorption process for xenon recovery | |
CA2911820A1 (en) | Methods and systems of enhanced carbon dioxide recovery | |
JP5852422B2 (en) | Purification method of ultra-high purity nitrogen gas | |
JPH08266629A (en) | Method and equipment for manufacturing air of medical quality | |
JP4450944B2 (en) | Perfluorocarbon recovery method and decomposition method | |
US7306658B2 (en) | High purity air and gas fractionation system | |
EP2551006A1 (en) | Process for removing contaminants from gas streams | |
US20080184882A1 (en) | High purity air and gas fractionation system | |
US8568513B2 (en) | Systems and methods for purifying unsaturated hydrocarbon(s), and compositions resulting therefrom | |
WO2019180241A1 (en) | Process for separating a heavy gas component from a gaseous mixture | |
JP5684898B2 (en) | Gas purification method | |
JP2005095858A (en) | Cleaning method of exhaust gas containing volatile hydrocarbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141009 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20150507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5852422 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |