JPH0268105A - Filtration membrane having antibiotic action - Google Patents

Filtration membrane having antibiotic action

Info

Publication number
JPH0268105A
JPH0268105A JP63218558A JP21855888A JPH0268105A JP H0268105 A JPH0268105 A JP H0268105A JP 63218558 A JP63218558 A JP 63218558A JP 21855888 A JP21855888 A JP 21855888A JP H0268105 A JPH0268105 A JP H0268105A
Authority
JP
Japan
Prior art keywords
membrane
filtration membrane
filtration
microorganisms
antibiotic action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218558A
Other languages
Japanese (ja)
Inventor
Kanji Matsumoto
幹治 松本
Norihiko Fujita
矩彦 藤田
Ichiro Goto
一郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IND RES INST JAPAN
Nishiyama Corp
Original Assignee
IND RES INST JAPAN
Nishiyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IND RES INST JAPAN, Nishiyama Corp filed Critical IND RES INST JAPAN
Priority to JP63218558A priority Critical patent/JPH0268105A/en
Publication of JPH0268105A publication Critical patent/JPH0268105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To prevent the proliferation of microorganisms captured on the surface of a filtration membrane by forming a thin membrane of silver on the surface of a filtration membrane on the side of a raw liquid by a physical or chemical vapor deposition process when the sterilization by filtration is performed. CONSTITUTION:When a fluid containing microorganisms is passed through a filtration membrane 4 to remove said microorganisms, silver, known to have antibiotic action, is applied to the surface of the membrane 4 on the side of a raw liquid 3 by a physical or chemical vapor deposition process to impart antibiotic action to the membrane 4 itself. By using said membrane 4 having antibiotic action, the proliferation of microorganisms which has been a problem caused by the prior art can be avoided or restrained, whereby a leak of microorganisms into filtrated fluids can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は一般に液相系あるいは気相系に分散している微
生物を流体中からろ過膜を用いて除去する、いわゆるろ
過滅菌に関するものである。 本発明による抗菌作用を有するろ過膜は、例えば、液相
系においては家庭用浄水器、生ビール、生酒製造用のろ
過装置あるいは超純水製造用の最終ろ過装置等、気相系
においては医薬用アンプルに充填する無菌窒素ガス、超
純水製造装置に陽圧用ガスとして充填する無菌の空気あ
るいは半導体製造工程における空調用・希釈用の無菌の
空気や不活性ガスなどの製造のために適用される。
The present invention generally relates to so-called filtration sterilization in which microorganisms dispersed in a liquid phase system or a gas phase system are removed from a fluid using a filtration membrane. The filtration membrane having an antibacterial effect according to the present invention can be used, for example, in liquid phase systems for household water purifiers, filtration devices for producing draft beer and draft sake, or final filtration devices for producing ultrapure water, and in gas phase systems for medical purposes. Applicable for the production of sterile nitrogen gas filled into ampoules, sterile air filled as positive pressure gas in ultrapure water production equipment, sterile air and inert gas for air conditioning and dilution in semiconductor manufacturing processes, etc. .

【従来の技術】[Conventional technology]

流体(液体および気体)中の微生物を除去あるいは殺菌
する方法としては、精密ろ過膜や限外ろ過膜を使用する
ろ過滅菌法、紫外線照射法および加熱法等があるが、最
終除菌法としてろ過滅菌法がよ(使用されている。この
方法は加熱処理あるいは薬剤処理等を施すことな(連続
処理することが可能なので、あらゆる分野で広範囲に用
いられている。 膜素材としては、酢酸セルロース、硝酸セルロース、再
生セルロース、テフロン、ポリスルホン、ポリアクリロ
ニトリル、ポリアミド、ポリイミド、ポリエーテルスル
ホンなどの高分子膜や、耐熱性、耐薬品性のある多孔質
焼結体膜などがある。
Methods for removing or sterilizing microorganisms in fluids (liquids and gases) include filtration sterilization using microfiltration membranes or ultrafiltration membranes, ultraviolet irradiation, and heating methods, but filtration is the final sterilization method. Sterilization methods are often used. This method does not require heat treatment or chemical treatment (it can be processed continuously), so it is widely used in all fields. Membrane materials include cellulose acetate, Examples include polymer membranes such as cellulose nitrate, regenerated cellulose, Teflon, polysulfone, polyacrylonitrile, polyamide, polyimide, and polyethersulfone, as well as porous sintered membranes with heat resistance and chemical resistance.

【発明が解決しようとする課題] ろ過滅菌の操作を長時間にわたり連続的あるいは半連続的に行う場合、ろ過膜面上に堆積した微生物が増殖する。微生物が増殖のために分裂する際、分裂直後の菌体は小型化する場合がある。このような小型化した微生物は、膜細孔径によっては、膜細孔を通過し、透過流体中に漏出する危険性をはらんでいる。特にろ過操作を一旦停止し、一定時間経過後に再び操作を行う場合に菌の漏出する多くの例が報告されている。 【課題を解決するための手段】[Problem to be solved by the invention] When filtration sterilization is performed continuously or semi-continuously over a long period of time, microorganisms deposited on the filtration membrane surface proliferate. When microorganisms divide to proliferate, the bacterial cells immediately after division may become smaller in size. Depending on the membrane pore size, such miniaturized microorganisms may pass through the membrane pores and risk leaking into the permeate fluid. In particular, many cases have been reported in which bacteria leak out when the filtration operation is temporarily stopped and then restarted after a certain period of time has elapsed. [Means to solve the problem]

本発明者らは、上述した従来技術にあった問題点を解決
すべく鋭意研究を重ねた結果、本発明を為すに至ったも
のである。 本発明の原理は、微生物を含む流体をろ過膜を通過させ
ることにより微生物を除去するとき、ろ過膜の原流体側
面上に、抗菌性を持つとして知られている銀を、物理的
蒸着法あるいは化学的蒸着法により蒸着することにより
、ろ過膜自体に抗菌性を付加することにある。 本発明による抗菌作用を有するろ過膜を用いることによ
り、従来技術の問題点であるろ過膜面上での微生物の増
殖を防止あるいは抑制できるため、微生物の透過流体中
への漏出を防止することができる。 なお本発明に用いるろ過膜の種類は精密ろ過膜、ろ布、
ろ紙など銀蒸着薄膜を形成しうるあらゆるろ過膜を含み
、材質は酢酸セルロース、テフロン、ポリスルホンなと
あらゆる素材を含む。またろ過膜の形状は平膜あるいは
スパイラル型、プリーツ型、管型、中空糸型モジュール
などあらゆる形状を含む。
The present inventors have made extensive research to solve the above-mentioned problems in the prior art, and as a result, have accomplished the present invention. The principle of the present invention is that when microorganisms are removed by passing a fluid containing microorganisms through a filtration membrane, silver, which is known to have antibacterial properties, is deposited on the side of the raw fluid of the filtration membrane using physical vapor deposition or The aim is to add antibacterial properties to the filtration membrane itself by depositing it using a chemical vapor deposition method. By using the filtration membrane having an antibacterial effect according to the present invention, it is possible to prevent or suppress the proliferation of microorganisms on the surface of the filtration membrane, which is a problem with the conventional technology, thereby preventing microorganisms from leaking into the permeate fluid. can. The types of filtration membranes used in the present invention include microfiltration membranes, filter cloth,
It includes all types of filtration membranes that can form a silver-deposited thin film, such as filter paper, and includes all kinds of materials such as cellulose acetate, Teflon, and polysulfone. Further, the shape of the filtration membrane includes all shapes such as a flat membrane, a spiral type, a pleated type, a tube type, and a hollow fiber type module.

【実施例】【Example】

以下に本発明の実施例、および本発明によらない対照例
を以下に示す。 実施例および対照例はいずれも第1図に示すようなろ過
回路を用いた。第1図において、lはろ過滅菌器、2は
無菌的に操作を行うためのエアフィルター、3は菌体を
含む試料、4は銀蒸着あるいは対照(非蒸着)ろ過膜、
5はろ液、6はろ過操作終了時に大気圧に戻すためのリ
ークパルプ、7は吸引ポンプを示す。またろ過操作は次
のようにして行った。すなわち微生物を含む液3を、銀
蒸着ろ過膜あるいは対照ろ過膜(いずれも富士写真フィ
ルム株式会社製精密ろ過膜、三酢酸セルロース膜、公称
孔径0.45μm、直径47mm、平膜)4で、吸引ポ
ンプ7を用いてろ液側の圧力を100mmHgとして一
定量(250ml)吸引ろ過し、ろ過に用いたろ過膜4
を第1表に示す組成の寒天培地上で7日間37°Cで培
養した。そして、ろ過膜面上に発生したコロニーの発現
数を計数することにより銀蒸着ろ過膜の抗菌性の度合を
評価した。なおこのときのろ過膜の有効ろ通商積は約1
0cm”であった。 第1表 大腸菌用寒天培地 実施例1 大腸菌(E、col:)の濃度が860コ/2となるよ
うに調整した試料250mj!を上述の銀蒸着ろ過膜を
用いて吸引ろ過した。使用済みのろ過膜を寒天培地上で
7日間、37°Cで培養した。この結果を第2表に示す
。 対照例1 大腸菌の濃度が860コ/lとなるように調整した試料
250m1を上述の非蒸着膜を用いて吸引ろ過した。使
用済みのろ過膜を寒天培地上で7日間、37°Cで培養
した。この結果を第2表に示す。 実施例2 大腸菌の濃度が4X10’コ/lとなるように調整した
試料250mlを上述の銀蒸着ろ過膜を用いて吸引ろ過
した。使用済みのろ過膜を寒天培地上で7日間、37゛
Cで培養した。この結果を第2表に示す。 対照例2 大腸菌の濃度が4X10’コ/I!、となるように調整
した試料250mj!を上述の非蒸着膜を用いて吸引ろ
過した。使用済みのろ過膜を寒天培地上で7日間、37
°Cで培養した。この結果を第2表に示す。 第2表 実施例および対照例
Examples of the present invention and comparative examples not according to the present invention are shown below. In both Examples and Control Examples, a filtration circuit as shown in FIG. 1 was used. In FIG. 1, l is a filter sterilizer, 2 is an air filter for aseptic operation, 3 is a sample containing bacterial cells, 4 is a silver-deposited or control (non-vapor-deposited) filtration membrane,
5 is a filtrate, 6 is a leak pulp for returning to atmospheric pressure at the end of the filtration operation, and 7 is a suction pump. Further, the filtration operation was performed as follows. That is, the liquid 3 containing microorganisms is sucked through a silver-deposited filtration membrane or a control filtration membrane (both microfiltration membranes manufactured by Fuji Photo Film Co., Ltd., cellulose triacetate membranes, nominal pore size 0.45 μm, diameter 47 mm, flat membrane) 4. Using pump 7, the pressure on the filtrate side was set to 100 mmHg, and a certain amount (250 ml) was suction-filtered, and the filtration membrane 4 used for filtration was
were cultured at 37°C for 7 days on an agar medium with the composition shown in Table 1. Then, the degree of antibacterial properties of the silver-deposited filtration membrane was evaluated by counting the number of colonies generated on the surface of the filtration membrane. The effective filtration volume of the filtration membrane at this time is approximately 1
Table 1 Agar medium for Escherichia coli Example 1 250 mj! of a sample adjusted so that the concentration of Escherichia coli (E, col:) was 860/2 was aspirated using the above-mentioned silver-deposited filtration membrane. The used filtration membrane was cultured on an agar medium at 37°C for 7 days. The results are shown in Table 2. Control Example 1 Sample adjusted to have an E. coli concentration of 860 cells/l. 250 ml was suction filtered using the non-deposited membrane described above. The used filter membrane was cultured on an agar medium at 37°C for 7 days. The results are shown in Table 2. Example 2 The concentration of E. coli was 250 ml of the sample adjusted to 4 x 10'co/l was suction-filtered using the above-mentioned silver-deposited filtration membrane.The used filtration membrane was cultured on an agar medium for 7 days at 37°C.This result was It is shown in Table 2. Comparative Example 2 A sample of 250 mj! adjusted to have an E. coli concentration of 4 x 10'co/I! was suction filtered using the non-deposited membrane described above.The used filtration membrane was placed on an agar medium. 7 days above, 37
Cultured at °C. The results are shown in Table 2. Table 2 Examples and comparative examples

【発明の効果】【Effect of the invention】

以上のことから銀蒸着ろ過膜は、ろ過滅菌の際にろ過膜
面上に堆積した微生物の増殖を防止あるいは抑制する効
果を存することが確認された。
From the above, it was confirmed that the silver-deposited filtration membrane has the effect of preventing or suppressing the growth of microorganisms deposited on the filtration membrane surface during filtration sterilization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例および対照例を行う際の回路図である。 図中、1はろ過滅凹器、2はエアフィルタ、3は試料、
4は銀蒸着(ある゛いは非薄着)ろ過膜、5はろ液、6
はリークパルプ、7は吸引ポンプである。
FIG. 1 is a circuit diagram when carrying out an example and a comparative example. In the figure, 1 is a filter sterilizer, 2 is an air filter, 3 is a sample,
4 is a silver-deposited (or non-thinly deposited) filtration membrane, 5 is a filtrate, 6
is a leak pulp, and 7 is a suction pump.

Claims (1)

【特許請求の範囲】[Claims] ろ過滅菌を行う際、ろ過膜の原流体側面上に物理的蒸着
法あるいは化学的蒸着法を用い、銀薄膜を形成すること
により、ろ過膜面上に捕捉された微生物の増殖を防止あ
るいは抑制することを特徴とする抗菌作用を有するろ過
膜。
When performing filtration sterilization, a thin silver film is formed on the side of the raw fluid of the filtration membrane using physical vapor deposition or chemical vapor deposition to prevent or suppress the growth of microorganisms captured on the filtration membrane surface. A filtration membrane with antibacterial action.
JP63218558A 1988-09-02 1988-09-02 Filtration membrane having antibiotic action Pending JPH0268105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218558A JPH0268105A (en) 1988-09-02 1988-09-02 Filtration membrane having antibiotic action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218558A JPH0268105A (en) 1988-09-02 1988-09-02 Filtration membrane having antibiotic action

Publications (1)

Publication Number Publication Date
JPH0268105A true JPH0268105A (en) 1990-03-07

Family

ID=16721826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218558A Pending JPH0268105A (en) 1988-09-02 1988-09-02 Filtration membrane having antibiotic action

Country Status (1)

Country Link
JP (1) JPH0268105A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226263A (en) * 1993-01-29 1994-08-16 Shigetaka Ishikawa Antimicrobial resinous net and suppressing method for breeding of microorganisms using the same
US5490938A (en) * 1993-12-20 1996-02-13 Biopolymerix, Inc. Liquid dispenser for sterile solutions
US5817325A (en) * 1996-10-28 1998-10-06 Biopolymerix, Inc. Contact-killing antimicrobial devices
US5849311A (en) * 1996-10-28 1998-12-15 Biopolymerix, Inc. Contact-killing non-leaching antimicrobial materials
US5869073A (en) * 1993-12-20 1999-02-09 Biopolymerix, Inc Antimicrobial liquid compositions and methods for using them
US6180584B1 (en) 1998-02-12 2001-01-30 Surfacine Development Company, Llc Disinfectant composition providing sustained residual biocidal action
US7288264B1 (en) 1993-12-20 2007-10-30 Surfacine Development Company, L.L.C. Contact-killing antimicrobial devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261502A (en) * 1984-06-08 1985-12-24 Mitsubishi Rayon Co Ltd Porous polyolefin hollow yarn module having germicidal effect
JPS6316018A (en) * 1986-07-07 1988-01-23 Asahi Stainless Kk Water purifying filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261502A (en) * 1984-06-08 1985-12-24 Mitsubishi Rayon Co Ltd Porous polyolefin hollow yarn module having germicidal effect
JPS6316018A (en) * 1986-07-07 1988-01-23 Asahi Stainless Kk Water purifying filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226263A (en) * 1993-01-29 1994-08-16 Shigetaka Ishikawa Antimicrobial resinous net and suppressing method for breeding of microorganisms using the same
US5490938A (en) * 1993-12-20 1996-02-13 Biopolymerix, Inc. Liquid dispenser for sterile solutions
US5869073A (en) * 1993-12-20 1999-02-09 Biopolymerix, Inc Antimicrobial liquid compositions and methods for using them
US6030632A (en) * 1993-12-20 2000-02-29 Biopolymerix And Surfacine Development Company Non-leaching antimicrobial films
US6126931A (en) * 1993-12-20 2000-10-03 Surfacine Development Company, Llc Contact-killing antimicrobial devices
US6264936B1 (en) 1993-12-20 2001-07-24 Biopolymerix, Inc. Contact-killing non-leaching antimicrobial materials
US7288264B1 (en) 1993-12-20 2007-10-30 Surfacine Development Company, L.L.C. Contact-killing antimicrobial devices
US5817325A (en) * 1996-10-28 1998-10-06 Biopolymerix, Inc. Contact-killing antimicrobial devices
US5849311A (en) * 1996-10-28 1998-12-15 Biopolymerix, Inc. Contact-killing non-leaching antimicrobial materials
US6180584B1 (en) 1998-02-12 2001-01-30 Surfacine Development Company, Llc Disinfectant composition providing sustained residual biocidal action

Similar Documents

Publication Publication Date Title
US5242595A (en) Bacteria removal by ceramic microfiltration
US5221479A (en) Filtration system
JPWO2011111679A1 (en) Porous hollow fiber membrane for protein-containing liquid treatment
Bommer et al. Potential transfer of endotoxin across high-flux polysulfone membranes.
JPH0268105A (en) Filtration membrane having antibiotic action
JPS60142860A (en) Virus removing method
JPH02191515A (en) Filtration membrane having antibacterial action
Czermak et al. New generation ceramic membranes have the potential of removing endotoxins from dialysis water and dialysate
JPS61242687A (en) Purified water generator
CN101385862B (en) Sterilization filtration method of emulsion for injection
JP2000015062A (en) Membrane filter
US5110476A (en) Hollow fiber membrane system for removal of viruses and bacteria
JPH04190834A (en) Cross-flow type filter
JPH05123546A (en) Production of antibacterial plastic porous flat membrane
CN1063235A (en) Preparation of hyperpermeable polysulfone hollow fiber ultrafiltration membrane
Mayr et al. Microbiological aspects of the batch preparation of replacement fluid for hemofiltration
JPH05329339A (en) Filtration system
JPS63126513A (en) Backwashing method in cross flow type precision filtration
CN217459409U (en) A device for in situ culture of tubular bacterial cellulose hydrogels
JPH04145929A (en) Cross-flow filter
Nakatsuka et al. High flux ultrafiltration membrane for drinking water production
JPS6223401A (en) Ultrafiltration membrane
Mamah et al. Inorganic membranes for green applications
CN118122148A (en) Antibacterial ultrafiltration membrane and application method thereof
JPS63126511A (en) Cross flow type precision filtering method