JP7351716B2 - Density measuring device - Google Patents

Density measuring device Download PDF

Info

Publication number
JP7351716B2
JP7351716B2 JP2019201126A JP2019201126A JP7351716B2 JP 7351716 B2 JP7351716 B2 JP 7351716B2 JP 2019201126 A JP2019201126 A JP 2019201126A JP 2019201126 A JP2019201126 A JP 2019201126A JP 7351716 B2 JP7351716 B2 JP 7351716B2
Authority
JP
Japan
Prior art keywords
fluid material
density
storage tank
suspended fluid
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201126A
Other languages
Japanese (ja)
Other versions
JP2021076400A (en
Inventor
裕泰 石井
秀岳 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2019201126A priority Critical patent/JP7351716B2/en
Publication of JP2021076400A publication Critical patent/JP2021076400A/en
Application granted granted Critical
Publication of JP7351716B2 publication Critical patent/JP7351716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、懸濁流体材料の密度測定装置に関する。 The present invention relates to a device for measuring the density of suspended fluid materials.

建設分野においては、セメントミルク、グラウト、泥水、流動化処理土等の懸濁流体材料を地盤改良材、埋め戻し材、充填材等として用いる場合がある(例えば、特許文献1参照)。また、トンネル掘削時や縦孔の削孔時において、地山の安定を図ることを目的として、懸濁流体材料を注入する場合がある(例えば、特許文献2参照)。懸濁流体材料は、施工時に必要な流動性や施工後の強度など、目的に応じた性能品質を確保するにあたり、懸濁流体材料の密度が所定の範囲になるように管理する必要がある。そのため、懸濁流体材料は、密度の測定を適宜行う必要がある。
懸濁流体材料の密度の測定方法として、懸濁流体材料の一部を採取し、これを定量容器に収めて重量を測定した後、この重量を容積で除することにより密度を算出する場合がある。ところが、前記密度の測定方法は、試料を採取してから、密度を算出するまでに手間と時間がかかる。また、深さ方向の密度分布を確認するためには、複数の試料を採取して、試料ごとに密度を算出する必要があるため、さらに手間と時間がかかる。
また、特許文献3には、懸濁流体材料が貯留された貯留槽の底部に圧力計を設置し、懸濁流体材料の深さと圧力計による測定値とを利用して密度を算出する懸濁流体材料の密度の測定方法が開示されている。ところが、この方法は、懸濁流体材料の全体的な平均値を算出することを目的とするものであり、深さ方向の密度分布を確認することを目的とするものではない。また、密度を算出する際には、圧力計から懸濁流体材料の上面(液面)までの高さを測定する必要がある。
In the construction field, suspended fluid materials such as cement milk, grout, muddy water, and fluidized soil are sometimes used as ground improvement materials, backfill materials, fillers, etc. (see, for example, Patent Document 1). Further, when excavating a tunnel or drilling a vertical hole, a suspended fluid material may be injected for the purpose of stabilizing the ground (for example, see Patent Document 2). Suspended fluid materials must be managed so that the density of the suspended fluid material falls within a predetermined range in order to ensure the performance quality required for the purpose, such as the fluidity required during construction and the strength after construction. Therefore, it is necessary to appropriately measure the density of suspended fluid materials.
One way to measure the density of a suspended fluid material is to take a portion of the suspended fluid material, place it in a quantitative container, measure the weight, and then calculate the density by dividing this weight by the volume. be. However, the method for measuring density requires time and effort from the time a sample is taken to the time the density is calculated. Furthermore, in order to check the density distribution in the depth direction, it is necessary to collect multiple samples and calculate the density for each sample, which takes more effort and time.
Furthermore, Patent Document 3 discloses a suspension flow system in which a pressure gauge is installed at the bottom of a storage tank in which suspended fluid material is stored, and the density is calculated using the depth of the suspended fluid material and the measured value by the pressure gauge. A method for measuring the density of body material is disclosed. However, this method is intended to calculate the overall average value of the suspended fluid material, and is not intended to confirm the density distribution in the depth direction. Furthermore, when calculating the density, it is necessary to measure the height from the pressure gauge to the upper surface (liquid level) of the suspended fluid material.

特開2019-027134号公報Japanese Patent Application Publication No. 2019-027134 特開2015-086535号公報Japanese Patent Application Publication No. 2015-086535 特開2010-216205号公報Japanese Patent Application Publication No. 2010-216205

本発明は、深さ方向の密度分布を簡易に特定することを可能とした密度測定装置を提案することを課題とする。 An object of the present invention is to propose a density measuring device that makes it possible to easily specify the density distribution in the depth direction.

前記課題を解決するための本発明の密度測定装置は、懸濁流体材料が貯留される貯留槽と、前記懸濁流体材料内において異なる高さ位置に配設される複数の圧力計と、下端が前記貯留槽の底面に当接した状態で前記貯留槽の側壁に沿って立設された棒状部材とを備えている。前記貯留槽は、前記懸濁流体材料を攪拌するための攪拌手段および材料を投入可能となるように上面が開口している。複数の前記圧力計は、上下に間隔をあけて前記棒状部材に配設されていて、前記貯留槽の底面からの高さが既知である。
かる密度測定装置によれば、懸濁流体材料内の深さ位置の異なる複数の圧力計の測定結果により懸濁流体材料の密度を算出するため、深さ方向の密度分布を確認することができる。また、密度の確認にあたって懸濁流体材料を採取する必要が無いため、作業性に優れている。また、圧力分布を利用して懸濁流体材料の上面高さを算出することができるため、懸濁流体材料の上面高さを別途測定する手間を省略することができる。
The density measuring device of the present invention for solving the above problems includes: a storage tank in which a suspended fluid material is stored; a plurality of pressure gauges disposed at different height positions within the suspended fluid material; and a rod-shaped member erected along the side wall of the storage tank while contacting the bottom surface of the storage tank. The upper surface of the storage tank is open so that stirring means for stirring the suspended fluid material and materials can be input thereto. The plurality of pressure gauges are arranged on the rod-shaped member at intervals in the vertical direction, and their heights from the bottom surface of the storage tank are known.
According to such a density measuring device , the density of the suspended fluid material is calculated based on the measurement results of a plurality of pressure gauges at different depth positions within the suspended fluid material, so the density distribution in the depth direction can be confirmed. I can do it. In addition, since there is no need to collect suspended fluid material when checking the density, workability is excellent. Furthermore, since the height of the top surface of the suspended fluid material can be calculated using the pressure distribution, it is possible to omit the effort of separately measuring the height of the top surface of the suspended fluid material.

また、複数の前記圧力計が、前記貯留槽内に立設された棒状部材に、上下に間隔をあけて配設されているため、下端を貯留槽の底面に当接させた状態で棒状部材を貯留槽内に立設することで、各圧力計を所定の位置に簡易に配置することができる。そのため、貯留槽内の懸濁流体材料を攪拌する際に圧力計を撤去する作業や、攪拌後に圧力計を設置する作業が容易である。
なお、前記棒状部材、上下方向に連続した溝部が形成された本体部と、前記溝部の側面の開口を遮蔽する蓋材と、前記溝部の下端の開口を遮蔽する底部とを備えていて、前記本体部の上端は開口されており、前記蓋材に上下方向に間隔をあけて複数の貫通孔が形成されてい、複数の前記圧力計は、圧力感知部が前記貫通孔を介して前記棒状部材の外側に露出するように、前記棒状部材の内部に配設されている。そのため、圧力計および圧力計などから延びるケーブルを保護した状態で、貯留槽内に圧力計を配設することができる。
Further, since the plurality of pressure gauges are vertically spaced apart from each other on a rod-shaped member erected in the storage tank, the rod-shaped member is placed in contact with the bottom end of the storage tank. By standing upright in the storage tank, each pressure gauge can be easily placed at a predetermined position. Therefore, it is easy to remove the pressure gauge when stirring the suspended fluid material in the storage tank, and to install the pressure gauge after stirring.
The rod-shaped member includes a main body in which a vertically continuous groove is formed, a lid that covers an opening on a side surface of the groove , and a bottom that covers an opening at a lower end of the groove , The upper end of the main body part is open, and a plurality of through holes are formed in the lid material at intervals in the vertical direction, and the pressure sensing parts of the plurality of pressure gauges are connected to the pressure sensor through the through holes. It is arranged inside the rod-shaped member so as to be exposed to the outside of the rod-shaped member. Therefore , the pressure gauge can be placed in the storage tank while the pressure gauge and the cable extending from the pressure gauge are protected.

本発明の密度測定装置によれば、深度方向の密度分布および液面高さを簡易に特定することが可能となる。 According to the density measuring device of the present invention, it becomes possible to easily specify the density distribution in the depth direction and the liquid level height.

本実施形態に係る密度測定装置の概略図である。FIG. 1 is a schematic diagram of a density measuring device according to the present embodiment. 棒状部材の分解斜視図である。FIG. 3 is an exploded perspective view of a rod-shaped member. 実験装置の概要を示す断面図である。FIG. 2 is a cross-sectional view showing an outline of the experimental apparatus. (a)~(c)は、測定実験におけるケース毎の底面からの距離と圧力の関係を示すグラフである。(a) to (c) are graphs showing the relationship between the distance from the bottom surface and the pressure for each case in the measurement experiment.

本実施形態では、懸濁流体材料Wに必要な流動性や硬化後の強度等、懸濁流体材料Wの使用目的に見合った性能・品質を確保することを目的として、懸濁流体材料Wの密度を所定範囲に管理するための密度測定装置1とこれを利用した密度測定方法について説明する。ここで、懸濁流体材料Wとは、泥水、グラウト、モルタル、流動化処理土等の地盤改良等に用いる流動性を有した材料をいう。 In the present embodiment, the suspension fluid material W is used for the purpose of ensuring the performance and quality suitable for the purpose of use of the suspension fluid material W, such as the fluidity required for the suspension fluid material W and the strength after hardening. A density measuring device 1 for controlling density within a predetermined range and a density measuring method using the device will be described. Here, the suspended fluid material W refers to a fluid material used for ground improvement, such as mud, grout, mortar, and fluidized soil.

本実施形態の密度測定装置1は、図1に示すように、懸濁流体材料Wが貯留される貯留槽2と、懸濁流体材料W内において異なる高さ位置に配設される複数の圧力計3とを備えている。
貯留槽2は、金属製の容器からなる。貯留槽2の上面は、貯留物(懸濁流体材料W)を攪拌するための攪拌手段(例えば、バックホウのバケット)や材料等の投入が可能となるように開口している。本実施形態の貯留槽2は、直方体状を呈している。
複数の圧力計3は、貯留槽2内の底面21に立設された棒状部材4に、上下に所定の間隔をあけて配設されている。圧力計3の数および圧力計3同士の間隔は、懸濁流体材料W内に2つ以上配置されていれば限定されるものではなく、適宜決定すればよい。棒状部材4は、その下端が貯留槽2の底面21に当接した状態で貯留槽2の側壁に沿って垂直に立設されている。したがって、各圧力計3は、貯留槽2の底面21からの高さが既知な状態で鉛直方向に並べられている。
As shown in FIG. 1, the density measuring device 1 of this embodiment includes a storage tank 2 in which a suspended fluid material W is stored, and a plurality of pressure points arranged at different height positions within the suspended fluid material W. It has a total of 3.
The storage tank 2 is made of a metal container. The upper surface of the storage tank 2 is open so that stirring means (for example, a bucket of a backhoe) for stirring the stored material (suspended fluid material W), materials, and the like can be input. The storage tank 2 of this embodiment has a rectangular parallelepiped shape.
The plurality of pressure gauges 3 are disposed vertically at predetermined intervals on a rod-shaped member 4 erected on the bottom surface 21 of the storage tank 2 . The number of pressure gauges 3 and the interval between pressure gauges 3 are not limited as long as two or more are arranged in the suspended fluid material W, and may be determined as appropriate. The rod-shaped member 4 is erected vertically along the side wall of the storage tank 2 with its lower end in contact with the bottom surface 21 of the storage tank 2 . Therefore, each pressure gauge 3 is arranged in the vertical direction in a state where the height from the bottom surface 21 of the storage tank 2 is known.

棒状部材4は、図2に示すように、上下方向に連続した溝部42が形成された本体部41と、溝部42の開口を遮蔽する蓋材43とを備えている。棒状部材4の下端は底部44により遮蔽されている。溝部42の側面の開口と溝部42の下端開口とを塞ぐことで、懸濁流体材料Wが棒状部材4の内部に浸入することが防止されている。一方、棒状部材4の上端は開口されていて、圧力計3のケーブル32等の配線が可能に構成されている(図1参照)。本体部41は、断面コ字状のアルミニウム合金製部材(いわゆるアルミチャンネル材)により構成されている。なお、本体部41を構成する材料は限定されるものではなく、例えば、ステンレス製や塩化ビニル製であってもよい。また、本体部41の断面形状は、必ずしもコ字状である必要はなく、例えば、C字状であってもよい。蓋材43は、アルミニウム合金製の板材からなる。蓋材43を構成する材料は、本体部41と同じ材料とする。蓋材43は、本体部41に対して、着脱可能である。また、蓋材43と本体部41との当接部(蓋材43の縁)には、棒状部材4の内部への懸濁流体材料Wの流入を防止するためのシール材(図示せず)が介設されている。シール材には、例えばグリス、エポキシ樹脂、シリコンゴム等を使用すればよい。蓋材43には、圧力計3と同数の貫通孔45が上下方向に間隔をあけて形成されている。本実施形態では、蓋材43の下端部に形成された最下段の貫通孔45を基点として、8個の貫通孔45が所定の間隔をあけて形成されている。各圧力計3は、圧力感知部31が貫通孔45を介して棒状部材4の外側に露出するように、棒状部材4の内部(溝部42)に配設されている。圧力計3のケーブル32は、溝部42を通って、棒状部材4の上端から引き出されている。 As shown in FIG. 2, the rod-shaped member 4 includes a main body 41 in which a vertically continuous groove 42 is formed, and a lid 43 that covers the opening of the groove 42. The lower end of the rod-shaped member 4 is covered by a bottom portion 44 . By closing the side openings of the groove portion 42 and the lower end opening of the groove portion 42, the suspended fluid material W is prevented from penetrating into the inside of the rod-shaped member 4. On the other hand, the upper end of the rod-shaped member 4 is open, and is configured to allow wiring of the cable 32 of the pressure gauge 3, etc. (see FIG. 1). The main body portion 41 is made of an aluminum alloy member (so-called aluminum channel material) having a U-shaped cross section. Note that the material constituting the main body portion 41 is not limited, and may be made of stainless steel or vinyl chloride, for example. Further, the cross-sectional shape of the main body portion 41 does not necessarily have to be U-shaped, and may be, for example, C-shaped. The lid member 43 is made of an aluminum alloy plate. The material constituting the lid member 43 is the same as that of the main body portion 41. The lid member 43 is removably attached to the main body portion 41. Further, a sealing material (not shown) for preventing the suspended fluid material W from flowing into the inside of the rod-shaped member 4 is provided at the contact portion between the lid member 43 and the main body portion 41 (the edge of the lid member 43). is interposed. For example, grease, epoxy resin, silicone rubber, etc. may be used as the sealing material. The lid member 43 has the same number of through holes 45 as the pressure gauges 3 formed at intervals in the vertical direction. In this embodiment, eight through holes 45 are formed at predetermined intervals with the lowest through hole 45 formed at the lower end of the lid member 43 as a starting point. Each pressure gauge 3 is disposed inside the rod-shaped member 4 (groove portion 42) so that the pressure sensing portion 31 is exposed to the outside of the rod-shaped member 4 through the through hole 45. The cable 32 of the pressure gauge 3 passes through the groove 42 and is pulled out from the upper end of the rod-shaped member 4.

以下、密度測定装置1を利用した懸濁流体材料Wの密度測定方法について説明する。密度測定方法は、圧力測定工程と密度算出工程とを備えている。
圧力測定工程では、貯留槽2の底面21からの高さが異なる複数の圧力計3により貯留槽2に貯留された懸濁流体材料Wの圧力を測定する。
密度算出工程では、複数の圧力計3により測定された懸濁流体材料Wの圧力分布により密度を算出する。密度算出工程では、まず、圧力分布を線形近似して圧力がゼロとなる高さ位置を懸濁流体材料Wの上面高さとみなして貯留槽2内における懸濁流体材料Wの深さを特定する。次に、上下に配設された圧力計3の測定値の圧力差を高低差で除することにより懸濁流体材料Wの単位体積重量を算出し、これを重力加速度(9.81)で除することで密度を算出する。懸濁流体材料Wの密度の算出は、各圧力計3同士の間を層と仮定して、各層毎に行う。
Hereinafter, a method for measuring the density of suspended fluid material W using the density measuring device 1 will be explained. The density measurement method includes a pressure measurement step and a density calculation step.
In the pressure measurement step, the pressure of the suspended fluid material W stored in the storage tank 2 is measured using a plurality of pressure gauges 3 having different heights from the bottom surface 21 of the storage tank 2.
In the density calculation step, the density is calculated based on the pressure distribution of the suspended fluid material W measured by the plurality of pressure gauges 3. In the density calculation step, first, the depth of the suspended fluid material W in the storage tank 2 is determined by linearly approximating the pressure distribution and considering the height position where the pressure is zero as the top surface height of the suspended fluid material W. . Next, the unit volume weight of the suspended fluid material W is calculated by dividing the pressure difference between the measured values of the pressure gauges 3 arranged above and below by the height difference, and this is divided by the gravitational acceleration (9.81). Calculate the density by doing this. The density of the suspended fluid material W is calculated for each layer, assuming that the space between the pressure gauges 3 is a layer.

測定の結果、測定密度(密度算出工程において算出された密度)が目標密度に対して過大な場合は、その乖離を縮小するために加水を行う。このとき、加水量は、液面高さと貯留槽2の内面積とをかけ合わせることで特定された液量(懸濁流体材料Wの体積)を利用して算出した目標密度を得るために必要な量とする。なお、貯留槽2への加水は、加水制御装置(図示せず)を利用して、自動的に行ってもよい。すなわち、懸濁流体材料Wの液面高さ、懸濁流体材料Wの密度分布等に基づいて加水量を算出し、算出した加水量に達するまで加水制御装置により自動的に水を供給することで、加水調整作業の合理化を図ってもよい。 As a result of the measurement, if the measured density (density calculated in the density calculation step) is excessive with respect to the target density, water is added to reduce the deviation. At this time, the amount of water added is necessary to obtain the target density calculated using the liquid amount (volume of suspended fluid material W) specified by multiplying the liquid level height and the inner area of the storage tank 2. The amount shall be appropriate. Note that water may be added to the storage tank 2 automatically using a water addition control device (not shown). That is, the amount of water added is calculated based on the liquid level height of the suspended fluid material W, the density distribution of the suspended fluid material W, etc., and water is automatically supplied by the water addition control device until the calculated amount of water is reached. You may also try to rationalize the water addition adjustment work.

以上、本実施形態の密度測定装置1およびこれを利用した懸濁流体材料Wの密度測定方法によれば、懸濁流体材料W内の深さ位置の異なる複数の圧力計3の測定結果を利用して懸濁流体材料Wの密度を算出するため、深さ方向の密度分布を確認することができる。すなわち、懸濁流体材料Wを複数個所から採取せずとも、深さ方向の密度分布を確認することができるため、懸濁流体材料Wの密度管理の合理化・効率化を図ることができる。 As described above, according to the density measuring device 1 of the present embodiment and the method for measuring the density of a suspended fluid material W using the same, the measurement results of a plurality of pressure gauges 3 at different depth positions within the suspended fluid material W are used. Since the density of the suspended fluid material W is calculated by doing so, the density distribution in the depth direction can be confirmed. That is, since the density distribution in the depth direction can be confirmed without collecting the suspended fluid material W from multiple locations, the density management of the suspended fluid material W can be streamlined and made more efficient.

また、圧力分布を利用して懸濁流体材料Wの上面高さを算出することができるため、懸濁流体材料Wの上面高さを別途測定する手間を省略することができる。
さらに、圧力計3が、貯留槽2の底面21に立設された棒状部材4に、上下に間隔をあけて配設されているため、圧力計3を所定の深さ位置に簡易に配置することができる。そのため、貯留槽2内の懸濁流体材料Wを攪拌する際に圧力計3を撤去する場合や、攪拌後に圧力計3を再設置する場合に作業が容易である。また、圧力計3は、棒状部材4の内部に配設されているため、圧力計3およびケーブル32を保護した状態で、貯留槽2内に圧力計3を配設することができる。また、圧力計3は、蓋材43の貫通孔45から圧力感知部31が露出するため、確実に懸濁流体材料Wの圧力を感知できる。
Furthermore, since the height of the top surface of the suspended fluid material W can be calculated using the pressure distribution, the effort of separately measuring the height of the top surface of the suspended fluid material W can be omitted.
Further, since the pressure gauge 3 is vertically spaced apart from the rod member 4 erected on the bottom surface 21 of the storage tank 2, the pressure gauge 3 can be easily positioned at a predetermined depth position. be able to. Therefore, it is easy to remove the pressure gauge 3 when stirring the suspended fluid material W in the storage tank 2, or to reinstall the pressure gauge 3 after stirring. Further, since the pressure gauge 3 is disposed inside the rod-shaped member 4, the pressure gauge 3 can be disposed within the storage tank 2 while the pressure gauge 3 and the cable 32 are protected. Further, since the pressure sensing portion 31 of the pressure gauge 3 is exposed through the through hole 45 of the lid member 43, the pressure of the suspended fluid material W can be reliably sensed.

次に、室内実験装置を利用して行った、懸濁流体材料Wの密度の測定実験結果について説明する。
本実験では、図3に示すように、貯留槽2として、直径300mm、高さ1000mmの円筒容器を利用した。懸濁流体材料Wは、粘土粉体を水で溶いた泥水である。この泥水を貯留槽2に投入し、一様に攪拌した上で圧力を測定した。
棒状部材4の下端部から、250mmピッチで四つの圧力計3を設けた。圧力計3による測定間隔は、1秒間隔とし、時系列で記録した。棒状部材4には、本体部41として幅50mm、長さ2000mmのアルミチャンネルを使用し、蓋材43として幅50mm、長さ2000mmのアルミ板を使用した。
懸濁流体材料W中に四つ(三つ以上)の圧力計3a~3dを配置し、圧力計3同士の間の層毎に密度を算出するものとした。
実験(圧力測定)を3回行った(ケース1~3)。なお、ケース2は、ケース1の測定後、一部の泥水(懸濁流体材料W)を貯留槽2内から排出した上で加水した懸濁流体材料Wに対して行い、ケース3は、ケース2の測定後、一部の泥水(懸濁流体材料W)を貯留槽2内から排出した上で加水した懸濁流体材料Wに対して行った。ケース毎の底面21からの距離と圧力との関係を図4(a)~(c)に示す。また、実験結果を表1に示す。
Next, the results of an experiment to measure the density of the suspended fluid material W, which was conducted using an indoor experimental device, will be explained.
In this experiment, as shown in FIG. 3, a cylindrical container with a diameter of 300 mm and a height of 1000 mm was used as the storage tank 2. The suspended fluid material W is muddy water made by dissolving clay powder in water. This muddy water was put into the storage tank 2, stirred uniformly, and then the pressure was measured.
Four pressure gauges 3 were provided at a pitch of 250 mm from the lower end of the rod-shaped member 4. The measurement interval by the pressure gauge 3 was 1 second, and the measurements were recorded in chronological order. For the rod-shaped member 4, an aluminum channel with a width of 50 mm and a length of 2000 mm was used as the main body 41, and an aluminum plate with a width of 50 mm and a length of 2000 mm was used as the lid member 43.
Four (three or more) pressure gauges 3a to 3d were arranged in the suspended fluid material W, and the density was calculated for each layer between the pressure gauges 3.
The experiment (pressure measurement) was conducted three times (cases 1 to 3). In addition, in case 2, after the measurement in case 1, part of the muddy water (suspended fluid material W) was discharged from the storage tank 2 and water was added to the suspended fluid material W. After measurement No. 2, some of the muddy water (suspended fluid material W) was discharged from the storage tank 2, and water was added to the suspended fluid material W. The relationship between the distance from the bottom surface 21 and the pressure for each case is shown in FIGS. 4(a) to 4(c). Further, the experimental results are shown in Table 1.

Figure 0007351716000001
Figure 0007351716000001

図4(a)~(c)に示すように、各圧力計3a~3dの測定値の近似直線により求まる懸濁流体材料Wの液面高さ(深さ)は、ケース1は878.93mm(直線y=-58.684x+878.93)、ケース2は931.01mm(直線y=-66.479x+931.01)、ケース3は938.21mm(直線y=-70.338x+938.21)となった。また、表1に示すように、ケース1の平均の密度は1.73g/cmであったのに対し、ケース2は1.53g/cm、ケース3は1.45g/cmであった。したがって、ケース2,3において加水により懸濁流体材料Wの密度が低下することが確認できた。 As shown in FIGS. 4(a) to 4(c), the liquid level height (depth) of the suspended fluid material W determined by the approximate straight line of the measured values of each pressure gauge 3a to 3d is 878.93 mm in case 1. (Line y = -58.684x + 878.93), Case 2 is 931.01 mm (Line y = -66.479x + 931.01), Case 3 is 938.21 mm (Line y = -70.338x + 938.21) . Furthermore, as shown in Table 1, the average density of case 1 was 1.73 g/cm 3 , while that of case 2 was 1.53 g/cm 3 and case 3 was 1.45 g/cm 3 . Ta. Therefore, it was confirmed that in Cases 2 and 3, the density of the suspended fluid material W was reduced by adding water.

以上、本発明に係る実施形態について説明したが、本発明は前述の実施形態に限られず、前記の各構成要素については本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
前記実施形態では、複数の圧力計3が棒状部材4を介して上下に列状に配設されている場合について説明したが、貯留槽2の底面21からの高さが既知であれば圧力計3の配置および設置方法は限定されるものではない。
圧力計3の数は複数であれば限定されるものではなく、適宜決定すればよい。例えば、懸濁流体材料Wの密度や体積を算出する場合には、2つ以上設置すればよい。また、貯留槽2内において、深さ毎(層毎)の密度を算出する場合には、3つ以上の圧力計3を設置すればよい。
前記実施形態では、棒状部材4を垂直に設けるものとしたが、棒状部材4は傾斜していてもよい。
貯留槽2の形状寸法は限定されるものではなく、適宜決定すればよい。
Although the embodiments according to the present invention have been described above, the present invention is not limited to the above-described embodiments, and each of the above-mentioned components can be modified as appropriate without departing from the spirit of the present invention.
In the embodiment described above, a case has been described in which a plurality of pressure gauges 3 are arranged vertically in a row via the rod-shaped member 4, but if the height from the bottom surface 21 of the storage tank 2 is known, the pressure gauges The arrangement and installation method of No. 3 is not limited.
The number of pressure gauges 3 is not limited as long as it is plural, and may be determined as appropriate. For example, when calculating the density or volume of the suspended fluid material W, two or more may be installed. Furthermore, in the case of calculating the density for each depth (for each layer) in the storage tank 2, three or more pressure gauges 3 may be installed.
In the embodiment described above, the rod-shaped member 4 was provided vertically, but the rod-shaped member 4 may be inclined.
The shape and dimensions of the storage tank 2 are not limited and may be determined as appropriate.

1 密度測定装置
2 貯留槽
21 底面
3 圧力計
31 圧力感知部
4 棒状部材
41 本体部
42 溝部
43 蓋材
44 底部
45 貫通孔
W 懸濁流体材料
1 Density measuring device 2 Storage tank 21 Bottom surface 3 Pressure gauge 31 Pressure sensing section 4 Rod-shaped member 41 Main body section 42 Groove section 43 Cover material 44 Bottom section 45 Through hole W Suspended fluid material

Claims (1)

懸濁流体材料が貯留される貯留槽と、
前記懸濁流体材料内において異なる高さ位置に配設される複数の圧力計と、
下端が前記貯留槽の底面に当接した状態で前記貯留槽の側壁に沿って立設された棒状部材と、を備える密度測定装置であって、
前記貯留槽は、前記懸濁流体材料を攪拌するための攪拌手段および材料を投入可能となるように上面が開口しており、
複数の前記圧力計は、上下に間隔をあけて前記棒状部材に配設されていて、前記貯留槽の底面からの高さが既知であり、
前記棒状部材は、上下方向に連続した溝部が形成された本体部と、前記溝部の側面の開口を遮蔽する蓋材と、前記溝部の下端の開口を遮蔽する底部と、を備えており、
前記本体部の上端は開口されていて、
前記蓋材には、上下方向に間隔をあけて複数の貫通孔が形成されていて、
複数の前記圧力計は、圧力感知部が前記貫通孔を介して前記棒状部材の外側に露出するように、前記棒状部材の内部に配設されていることを特徴とする密度測定装置。
a reservoir in which suspended fluid material is stored;
a plurality of pressure gauges disposed at different heights within the suspended fluid material;
A density measuring device comprising: a rod-shaped member erected along the side wall of the storage tank with its lower end in contact with the bottom surface of the storage tank,
The storage tank has an open top surface so that stirring means for stirring the suspended fluid material and materials can be input thereto;
The plurality of pressure gauges are arranged on the rod-shaped member at vertical intervals, and the height from the bottom surface of the storage tank is known,
The rod-shaped member includes a main body in which a vertically continuous groove is formed, a lid that covers an opening on a side surface of the groove , and a bottom that covers an opening at a lower end of the groove ,
The upper end of the main body is open,
A plurality of through holes are formed in the lid material at intervals in the vertical direction,
The density measuring device is characterized in that the plurality of pressure gauges are arranged inside the rod-shaped member such that the pressure sensing portion is exposed to the outside of the rod-shaped member through the through hole.
JP2019201126A 2019-11-06 2019-11-06 Density measuring device Active JP7351716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201126A JP7351716B2 (en) 2019-11-06 2019-11-06 Density measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201126A JP7351716B2 (en) 2019-11-06 2019-11-06 Density measuring device

Publications (2)

Publication Number Publication Date
JP2021076400A JP2021076400A (en) 2021-05-20
JP7351716B2 true JP7351716B2 (en) 2023-09-27

Family

ID=75897831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201126A Active JP7351716B2 (en) 2019-11-06 2019-11-06 Density measuring device

Country Status (1)

Country Link
JP (1) JP7351716B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182095A (en) 1999-12-28 2001-07-03 Nittodaito Construction Co Ltd Flowability improved soil, and method and device for producing the improved soil
JP2004163219A (en) 2002-11-12 2004-06-10 Hitachi Cable Ltd Optical fiber flow velocity sensor for river bed corrosion, and flow velocity measuring system therefor
JP2010071672A (en) 2008-09-16 2010-04-02 Shimizu Corp Device for measuring hydraulic pressure of groundwater
US20100262387A1 (en) 2007-12-19 2010-10-14 Statoil Asa Method and equipment for determining the interface between two or more fluid phases
JP2012047451A (en) 2010-08-24 2012-03-08 Alps Electric Co Ltd Physical quantity sensor device
JP2018076648A (en) 2016-11-07 2018-05-17 東急建設株式会社 Strength management method for backfill material and ground backfill method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4043193A (en) * 1976-08-03 1977-08-23 Bailey Mud Monitors Inc. Method and apparatus for measuring volume and density of fluids in a drilling fluid system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182095A (en) 1999-12-28 2001-07-03 Nittodaito Construction Co Ltd Flowability improved soil, and method and device for producing the improved soil
JP2004163219A (en) 2002-11-12 2004-06-10 Hitachi Cable Ltd Optical fiber flow velocity sensor for river bed corrosion, and flow velocity measuring system therefor
US20100262387A1 (en) 2007-12-19 2010-10-14 Statoil Asa Method and equipment for determining the interface between two or more fluid phases
JP2010071672A (en) 2008-09-16 2010-04-02 Shimizu Corp Device for measuring hydraulic pressure of groundwater
JP2012047451A (en) 2010-08-24 2012-03-08 Alps Electric Co Ltd Physical quantity sensor device
JP2018076648A (en) 2016-11-07 2018-05-17 東急建設株式会社 Strength management method for backfill material and ground backfill method

Also Published As

Publication number Publication date
JP2021076400A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
EP2725340A2 (en) Permeameter for in-situ measurement of saturated hydraulic conductivity
JP7351716B2 (en) Density measuring device
KR101841269B1 (en) Measurement method of ground water discharge and sediment yield accorging to the ground excavation
JP5268070B2 (en) Slime property management method and automatic slime processing equipment
JP5648311B2 (en) Vertical accuracy measurement system for back struts
CN107655452A (en) Hydraulic sensing formula settlement observation system
JP7367833B2 (en) Specific gravity measuring device
EP2619372B1 (en) Method and device for determining a volume of a settled bed in a mixture in a loading space
EP1783466B1 (en) Direct hopper measuring method and device
JP3678828B2 (en) Prevention method of ground liquefaction directly under the structure
JP3798860B2 (en) Maximum water level detector for groundwater
JP5944730B2 (en) Construction management method for residual soil saturation
JP2869605B2 (en) Top measuring device for cast concrete
KR101427361B1 (en) A measuring device for ground and roads subsidence and water level
JP2611508B2 (en) Method for measuring the level of underwater concrete
JP2907769B2 (en) Weighing scale
JP2020076288A (en) Mud measurement apparatus and mud management method
CN208633167U (en) Device for detecting sediment thickness of drilled pile
JP5368174B2 (en) Caisson installation method and water level meter for caisson
CN113819885B (en) Measurement equipment and measurement method for elevation of concrete top surface of dry pore-forming bored concrete pile
JP2022174895A (en) Viscous density measuring apparatus and viscous density measuring method
JP2629514B2 (en) Construction management method for concrete structures
JPH0610335A (en) Ground liquefaction detection method and device
JPH0988051A (en) In-situ permeability test method and permeability test device
JP3079507B2 (en) Portable liquid density meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230914

R150 Certificate of patent or registration of utility model

Ref document number: 7351716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150