JP7025956B2 - All solid state battery - Google Patents

All solid state battery Download PDF

Info

Publication number
JP7025956B2
JP7025956B2 JP2018033545A JP2018033545A JP7025956B2 JP 7025956 B2 JP7025956 B2 JP 7025956B2 JP 2018033545 A JP2018033545 A JP 2018033545A JP 2018033545 A JP2018033545 A JP 2018033545A JP 7025956 B2 JP7025956 B2 JP 7025956B2
Authority
JP
Japan
Prior art keywords
solid
state battery
solid electrolyte
negative electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018033545A
Other languages
Japanese (ja)
Other versions
JP2019149298A (en
Inventor
羊一郎 河野
信三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2018033545A priority Critical patent/JP7025956B2/en
Publication of JP2019149298A publication Critical patent/JP2019149298A/en
Application granted granted Critical
Publication of JP7025956B2 publication Critical patent/JP7025956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は全固体電池に関する。 The present invention relates to an all-solid-state battery.

リチウム二次電池は、各種二次電池の中でもエネルギー密度が高いことで知られている。しかし一般に普及しているリチウム二次電池は、電解質に可燃性の有機電解液を用いている。そのため、リチウム二次電池では、液漏れ、短絡、過充電などに対する安全対策が他の電池よりも厳しく求められている。そこで近年、電解質に酸化物系や硫化物系の固体電解質を用いた全固体電池に関する研究開発が盛んに行われている。固体電解質は、固体中でイオン伝導が可能なイオン伝導体を主体として構成される材料であり、従来のリチウム二次電池のように可燃性の有機電解液に起因する各種問題が原理的に発生しない。そして、一般的な全固体電池は層状の正極(正極層)と層状の負極(負極層)との間に層状の固体電解質(電解質層)が狭持されてなる一体的な焼結体(以下、積層電極体とも言う)に集電体を形成した構造を有している。 Lithium secondary batteries are known to have a high energy density among various secondary batteries. However, widely used lithium secondary batteries use a flammable organic electrolyte as an electrolyte. Therefore, in lithium secondary batteries, safety measures against liquid leakage, short circuit, overcharge, etc. are stricter than other batteries. Therefore, in recent years, research and development on an all-solid-state battery using an oxide-based or sulfide-based solid electrolyte as an electrolyte has been actively carried out. The solid electrolyte is a material composed mainly of an ionic conductor capable of ionic conduction in a solid, and in principle, various problems caused by a flammable organic electrolyte solution like a conventional lithium secondary battery occur. do not do. A general all-solid-state battery is an integral sintered body in which a layered solid electrolyte (electrolyte layer) is sandwiched between a layered positive electrode (positive electrode layer) and a layered negative electrode (negative electrode layer) (hereinafter referred to as an integral sintered body). , Also referred to as a laminated electrode body) has a structure in which a current collector is formed.

全固体電池の本体となる上記積層電極体の製造方法としては、周知のグリーンシートを用いた方法が一般的である。グリーンシート法を用いて積層電極体を作製するためには、正極活物質と固体電解質を含むスラリー状の正極層材料、負極活物質と固体電解質を含むスラリー状の負極層材料、および固体電解質を含むスラリー状の固体電解質層材料をそれぞれシート状のグリーンシートに成形し、固体電解質層材料からなるグリーンシート(以下、電解質層シートとも言う)を正極層材料からなるグリーンシート(以下、正極層シートとも言う)と負極層材料からなるグリーンシート(以下、負極層シートとも言う)とで挟持して得た積層体を圧着し、その圧着後の積層体を焼成する。それによって焼結体である積層電極体が完成する。 As a method for manufacturing the laminated electrode body which is the main body of the all-solid-state battery, a method using a well-known green sheet is generally used. In order to prepare a laminated electrode body using the green sheet method, a slurry-like positive electrode layer material containing a positive electrode active material and a solid electrolyte, a slurry-like negative electrode layer material containing a negative electrode active material and a solid electrolyte, and a solid electrolyte are used. Each of the slurry-like solid electrolyte layer materials contained therein is formed into a sheet-like green sheet, and the green sheet made of the solid electrolyte layer material (hereinafter, also referred to as an electrolyte layer sheet) is formed into a green sheet made of a positive electrode layer material (hereinafter, a positive electrode layer sheet). The laminated body obtained by sandwiching it between a green sheet made of a negative electrode layer material (hereinafter, also referred to as a negative electrode layer sheet) is crimped, and the crimped laminated body is fired. As a result, a laminated electrode body which is a sintered body is completed.

電極活物質としては従来のリチウム二次電池に使用されていた材料を使用することができる。また全固体電池では可燃性の電解液を用いないことから、より高い電位差が得られる電極活物質についても研究されている。固体電解質としては、一般式Liで表されるNASICON型酸化物系の固体電解質があり、当該NASICON型酸化物系の固体電解質としては、以下の特許文献1に記載されている、Li1.5Al0.5Ge1.5(PO(以下、LAGPとも言う)がよく知られている。LAGPは、酸化粒であり、耐酸化性に優れている。すなわち、燃焼し難く、高い安全性を有している。 As the electrode active material, a material used in a conventional lithium secondary battery can be used. In addition, since the all-solid-state battery does not use a flammable electrolytic solution, research is being conducted on an electrode active material that can obtain a higher potential difference. The solid electrolyte includes a NASICON-type oxide-based solid electrolyte represented by the general formula Li a X b Y c P d Oe, and the NASICON -type oxide-based solid electrolyte is described in Patent Document 1 below. The described Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (hereinafter, also referred to as LAGP) is well known. LAGP is an oxide grain and has excellent oxidation resistance. That is, it is hard to burn and has high safety.

なお、以下の特許文献2には、本発明の実施例に関連して、負極にリチウム金属を用いた全固体電池について記載されている。非特許文献1には、LAGPの耐酸化特性について記載されており、以下の非特許文献2には、酸化物系の他の固体電解質であるLiLaZr12(以下、LLZ)について記載されている。非特許文献3には、リチウム二次電池用の正極活物質としてよく知られているリン酸バナジウムリチウム(Li(PO、以下、LVPとも言う)の製造方法について記載されている。 The following Patent Document 2 describes an all-solid-state battery in which a lithium metal is used for the negative electrode in relation to the embodiment of the present invention. Non-Patent Document 1 describes the oxidation resistance characteristics of LAGP, and Non-Patent Document 2 below describes Li 7 La 3 Zr 2 O 12 (hereinafter, LLZ), which is another oxide-based solid electrolyte. Is described. Non-Patent Document 3 describes a method for producing lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 , hereinafter also referred to as LVP), which is well known as a positive electrode active material for a lithium secondary battery. There is.

国際公開第2016/157751号International Publication No. 2016/157751 特開2010-45019号公報Japanese Unexamined Patent Publication No. 2010-45019

J.K.Feng,L.Lu、“Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3”、Journal of Alloys and Compounds Volume 501, Issue 2, 9 July 2010,Pages 255-258J.K.Feng, L.Lu, “Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5 (PO4) 3”, Journal of Alloys and Compounds Volume 501, Issue 2, 9 July 2010, Pages 255-258 Fudong Han, Yizhou Zhu,Xingfeng He,Yifei Mo, and Chunsheng Wang、” Electrochemical Stability of Li10GeP2S12and Li7La3Zr2O12 Solid Electrolytes”、Adv. Energy Mater. 2016, 1501590、[online]、[平成30年2月21日検索]、インターネット<URL:http://www.terpconnect.umd.edu/~yfmo/LGPS%20LLZO%20stability-AEM16.pdf>Fudong Han, Yizhou Zhu, Xingfeng He, Yifei Mo, and Chunsheng Wang, "Electrochemical Stability of Li10GeP2S12and Li7La3Zr2O12 Solid Electrolytes", Adv. Energy Mater. 2016, 1501590, [online], [Search February 21, 2018], Internet <URL: http://www.terpconnect.umd.edu/~yfmo/LGPS%20LLZO%20stability-AEM16.pdf> 株式会社GSユアサ、”液相法により合成したリン酸バナジウムリチウムを用いたリチウムイオン電池の開発”、[online]、[平成30年1月25日検索]、インターネット<URL:http://www.gs-yuasa.com/jp/technic/vol8/pdf/008_01_016.pdf>GS Yuasa Co., Ltd., "Development of Lithium Ion Battery Using Lithium Vanadium Phosphate Synthesized by Liquid Phase Method", [online], [Searched on January 25, 2018], Internet <URL: http: // www .gs-yuasa.com/jp/technic/vol8/pdf/008_01_016.pdf >

リチウム二次電池の特性の向上には、正負極間の電位差を大きくすることが重要となる。すなわち、正極と負極に用いる材料を適切に選択することが必要である。なお、負極材料については、リチウム金属(以下、Li金属)を用いることで、特性の向上が見込まれることが知られている。しかし、Li金属を負極に用いた二次電池では、Liイオンが正負極間を移動する途上で電子を受け取って樹枝状に析出してなるデンドライトの発生が問題となる。電解液を用いたリチウム二次電池では、デンドライトは、セパレーターを貫通して、正極と負極とを内部短絡させる原因となる。セパレーターが存在しない全固体電池においても、固体電解質の種類によってはデンドライトによる内部短絡が発生する可能性がある。例えば、硫化物系の固体電解質を用いた全固体電池では、固体電解質が柔らかく、充放電の際にLi金属からなる負極から発生したデンドライトが固体電解質層を貫通して内部短絡を起こす可能性がある。そのため硫化物系固体電解質を用いた全固体電池では、負極活物質として、グラファトや酸化物が用いられる。 In order to improve the characteristics of the lithium secondary battery, it is important to increase the potential difference between the positive and negative electrodes. That is, it is necessary to appropriately select the materials used for the positive electrode and the negative electrode. It is known that the negative electrode material is expected to have improved characteristics by using a lithium metal (hereinafter, Li metal). However, in a secondary battery using a Li metal as a negative electrode, there is a problem that dendrites are generated, which are formed by receiving electrons and precipitating in a dendritic manner while Li ions are moving between the positive and negative electrodes. In a lithium secondary battery using an electrolytic solution, dendrites penetrate the separator and cause an internal short circuit between the positive electrode and the negative electrode. Even in an all-solid-state battery without a separator, an internal short circuit due to dendrite may occur depending on the type of solid electrolyte. For example, in an all-solid-state battery using a sulfide-based solid electrolyte, the solid electrolyte is soft, and dendrite generated from the negative electrode made of Li metal during charging and discharging may penetrate the solid electrolyte layer and cause an internal short circuit. be. Therefore, in an all-solid-state battery using a sulfide-based solid electrolyte, graphato or an oxide is used as a negative electrode active material.

一方、酸化物系の固体電解質を用いた全固体電池では、強固な構造を有する焼結体の固体電解質を用いるため、デンドライトが固体電解質層を貫通することはない。そして、上記特許文献1に記載の全固体電池では、Li金属からなる負極を備え、固体電解質として酸化物であるLLZを用いている。しかし、LLZは、還元電位には強いものの、酸化電位に弱く、上記非特許文献2にも記載されているように、5V以上の領域ではLLZが酸化分解してしまう。 On the other hand, in the all-solid-state battery using the oxide-based solid electrolyte, since the solid electrolyte of the sintered body having a strong structure is used, the dendrite does not penetrate the solid electrolyte layer. The all-solid-state battery described in Patent Document 1 includes a negative electrode made of Li metal, and uses LLZ, which is an oxide, as a solid electrolyte. However, although LLZ is strong in reduction potential, it is weak in oxidation potential, and as described in Non-Patent Document 2, LLZ is oxidatively decomposed in a region of 5 V or higher.

そこで、LLZ以外の酸化物系固体電解質としてLAGPを用いることが考えられる。上記非特許文献1にも記載されているように、LAGPは、6Vの高電位でも酸化分解しないことが知られている。しかし、LAGPは、還元電位に弱く、0.5V以下の領域で還元分解してしまうという問題がある。そして、上記特許文献1に記載されているように、Li金属とLAGPの焼結体とを接触させると、白色のLAGPの焼結体が黒色に変色し、脆化して形状が崩れてしまうことが確認されている。すなわち、LAGPを固体電解質とし、Li金属を負極活物質とした全固体電池は未だ実現されていない。 Therefore, it is conceivable to use LAGP as an oxide-based solid electrolyte other than LLZ. As described in Non-Patent Document 1, LAGP is known not to be oxidatively decomposed even at a high potential of 6 V. However, LAGP is vulnerable to a reduction potential and has a problem of being reduced and decomposed in a region of 0.5 V or less. Then, as described in Patent Document 1, when the Li metal and the sintered body of LAGP are brought into contact with each other, the sintered body of white LAGP turns black, becomes brittle, and loses its shape. Has been confirmed. That is, an all-solid-state battery using LAGP as a solid electrolyte and Li metal as a negative electrode active material has not yet been realized.

そこで本発明は、固体電解質にLAGPを用いつつ、負極活物質にLi金属を用いることができる全固体電池を提供することを目的としている。 Therefore, an object of the present invention is to provide an all-solid-state battery capable of using LAGP as a solid electrolyte and Li metal as a negative electrode active material.

上記目的を達成するための本発明は、上下方向に、正極活物質と固体電解質とを含む正極層と、平板状に成形された固体電解質からなる固体電解質層と、Li金属からなる負極層とが積層されてなる積層電極体を備えた全固体電池であって、前記固体電解質は、一般式Li1.5Al0.5Ge1.5(POで表される化合物であり、前記積層電極体は、前記固体電解質層と前記負極層との間に金属からなる緩衝層が形成されてなることを特徴としている。前記緩衝層がLiと合金化する金属である全固体電池とすることもできる。 In the present invention for achieving the above object, in the vertical direction, a positive electrode layer containing a positive electrode active material and a solid electrolyte, a solid electrolyte layer made of a solid electrolyte formed into a flat plate, and a negative electrode layer made of Li metal are provided. The solid electrolyte is an all-solid-state battery provided with a laminated electrode body in which the above-mentioned solid electrolyte is laminated, and the solid electrolyte is a compound represented by the general formula Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 . The laminated electrode body is characterized in that a buffer layer made of metal is formed between the solid electrolyte layer and the negative electrode layer. It can also be an all-solid-state battery in which the buffer layer is a metal that alloys with Li.

本発明によれば、固体電解質にLAGPを用いつつ、負極活物質にLi金属を用いることができる全固体電池が提供される。そのため、本発明の全固体電池は、正負極間の電位差を5V以上にすることができ、優れた電池特性を有するものとなる。 According to the present invention, there is provided an all-solid-state battery capable of using LAGP as a solid electrolyte and Li metal as a negative electrode active material. Therefore, the all-solid-state battery of the present invention can have a potential difference of 5 V or more between the positive and negative electrodes, and has excellent battery characteristics.

本発明の実施例に係る全固体電池を示す図である。It is a figure which shows the all-solid-state battery which concerns on embodiment of this invention. 上記実施例に係る全固体電池を作製する際に使用されるLAGPガラスの作製手順を示す図である。It is a figure which shows the manufacturing procedure of LAGP glass used when manufacturing the all-solid-state battery which concerns on the said Example. 上記実施例に係る全固体電池の製造手順を示す図である。It is a figure which shows the manufacturing procedure of the all-solid-state battery which concerns on the said Example. 上記実施例に係る全固体電池の充放電特性を示す図である。It is a figure which shows the charge / discharge characteristic of the all-solid-state battery which concerns on the said Example.

===実施例===
本発明の実施例に係る全固体電池は、LAGPを固体電解質とし、Li金属を負極活物質としている。図1に本発明の実施例に係る全固体電池を示した。図1(A)は全固体電池1の外観図であり、図1(B)は全固体電池1の分解斜視図である。また、図1(C)は、図1(B)におけるa-a矢視断面を拡大した図である。全固体電池1は、図1(A)に示したように平板状の外観形状を有し、ラミネートフィルムからなる扁平袋状の外装体11内に発電要素が密封されている。また、ここに示した全固体電池1では、矩形の外装体11の一辺13から正極端子22および負極端子32が外方に導出されている。
=== Example ===
In the all-solid-state battery according to the embodiment of the present invention, LAGP is used as a solid electrolyte and Li metal is used as a negative electrode active material. FIG. 1 shows an all-solid-state battery according to an embodiment of the present invention. 1 (A) is an external view of the all-solid-state battery 1, and FIG. 1 (B) is an exploded perspective view of the all-solid-state battery 1. Further, FIG. 1 (C) is an enlarged view of the cross section taken along the line aa in FIG. 1 (B). As shown in FIG. 1A, the all-solid-state battery 1 has a flat plate-like appearance shape, and the power generation element is sealed in a flat bag-shaped exterior body 11 made of a laminated film. Further, in the all-solid-state battery 1 shown here, the positive electrode terminal 22 and the negative electrode terminal 32 are led out outward from one side 13 of the rectangular exterior body 11.

次に、図1(B)と図1(C)を参照しつつ全固体電池1の構造について説明する。なお図1(B)では一部の部材や部位にハッチングを施し、他の部材や部位と区別しやすいようにしている。外装体11内には、それ自体が全固体電池として機能する全固体電池の本体(以下、電池本体10とも言う)が収納され、正極と負極の集電体(21、31)に溶接によって取り付けられた帯状の金属平板からなるリードタブ(23、33)の先端側が外装体11外に正極端子22と負極端子32として導出されている。 Next, the structure of the all-solid-state battery 1 will be described with reference to FIGS. 1 (B) and 1 (C). In FIG. 1B, some members and parts are hatched so as to be easily distinguished from other members and parts. Inside the exterior body 11, the main body of the all-solid-state battery (hereinafter, also referred to as the battery main body 10), which itself functions as an all-solid-state battery, is housed and attached to the positive electrode and negative electrode current collectors (21, 31) by welding. The tip end side of the lead tab (23, 33) made of the strip-shaped metal flat plate is led out as the positive electrode terminal 22 and the negative electrode terminal 32 outside the exterior body 11.

電池本体10は、平板状の積層電極体100の表裏両面に金属箔からなる集電体(21、31)が形成されたものである。ここで、積層電極体100の表裏方向を上下方向とし、図1(C)に示したように上下方向を規定した場合、積層電極体100は、平板状の固体電解質層40の上面に正極層20が積層され、下方に負極層30が配置されてなる。そして、負極層30と固体電解質層40との間に、金属からなる緩衝層50が形成されている。なお、本実施例では、正極活物質にLVPを用い、正極集電体21にアルミニウム箔を用い、負極集電体31に銅箔を用いている。 The battery body 10 has current collectors (21, 31) made of metal foil formed on both the front and back surfaces of the flat plate-shaped laminated electrode body 100. Here, when the front and back directions of the laminated electrode body 100 are the vertical direction and the vertical direction is defined as shown in FIG. 1 (C), the laminated electrode body 100 has a positive electrode layer on the upper surface of the flat plate-shaped solid electrolyte layer 40. 20 are laminated, and the negative electrode layer 30 is arranged below. Then, a buffer layer 50 made of metal is formed between the negative electrode layer 30 and the solid electrolyte layer 40. In this embodiment, LVP is used as the positive electrode active material, aluminum foil is used for the positive electrode current collector 21, and copper foil is used for the negative electrode current collector 31.

===全固体電池の製造方法===
本発明の実施例に係る全固体電池1は、Li金属からなる負極層30を有しているため、従来のグリーンシート法とは異なる方法で積層電極体100を作成している。概略的には、粉体状の非晶質のLAGP(以下、LAGPガラスとも言う)を作製し、このLAGPガラスとLVPとを含む正極層20をグリーンシート法と同様の手順で作製し、固体電解質層40については、LAGPガラスを油圧プレスによって1軸方向に圧縮成形したものを焼結させることで作製している。以下では、LAGPガラスの作製手順の一例を説明した上で、図1に示した全固体電池1の作製手順について説明する。
=== Manufacturing method of all-solid-state battery ===
Since the all-solid-state battery 1 according to the embodiment of the present invention has the negative electrode layer 30 made of Li metal, the laminated electrode body 100 is manufactured by a method different from the conventional green sheet method. Generally, a powdery amorphous LAGP (hereinafter, also referred to as LAGP glass) is prepared, and a positive electrode layer 20 containing the LAGP glass and LVP is prepared by the same procedure as the green sheet method, and is solid. The electrolyte layer 40 is manufactured by sintering LAGP glass obtained by compression molding in the uniaxial direction by a hydraulic press. Hereinafter, an example of the procedure for manufacturing LAGP glass will be described, and then the procedure for manufacturing the all-solid-state battery 1 shown in FIG. 1 will be described.

<LAGPガラスの作製手順>
図2にLAGPガラスの作製手順を示した。まず、LAGPの原料となるNHPO、LiCO、γ-Al、GeOを秤量し(s1)、秤量後の原料を乳鉢で15分ほど混合する(s2)。そして、この原料の混合物をアルミナコウバチに入れ、大気雰囲気中、400℃の温度で3時間加熱して仮焼成する(s3)。次に、仮焼成後の粉体を乳鉢で15分粉砕したものを白金るつぼに移し、1300℃の温度で1時間焼成した粉体を純水中に入れ、焼成後の粉体を急冷し、LAGPをガラス化した(s4、s5)。さらに、急冷後のLAGPガラスを乳鉢で粉砕した上で(s6)、遊星ボールミルを用いてアルコール溶媒中でさらに粉砕することで所定の粒子径(例えば、0.2μm~1.0μm)に調整されたLAGPガラスを得た(s7)。そして、このLAGPガラスを用いて固体電解質層40と正極層20とを作製した。
<Procedure for manufacturing LAGP glass>
FIG. 2 shows the procedure for producing LAGP glass. First, NH 4 H 2 PO 4 , Li 2 CO 3 , γ-Al 2 O 3 , and GeO 2 , which are the raw materials for LAGP, are weighed (s1), and the weighed raw materials are mixed in a mortar for about 15 minutes (s2). .. Then, the mixture of the raw materials is put into an alumina bee and heated in an air atmosphere at a temperature of 400 ° C. for 3 hours for temporary firing (s3). Next, the powder after calcining was crushed in a mortar for 15 minutes and transferred to a platinum pot, and the powder calcined at a temperature of 1300 ° C. for 1 hour was put into pure water, and the powder after calcining was rapidly cooled. LAGP was vitrified (s4, s5). Further, the rapidly cooled LAGP glass is pulverized in a mortar (s6) and further pulverized in an alcohol solvent using a planetary ball mill to adjust the particle size to a predetermined particle size (for example, 0.2 μm to 1.0 μm). LAGP glass was obtained (s7). Then, the solid electrolyte layer 40 and the positive electrode layer 20 were manufactured using this LAGP glass.

<全固体電池の製造手順>
図3に、全固体電池1の製造手順の一例を示した。以下に、図1と図3とを参照しつつ全固体電池1の具体的な製造手順について説明する。まず、LAGPガラスの粉体を一軸油圧プレスして所定の厚さ(例えば、300μm)の成形体とし(s1a)、その成形体を900℃の温度で3時間焼成することで得たLAGPの焼結体を固体電解質層40とした(s2a)。固体電解質層40の作製と平行して、あるいは前後して、ペースト状の正極材料を作製しておく(s1b)。正極材料の作製手順としては、粉体材料であるLAGPガラスとLVPとを、例えば、質量比で50:50となるように混合したものに対し、バインダー(例えば、アクリル系バインダー)を、例えば、20wt%~30wt%添加する。次いで、溶媒としてエタノールなどの無水アルコールを、粉体材料に対し、例えば、30wt%~50wt%添加する。このようにして得た粉体材料とバインダーと溶媒との混合物を、ボールミルなどで、例えば、20h混合する。それによって、ペースト状の正極材料が得られる。
<Manufacturing procedure for all-solid-state batteries>
FIG. 3 shows an example of the manufacturing procedure of the all-solid-state battery 1. Hereinafter, a specific manufacturing procedure of the all-solid-state battery 1 will be described with reference to FIGS. 1 and 3. First, the powder of LAGP glass is uniaxially hydraulically pressed to obtain a molded product having a predetermined thickness (for example, 300 μm) (s1a), and the molded product is fired at a temperature of 900 ° C. for 3 hours to obtain the firing of LAGP. The composite was made into the solid electrolyte layer 40 (s2a). A paste-like positive electrode material is prepared in parallel with or before and after the preparation of the solid electrolyte layer 40 (s1b). As a procedure for producing the positive electrode material, for example, a binder (for example, an acrylic binder) is used for a mixture of LAGP glass and LVP, which are powder materials, so as to have a mass ratio of 50:50. Add 20 wt% to 30 wt%. Then, as a solvent, anhydrous alcohol such as ethanol is added to the powder material in an amount of, for example, 30 wt% to 50 wt%. The mixture of the powder material, the binder and the solvent thus obtained is mixed, for example, for 20 hours with a ball mill or the like. Thereby, a paste-like positive electrode material is obtained.

ペースト状の正極材料を作製したならば、その正極材料を、固体電解質層40の上面にスクリーン印刷により所定の厚さ(例えば、30μm)となるように塗工する(s2)。次いで、正極材料が塗工された固体電解質層40を、乾燥機を用い、100℃の温度で30分間乾燥させて、正極材料中の溶媒を揮発させる(s3)。そして、乾燥後の正極材料が塗工された固体電解質層40を、焼成炉に入れ、大気雰囲気中、400℃の温度で7時間加熱してバインダーを除去する脱脂を行った上で、窒素雰囲気中、625℃の温度で2時間加熱して本焼成を行う(s4、s5)。それによって、固体電解質層40の上面に正極層20が積層された焼結体が得られる。 After the paste-like positive electrode material is prepared, the positive electrode material is applied to the upper surface of the solid electrolyte layer 40 by screen printing so as to have a predetermined thickness (for example, 30 μm) (s2). Next, the solid electrolyte layer 40 coated with the positive electrode material is dried at a temperature of 100 ° C. for 30 minutes using a dryer to volatilize the solvent in the positive electrode material (s3). Then, the solid electrolyte layer 40 coated with the dried positive electrode material is placed in a firing furnace and heated at a temperature of 400 ° C. for 7 hours in an air atmosphere to remove the binder and then degrease the nitrogen atmosphere. Main firing is performed by heating at a temperature of 625 ° C. for 2 hours (s4, s5). As a result, a sintered body in which the positive electrode layer 20 is laminated on the upper surface of the solid electrolyte layer 40 can be obtained.

次に、固体電解質層40の下面に、所定の厚さ(例えば、100nm)の緩衝層50を形成する(s6)。本実施例では、緩衝層50として、金(Au)の薄膜を、スパッタリング装置を用いて形成した。それによって、上方から下方に向かって正極層20、固体電解質層40、緩衝層50がこの順に積層されてなる積層体(以下、第1積層体とも言う)が得られる。 Next, a buffer layer 50 having a predetermined thickness (for example, 100 nm) is formed on the lower surface of the solid electrolyte layer 40 (s6). In this embodiment, a thin film of gold (Au) was formed as the buffer layer 50 by using a sputtering device. As a result, a laminated body (hereinafter, also referred to as a first laminated body) in which the positive electrode layer 20, the solid electrolyte layer 40, and the buffer layer 50 are laminated in this order is obtained from the upper side to the lower side.

第1積層体を得たならば、その第1積層体を、露点管理されたグローブボックス内に設置された真空乾燥機を用い、150℃、5時間の条件で乾燥させる(s7)。その一方で、あらかじめ、負極層30の下面側に負極集電体31を形成しておく(s1c)。すなわち、負極集電体31となる銅箔に、負極層30となる所定の厚さ(例えば20μm)の平板状のLi金属が貼着されたものを用意しておく。また、負極集電体31には、ニッケル(Ni)からなるリードタブ33をあらかじめ溶接しておく。そして、グローブボックス内で負極集電体31が形成された負極層30を第1積層体に貼り付ける(s8)。このとき、Li金属側が第1積層体の下面に対向するようにする。また、正極層20の上面に、正極集電体21として、Niからなるリードタブ23が溶接されたアルミニウム箔を貼り付ける。このようにして、全固体電池1の電池本体10を完成させる(s9)。 Once the first laminated body is obtained, the first laminated body is dried at 150 ° C. for 5 hours using a vacuum dryer installed in a glove box with a dew point control (s7). On the other hand, the negative electrode current collector 31 is formed in advance on the lower surface side of the negative electrode layer 30 (s1c). That is, a copper foil to be the negative electrode current collector 31 to which a flat plate-shaped Li metal having a predetermined thickness (for example, 20 μm) to be the negative electrode layer 30 is attached is prepared. Further, a lead tab 33 made of nickel (Ni) is welded to the negative electrode current collector 31 in advance. Then, the negative electrode layer 30 on which the negative electrode current collector 31 is formed in the glove box is attached to the first laminated body (s8). At this time, the Li metal side is made to face the lower surface of the first laminated body. Further, an aluminum foil to which a lead tab 23 made of Ni is welded is attached to the upper surface of the positive electrode layer 20 as a positive electrode current collector 21. In this way, the battery body 10 of the all-solid-state battery 1 is completed (s9).

さらに、袋状のアルミラミネートフィルム(11a、11b)からなる外装体11内に電池本体10を収納するとともに(s10)、外装体11を封止し、タブリード(24、34)の先端側が、正極端子22および負極端子32として、外装体11の外に導出されてなる全固体電池1を完成させる(s11)。具体的には、真空中で、矩形平面形状を有して互いに対面する2枚のラミネートフィルム(11a、11b)間に電池本体10を配置する。このとき、矩形の2枚のラミネートフィルム(11a、11b)の一辺13から、正極層20と負極層30のリードタブ(24、34)の先端側が外方に突出させる。そして、矩形のラミネートフィルム(11a、11b)の四辺同士を溶着し、外装体11を封止する。 Further, the battery body 10 is housed in the exterior body 11 made of a bag-shaped aluminum laminated film (11a, 11b) (s10), the exterior body 11 is sealed, and the tip side of the tab lead (24, 34) is a positive electrode. The all-solid-state battery 1 led out to the outside of the exterior body 11 as the terminal 22 and the negative electrode terminal 32 is completed (s11). Specifically, the battery body 10 is arranged between two laminated films (11a, 11b) having a rectangular planar shape and facing each other in a vacuum. At this time, the tip ends of the lead tabs (24, 34) of the positive electrode layer 20 and the negative electrode layer 30 are projected outward from one side 13 of the two rectangular laminated films (11a, 11b). Then, the four sides of the rectangular laminated film (11a, 11b) are welded to each other to seal the exterior body 11.

===特性評価===
実施例に係る全固体電池1が二次電池として動作するか否かを評価するために、上述した手順で作製した全固体電池1に対して充電と放電とを行った。具体的には、作製した全固体電池1に対して充放電を6回繰り返すサイクル試験を行い、各サイクルにおける充電容量と放電容量とを測定した。なお、充電に際しては、終止電圧4.3V、130mA/gとなるまで定電流充電を行うこととした。あるいは、充電電流が0.2μAになった時点で充電を終了させることとした。放電については、終止電圧2.0Vとなるまで、定電流放電を行った。また、全固体電池1を60℃の温度下でC/20の充放電レートで充放電した。
=== Characteristic evaluation ===
In order to evaluate whether or not the all-solid-state battery 1 according to the embodiment operates as a secondary battery, the all-solid-state battery 1 produced by the above procedure was charged and discharged. Specifically, a cycle test in which charging and discharging were repeated 6 times was performed on the produced all-solid-state battery 1, and the charging capacity and the discharging capacity in each cycle were measured. At the time of charging, it was decided to perform constant current charging until the final voltage reaches 4.3 V and 130 mA / g. Alternatively, it was decided to end the charging when the charging current reaches 0.2 μA. As for the discharge, constant current discharge was performed until the final voltage reached 2.0 V. Further, the all-solid-state battery 1 was charged and discharged at a charge / discharge rate of C / 20 at a temperature of 60 ° C.

以下の表1に各サイクルにおける充電容量と放電容量とを示した。また、図4に各サイクルにおける充放電特性を示した。 Table 1 below shows the charge capacity and discharge capacity in each cycle. In addition, FIG. 4 shows the charge / discharge characteristics in each cycle.

Figure 0007025956000001
Figure 0007025956000001

表1および図4に示したように、本発明の実施例に係る全固体電池1は、LAGPからなる固体電解質層40と、Li金属からなる負極層30とを備えながら、実際に二次電池として動作する。本実施例の全固体電池1では、固体電解質層40と負極層30であるLi金属との間に金属からなる緩衝層50が形成されており、この緩衝層50がLAGPの還元を抑制している。すなわち、本実施例の全固体電池1では、金属からなる緩衝層50により、LAGPとLi金属とが物理的に接触することがない。もちろん、金属からなる緩衝層50は、固体電解質層40との間のイオン伝導を阻害することもない。さらに、実施例に係る全固体電池1では、緩衝層50にLiと合金化するAuを用いており、緩衝層50にLi金属が貼り付けられることで、LiとAuとの界面に合金が形成される。合金化された緩衝層50は、Liの電位よりも貴になり、LAGPが還元され難くなる。 As shown in Table 1 and FIG. 4, the all-solid-state battery 1 according to the embodiment of the present invention is actually a secondary battery while having a solid electrolyte layer 40 made of LAGP and a negative electrode layer 30 made of Li metal. Works as. In the all-solid-state battery 1 of this embodiment, a buffer layer 50 made of metal is formed between the solid electrolyte layer 40 and the Li metal which is the negative electrode layer 30, and the buffer layer 50 suppresses the reduction of LAGP. There is. That is, in the all-solid-state battery 1 of this embodiment, the LAGP and the Li metal do not physically come into contact with each other due to the buffer layer 50 made of metal. Of course, the buffer layer 50 made of metal does not interfere with ionic conduction with the solid electrolyte layer 40. Further, in the all-solid-state battery 1 according to the embodiment, Au that alloys with Li is used for the buffer layer 50, and the Li metal is attached to the buffer layer 50 to form an alloy at the interface between Li and Au. Will be done. The alloyed buffer layer 50 becomes more noble than the potential of Li, and LAGP is less likely to be reduced.

そして、本発明の実施例に係る全固体電池1は、イオン伝導度に優れ、酸化されにくいLAGPからなる固体電解質層40と、金属のうち、最も電位が卑であるLi金属からなる負極層30とを備えることで、動作電圧が高く、エネルギー密度に優れたものとなる。 The all-solid-state battery 1 according to the embodiment of the present invention has a solid electrolyte layer 40 made of LAGP, which has excellent ionic conductivity and is hard to be oxidized, and a negative electrode layer 30 made of Li metal, which has the lowest potential among metals. By providing the above, the operating voltage is high and the energy density is excellent.

===その他の実施例===
実施例に係る全固体電池1では、緩衝層50に用いたAuがLiと合金化することで、LAGPの還元を抑制しているものと考えられることから、Au以外の金属、例えば、インジウム(In)、アルミニウム(Al)、スズ(Sn)、亜鉛(Zn)などの金属を緩衝層50に用いることも考えられる。
=== Other Examples ===
In the all-solid-state battery 1 according to the embodiment, it is considered that Au used for the buffer layer 50 is alloyed with Li to suppress the reduction of LAGP. Therefore, a metal other than Au, for example, indium ( It is also conceivable to use a metal such as In), aluminum (Al), tin (Sn), and zinc (Zn) for the buffer layer 50.

実施例に係る全固体電池1では、緩衝層50をスパッタリングによって形成していたが、塗工した導電性ペーストを乾燥させたり焼き付けたりすることでも形成することができる。いずれにしても、固体電解質層40と負極層30との間に金属からなる緩衝層50が形成されていればよい。 In the all-solid-state battery 1 according to the embodiment, the buffer layer 50 was formed by sputtering, but it can also be formed by drying or baking the coated conductive paste. In any case, the buffer layer 50 made of metal may be formed between the solid electrolyte layer 40 and the negative electrode layer 30.

上記実施例に係る全固体電池1は、ラミネートフィルム(11a、11b)の外装体11内に電池本体10が収納された構造を有していたが、外装体11の素材は、樹脂など、ラミネートフィルムに限らない。もちろん、電池本体10のみを全固体電池として動作させることができることから、外装体11を省略してもよい。 The all-solid-state battery 1 according to the above embodiment has a structure in which the battery body 10 is housed in the outer body 11 of the laminated film (11a, 11b), but the material of the outer body 11 is laminated such as resin. Not limited to film. Of course, since only the battery body 10 can be operated as an all-solid-state battery, the exterior body 11 may be omitted.

正極活物質はLVPに限らない。また、上記実施例の全固体電池1では、固体電解質層40をプレス成形することで作製していたが、固体電解質層40を正極層20と同様にグリーンシート法と同様の方法で作製してもよい。例えば、固体電解質層40のグリーンシートと正極層20のグリーンシートとを積層したものを焼成して得た焼結体に緩衝層50を形成し、その上で、箔状のLi金属を緩衝層50の表面に貼着してもよい。 The positive electrode active material is not limited to LVP. Further, in the all-solid-state battery 1 of the above embodiment, the solid electrolyte layer 40 was produced by press molding, but the solid electrolyte layer 40 was produced by the same method as the green sheet method in the same manner as the positive electrode layer 20. May be good. For example, a buffer layer 50 is formed on a sintered body obtained by firing a laminate of a green sheet of a solid electrolyte layer 40 and a green sheet of a positive electrode layer 20, and a foil-shaped Li metal is placed on the buffer layer. It may be attached to the surface of 50.

1 全固体電池、10 電池本体、11 外装体、
11a,11b ラミネートフィルム、20 正極層、21 正極集電体、
22 正極端子、23、33 リードタブ、30 負極層、31 負極集電体、
32 負極端子、40 固体電解質層、50 緩衝層、100 積層電極体
1 all-solid-state battery, 10 battery body, 11 exterior body,
11a, 11b laminated film, 20 positive electrode layer, 21 positive electrode current collector,
22 Positive electrode terminal, 23, 33 Lead tab, 30 Negative electrode layer, 31 Negative electrode current collector,
32 Negative electrode terminal, 40 Solid electrolyte layer, 50 Buffer layer, 100 Laminated electrode body

Claims (2)

上下方向に、正極活物質と固体電解質とを含む正極層と、平板状に成形された固体電解質からなる固体電解質層と、Li金属からなる負極層とが積層されてなる積層電極体を備えた全固体電池であって、前記固体電解質は、一般式Li1.5Al0.5Ge1.5(POで表される化合物であり、前記積層電極体は、前記固体電解質層と前記負極層との間に金属からなる緩衝層が形成されてなることを特徴とする全固体電池。 In the vertical direction, a laminated electrode body is provided in which a positive electrode layer containing a positive electrode active material and a solid electrolyte, a solid electrolyte layer made of a solid electrolyte formed into a flat plate, and a negative electrode layer made of Li metal are laminated. In the all-solid-state battery, the solid electrolyte is a compound represented by the general formula Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 , and the laminated electrode body is the solid electrolyte layer. An all-solid-state battery characterized in that a buffer layer made of metal is formed between the negative electrode layer and the negative electrode layer. 請求項1に記載の全固体電池において、前記緩衝層はLiと合金化する金属であることを特徴とする全固体電池。
The all-solid-state battery according to claim 1, wherein the buffer layer is a metal alloyed with Li.
JP2018033545A 2018-02-27 2018-02-27 All solid state battery Active JP7025956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018033545A JP7025956B2 (en) 2018-02-27 2018-02-27 All solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018033545A JP7025956B2 (en) 2018-02-27 2018-02-27 All solid state battery

Publications (2)

Publication Number Publication Date
JP2019149298A JP2019149298A (en) 2019-09-05
JP7025956B2 true JP7025956B2 (en) 2022-02-25

Family

ID=67849411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018033545A Active JP7025956B2 (en) 2018-02-27 2018-02-27 All solid state battery

Country Status (1)

Country Link
JP (1) JP7025956B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7597699B2 (en) 2021-11-24 2024-12-10 トヨタ自動車株式会社 All-solid-state battery and method for producing same
CN114883643B (en) * 2022-05-17 2024-04-30 山东大学 A solid electrolyte and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (en) 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium battery element
JP2012142268A (en) 2010-12-17 2012-07-26 Toyota Motor Corp Secondary battery
JP2015028854A (en) 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353309A (en) 2004-06-08 2005-12-22 Tokyo Institute Of Technology Lithium battery element
JP2012142268A (en) 2010-12-17 2012-07-26 Toyota Motor Corp Secondary battery
JP2015028854A (en) 2013-07-30 2015-02-12 日本特殊陶業株式会社 All-solid-state battery

Also Published As

Publication number Publication date
JP2019149298A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP7154847B2 (en) Method for manufacturing all-solid-state battery
US20200194831A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
JP5078120B2 (en) All solid battery
JP5348607B2 (en) All-solid lithium secondary battery
WO2015068268A1 (en) All-solid-state cell, electrode for all-solid-state cell, and method for manufacturing same
JP7129144B2 (en) All-solid-state battery and manufacturing method thereof
JP5970284B2 (en) All solid battery
JP2015185337A (en) All-solid battery
JP2000311710A (en) Solid electrolyte battery and its manufacture
US10483586B2 (en) All-solid-state battery using sodium ion intercalation cathode with Li/Na exchanging layer
JPWO2018193994A1 (en) All-solid-state lithium-ion secondary battery
WO2011118799A1 (en) Solid electrolyte material and all solid-state lithium secondary battery
JP2015013775A (en) Ion conductive solid, method for producing the same, and solid-state battery
JP2013051171A (en) Electrode body for all solid-state battery and all solid-state battery
JP7105055B2 (en) Anode materials, anodes and batteries
JP2020514948A (en) ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
WO2017217079A1 (en) All-solid battery
JP7025956B2 (en) All solid state battery
US9812733B2 (en) Solid electrolyte and secondary battery
KR20220073768A (en) Use of transition metal sulfide compounds in positive electrodes for solid state batteries
JP5846307B2 (en) All solid battery
CN113224377B (en) Solid-state batteries
JP7600690B2 (en) Manufacturing method of solid-state battery
JP7433004B2 (en) all solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7025956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250