JPH0310217A - Method for driving liquid crystal device - Google Patents

Method for driving liquid crystal device

Info

Publication number
JPH0310217A
JPH0310217A JP14484489A JP14484489A JPH0310217A JP H0310217 A JPH0310217 A JP H0310217A JP 14484489 A JP14484489 A JP 14484489A JP 14484489 A JP14484489 A JP 14484489A JP H0310217 A JPH0310217 A JP H0310217A
Authority
JP
Japan
Prior art keywords
voltage
gradation
scanning
electrode
gradation level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14484489A
Other languages
Japanese (ja)
Inventor
Yoichi Momose
洋一 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14484489A priority Critical patent/JPH0310217A/en
Publication of JPH0310217A publication Critical patent/JPH0310217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶装置の駆動方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for driving a liquid crystal device.

[従来の技術] 従来の液晶装置の駆動方法を第4図(a)〜(1〕)に
示す。第4図(1〕)中x1、×2、×3、x4はそれ
ぞれ信号電極、Y]、¥2、Y−3はそれぞれ信号電極
、走査電極と信号型(ウスの交点にある円は表示画素で
、円の中の数字は階調のレベルを示し、数字が大きいほ
ど表示画素に印加される電圧波形の実効値が高いことを
示し4階調表示を行っている。第4図(d)〜(g)の
Vx]、VX2、VX3、VX4はそれぞれ信号電極に
印加される電圧波形、第4図(a)〜(c)のVYI、
VY2、VY3はそれぞれ走査電極に印加される電圧波
形で、■0は基’4BYIl圧を示している。
[Prior Art] A conventional method for driving a liquid crystal device is shown in FIGS. 4(a) to (1). In Figure 4 (1), x1, x2, x3, x4 are signal electrodes, Y], ¥2, Y-3 are signal electrodes, respectively, and scanning electrodes and signal types (the circles at the intersections of the squares are indicated In each pixel, the number inside the circle indicates the gradation level, and the larger the number, the higher the effective value of the voltage waveform applied to the display pixel, and four-gradation display is performed. ) to (g), VX2, VX3, and VX4 are the voltage waveforms applied to the signal electrodes, respectively, and VYI in FIGS. 4(a) to (c),
VY2 and VY3 are voltage waveforms applied to the scanning electrodes, respectively, and 0 indicates the base '4BYIl pressure.

走査電極¥1が選択されるときは、走査電極)′]には
走査電圧vo十vyが印加され、Y2.Y3は■0のま
まである。走査電極¥1上の画素のうぢ信号電極×1と
の交点にある画素は階調レベルが1であり、信号電極に
はvo+vxが印加される。信号電極×2との交点にあ
る画素は階調レベルが2てあり、2tの期間てはvo+
vxが、その後、tの期間はvo−vxが印加される。
When scan electrode ¥1 is selected, scan voltage vo+vy is applied to scan electrode )′], and scan voltage vo+vy is applied to scan electrode Y2. Y3 remains as ■0. The pixel located at the intersection of the pixel on the scanning electrode \1 and the signal electrode x1 has a gradation level of 1, and vo+vx is applied to the signal electrode. The pixel at the intersection with the signal electrode x 2 has a gradation level of 2, and during the period of 2t, it is vo+
vx is applied, and then vo-vx is applied for a period of t.

信号電極×3との交点にある画素は階調レベルが3てあ
り、tの期間てはvo十vxが、その後、2tの期間は
vo−vxが印加される。信号電極×4との交点にある
画素は階調レベルが4であり、信号電極にはvo−vx
が印加される。各画素には走査電極の電圧と信号電極の
電圧との差が印加されるので、×1と¥1の交点にはv
y−vxが、x2と¥1の交、占には2tの期間てはV
YVXが、その後、tの期間はvy+vxが、×3とY
lの交点にはtの期間てはVY−VXが、その後、2t
(7)期間はvy+vxが、×4とY ]ノ交点にはV
 ’1’ + V X ps印加される。また、このと
き¥2、¥3の電圧はVOであるので、¥2、Y3」二
の画素にはvxもしくは−V×が印加される。
The pixel at the intersection with the signal electrode x3 has a gradation level of 3, and vo+vx is applied for a period of t, and then vo-vx is applied for a period of 2t. The pixel at the intersection with the signal electrode x4 has a gradation level of 4, and the signal electrode has vo-vx
is applied. Since the difference between the voltage of the scanning electrode and the voltage of the signal electrode is applied to each pixel, the intersection of ×1 and ¥1 has v
y-vx is the intersection of x2 and ¥1, and for fortune-telling, the period of 2t is V
YVX is then vy+vx during period t, ×3 and Y
The intersection of l has VY-VX for a period of t, and then 2t
(7) The period is vy+vx, and the intersection of ×4 and Y] is V
'1' + V X ps is applied. Further, at this time, since the voltage of ¥2 and ¥3 is VO, vx or -Vx is applied to the second pixel of ¥2 and Y3.

次の選択期間では、¥2が選択され」二記の操作を¥2
について行い、以下、各走査電極について同様な操作を
順次行う。
In the next selection period, ¥2 will be selected and the following operations will be performed for ¥2.
Then, similar operations are performed for each scanning electrode in sequence.

すなわち、選択期間では階調レベル]の画素にはVY−
VXが、階調レベル2の画素には2Lの期間てはvy−
vxが、その後、tの期間Ll: V ’I’+■xが
、階調レベル3の画素にはtの期間ではVY−VXが、
その後、2tの期間はvy十vxが、階調レベル4の画
素にはvy+vxが印加され、非選択期間では一■×も
しくはVXが印加されるため、階調レベルによって画素
に印加される電圧波形の実効値に差が現れて階調表示が
行われる。
In other words, in the selection period, the pixel at the gradation level is VY-
VX is vy- for a period of 2L for pixels at gradation level 2.
vx, then Ll for a period of t: V'I'+■x, and for a pixel at gradation level 3, VY-VX for a period of t.
After that, during the 2t period, vy+vx is applied to the pixel at gradation level 4, and 1■× or VX is applied during the non-selection period, so the voltage waveform applied to the pixel depending on the gradation level A difference appears in the effective value of , and gradation is displayed.

この様に、階調レベルと選択期間における信号電極に選
択電圧が印加されている時間の関係は階調レベルlでは
0、階調レベル2ではt、諧調レベル3ては2t、階調
レベル4ては3tというように隣合う階調レベル間での
信号電極に選択電圧が印加されている時間(以後階調パ
ルス幅という)の差は等間隔であるのが一般的であるが
、階調表示を見易くするために階調の刻みを等間隔ては
なくし、階調レベルと選択期間における信号電極に選択
電圧が印加されている時間の関係を例えば階調レベル1
ては0、階調レベル2ては12t、階調レベル3ては1
.8t、階調レベル4ては3tとするような方法も提案
されている。
In this way, the relationship between the gradation level and the time during which the selection voltage is applied to the signal electrode in the selection period is 0 at gradation level l, t at gradation level 2, 2t at gradation level 3, and 2t at gradation level 4. Generally, the difference in the time during which the selection voltage is applied to the signal electrode (hereinafter referred to as gradation pulse width) between adjacent gradation levels is at equal intervals, such as 3t for gradation levels. In order to make the display easier to read, the gradation increments are not spaced at equal intervals, and the relationship between the gradation level and the time during which the selection voltage is applied to the signal electrode during the selection period is expressed as, for example, gradation level 1.
0 for gradation level 2, 12t for gradation level 3, 1 for gradation level 3
.. A method has also been proposed in which the gradation level is 8t, and the gradation level 4 is 3t.

〔発明が解決しようとする課題1 しかし、前述の従来技術では、階調表示を見易くするた
めに階調パルス幅の差を等間隔てはなくしても、例えば
、温度が変化すると液晶の急峻度が変化する等の理由に
よって階調表示が見にくくなってしまうという問題点を
有する。
[Problem to be Solved by the Invention 1] However, in the prior art described above, even if the difference in gradation pulse width is eliminated at equal intervals in order to make the gradation display easier to see, for example, when the temperature changes, the steepness of the liquid crystal changes. There is a problem in that the gradation display becomes difficult to see due to reasons such as changes in the gradation.

そこで本発明はこの様な問題点を解決するもので、その
目的とするところは、上記の理由による階調表示の見栄
えの低下を防止し、温度によらず見易い階調表示を提供
するところにある。
The present invention is intended to solve these problems, and its purpose is to prevent the deterioration of the appearance of the gradation display due to the above-mentioned reasons, and to provide an easy-to-read gradation display regardless of the temperature. be.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明の液晶装置の駆動方法は、走査電極を有する基板
と信号電極を有する基板間に液晶層を挟持し、かつ、走
査電極と信号電極の重なる部分に表示画素を形成する液
晶装置の階調表示を行う際に、走査電極には順次走査電
圧を印加し、また信号電極と走査電極の交点に存在する
表示画素て信号電極に印加される信号電圧波形と走査電
極に印加される走査電圧波形の合成波形の実効電圧が表
示画素の階調レベルに応じた実効電圧となるように信号
電極に印加される信号電圧波形の電位を走査電圧が印加
されている間に選択電圧と非選択電圧間で変化させる液
晶装置の駆動方法において各階調レベルでの信号電極に
選択電圧が印加される時間と非選択電圧が印加される時
間の比を温度によって変化させることを特徴とする。
A method for driving a liquid crystal device according to the present invention includes a liquid crystal device sandwiching a liquid crystal layer between a substrate having a scanning electrode and a substrate having a signal electrode, and forming a display pixel in a portion where the scanning electrode and the signal electrode overlap. When performing display, scanning voltages are sequentially applied to the scanning electrodes, and the signal voltage waveform applied to the signal electrode and the scanning voltage waveform applied to the scanning electrode are While the scanning voltage is being applied, the potential of the signal voltage waveform applied to the signal electrode is changed between the selected voltage and the non-selected voltage so that the effective voltage of the composite waveform becomes an effective voltage corresponding to the gradation level of the display pixel. The method for driving a liquid crystal device is characterized in that the ratio of the time during which a selection voltage is applied to the signal electrode at each gradation level and the time during which a non-selection voltage is applied is changed depending on the temperature.

[イ乍 用] 殻にβ情調表示が最も見易い条件は、n階調表示の場合
、階調レベルnでの液晶装置の透過率をT (n)とす
るとT (n) −T (n−]) =T(n−1) 
−T (n−2) =・=T (2)T(1)となると
きである。従って、温度が変化してもこの条件を満たす
ように階調パルス幅の差が変化するような駆動方法を用
いれば常に見易い階調表示が得られる。
[For use] In the case of n-gradation display, the condition under which the β tone display is most easily visible on the shell is T (n) -T (n- ]) =T(n-1)
-T (n-2) =.=T (2) This is when T(1) is satisfied. Therefore, if a driving method is used in which the difference in gradation pulse width changes so as to satisfy this condition even when the temperature changes, a gradation display that is always easy to see can be obtained.

[実 施 例] 以下本発明の実施例を図と共に説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図(a)〜(c)は本実施例で用いた液晶装置の印
加電圧の実効値と透過率の関係を示す図であり、第1図
(a)は40°Cのとき、第1図(1〕)は20°Cの
とき、第1図(c)はOoCのときである。この液晶装
置をバイアス比13.1/200duty、1選択期間
70 IIS e cで駆動したところ、20°Cてコ
ントラスト比が最大となる実効電圧はVon=2.20
0v、Voff2.052vてあった。また、このとき
階調表示が最も見易い条件を満たす各階調レベルでの実
効電圧値は8階調表示の場合、 V (8)=2.200v (=Von)V (7)=
2.189v v (6)=2.178V V  (5)=2. 167v V  (4)=2. 153v V  (3)=2. 137v V  (2)=2. 1 14v V  (1)=2. 052v  (=Voff)てあ
った。
Example 1 Figures 1(a) to (c) are diagrams showing the relationship between the effective value of the applied voltage and the transmittance of the liquid crystal device used in this example. FIG. 1(1) is when the temperature is 20°C, and FIG. 1(c) is when the temperature is OoC. When this liquid crystal device was driven at a bias ratio of 13.1/200 duty and one selection period of 70 IIS e c, the effective voltage at which the contrast ratio was maximized at 20°C was Von = 2.20.
0v, Voff2.052v. Also, at this time, the effective voltage value at each gradation level that satisfies the condition that the gradation display is most legible is, in the case of 8 gradation display, V (8) = 2.200v (=Von)V (7) =
2.189V v (6)=2.178V V (5)=2. 167v V (4)=2. 153v V (3)=2. 137v V (2)=2. 1 14v V (1)=2. It was 052v (=Voff).

また、0℃でコントラスト比が最大となるときの階調表
示が最も見易い各階調レベルの実効型FE値は、 V (8)=2.300v (=Von)V (7)=
2.291v V (6)=2.282v V (5)=2.272v V (4)=2.258v V (3)=2.241v V (2)=2.215v V (1)=2.145v (=Voff)40℃でコ
ントラスト比が最大となるときの階調表示が最も見易い
各階調レベルの実効電圧値は、 ■ (8) V  (7)=2 V  (6)=2 V  (5)=2 V  (4)=2 V  (3)=2 V(2)=1 V  (1)=1 であった。
Also, the effective FE value of each gradation level where the gradation display is most legible when the contrast ratio is maximum at 0°C is V (8) = 2.300v (=Von) V (7) =
2.291v V (6) = 2.282v V (5) = 2.272v V (4) = 2.258v V (3) = 2.241v V (2) = 2.215v V (1) = 2. 145v (=Voff) When the contrast ratio is maximum at 40°C, the effective voltage value of each gradation level at which the gradation display is most legible is: ■ (8) V (7) = 2 V (6) = 2 V (5 )=2 V (4)=2 V (3)=2 V (2)=1 V (1)=1.

ここで、△V (n) = (V (n)/ (V (
8)−V (1) )とすると、各温度での△V(7)
から△v(1)の関係は、0℃では△V (7)=94
.2% △V (6)=88.4% △V (5)=83.9% △V (4) =72.9% △V (3)=61.9% △V (2)=45.2% 20℃では、 △V(7) V(1)) Von) 080v  ( 068V 055 v 41v 27v 12v 991 v 940v  (=Voff) 6% 2 △V  (6)=85. 1 % △V  (5)=77、 7% △V  (4)=68. 2% △V  (3)=57. 4% △V  (2)=41.、 9% 40℃では、 △V  (7)=91. 4% △V  (6)=82. 1 % △V  (5)=72  1% △V  (4)=62. 1 % △V  (3)=51. 4% △V  (2)=36. 4% ここで、各温度とも△V (1)=O%、△V(8)=
1oo%である。
Here, △V (n) = (V (n)/ (V (
8) −V (1) ), △V(7) at each temperature
The relationship between △v (1) is △V (7) = 94 at 0°C.
.. 2% △V (6) = 88.4% △V (5) = 83.9% △V (4) = 72.9% △V (3) = 61.9% △V (2) = 45. 2% At 20℃, △V (7) V (1)) Von) 080v (068V 055 v 41v 27v 12v 991 v 940v (=Voff) 6% 2 △V (6) = 85. 1% △V (5 ) = 77, 7% △V (4) = 68. 2% △V (3) = 57. 4% △V (2) = 41., 9% At 40℃, △V (7) = 91. 4 % △V (6) = 82.1% △V (5) = 72 1% △V (4) = 62.1% △V (3) = 51.4% △V (2) = 36.4% Here, for each temperature, △V (1) = O%, △V (8) =
It is 1oo%.

この値をもとに、温度を10°C刻みとし〕選択期間を
64分割して階調パルス幅を決定した。各階調レベルで
の階調パルス幅(階調レベルnでの階調パルス幅をt 
(n)と書く)は1選択期間を64tとしたとき、5°
C未満てLJ t (7)=60t t  (6)=56t t  (5)−52t t  (4)=46t t  (3)=39t t  (2)=28t 5°C以上15°C未満ては、 t (7)=60t t(6)=56t t (5)=51t t (4)=45t \ t (3)=38t t (2) =27t 1560以上25°C未満ては、 t (7)=59t t (6)=54t t (5)=49t t (4)=43t t (3)=36t t (2)=26t 25℃以上35℃以下では、 t(7)=59t t  (6)=54t t  (5)=48t t(4)=42t t  (3)=35t t  (2)=25t 35℃以上では、 t (7)=58t j(6)=521: t (5)=46t t(4)=40t t (3)=33t t (2J =23t とした。
Based on this value, the temperature was set in steps of 10°C] and the selection period was divided into 64 to determine the gradation pulse width. The gradation pulse width at each gradation level (gradation pulse width at gradation level n is t
(written as (n)) is 5° when one selection period is 64t.
Below C LJ t (7) = 60t t (6) = 56t t (5) - 52t t (4) = 46t t (3) = 39t t (2) = 28t Above 5°C and below 15°C , t (7) = 60t t (6) = 56t t (5) = 51t t (4) = 45t \ t (3) = 38t t (2) = 27t If it is 1560 or more and less than 25°C, t (7 )=59t t (6)=54t t (5)=49t t (4)=43t t (3)=36t t (2)=26t At temperatures above 25℃ and below 35℃, t(7)=59t t (6 ) = 54t t (5) = 48t t (4) = 42t t (3) = 35t t (2) = 25t At temperatures above 35°C, t (7) = 58t j (6) = 521: t (5) = 46t t(4) = 40t t (3) = 33t t (2J = 23t).

ここで、各温度ともt(8)=64t;、1゜(1)=
Otである。
Here, for each temperature, t(8)=64t;, 1°(1)=
It is Ot.

第2図は本実施例を実現するだめの回路の略図、第3図
(a)〜(、J)はクロック信号と階調パルス幅を決定
する波形及び信号電圧波形を示す図である。
FIG. 2 is a schematic diagram of a circuit for realizing this embodiment, and FIGS. 3(a) to 3(, J) are diagrams showing clock signals, waveforms for determining gradation pulse widths, and signal voltage waveforms.

1 2 第2図中、■は温度センサーでありこの出力はA/D変
換器2を経てROM3に入力される。
1 2 In FIG. 2, ■ is a temperature sensor, and its output is input to the ROM 3 via the A/D converter 2.

方、クロック信号は第2図中のカウンター5に入力され
第3図(a)に示される1選択期間を64分割した波形
に変換されROMに送られる。ROMではカウンターか
ら送られてきた信号とA/D変換器から送られてきた信
号より階調パルス幅を決定する信号波形(第3図中(b
))を作る。この波形は選択期間の始めと各階調レベル
での信号波形が選択電圧から非選択電圧に変わるときに
立ち上がりを持つパルス波形である。ROMより出力さ
れた波形はフリップフロップ回路4を経て階調用ドライ
バーICに送られる。階調用ドライバICでは画素の階
調レベルに応し信号電極に印加される電圧波形を出力す
る。第3図中(c)は階調レベル1、(d)は階調レベ
ル2、(e)は階調レベル3、(f)は階調レベル4、
(g)は階調レベル5、(h)は階調レベル6、(1)
は階調レベル7、(j)は階調レベル8のときの信号電
極に印加される電圧波形を示す。階調レベル2か67に
おいて信号電極に印加される電圧波形、、が選択電圧か
ら非選択電圧に変わるタイミングは、階調パルス幅を決
定する信号波形(第3図(b))のパルスの立ち」二が
つと同時である。
On the other hand, the clock signal is input to the counter 5 in FIG. 2, converted into a waveform obtained by dividing one selection period into 64 as shown in FIG. 3(a), and sent to the ROM. In the ROM, the signal waveform ((b) in Figure 3) determines the gradation pulse width from the signal sent from the counter and the signal sent from the A/D converter.
))make. This waveform is a pulse waveform that rises at the beginning of the selection period and when the signal waveform at each gradation level changes from the selection voltage to the non-selection voltage. The waveform output from the ROM is sent to the gradation driver IC via the flip-flop circuit 4. The gradation driver IC outputs a voltage waveform applied to the signal electrode in accordance with the gradation level of the pixel. In Figure 3, (c) is gradation level 1, (d) is gradation level 2, (e) is gradation level 3, (f) is gradation level 4,
(g) is gradation level 5, (h) is gradation level 6, (1)
indicates the gradation level 7, and (j) indicates the voltage waveform applied to the signal electrode at the gradation level 8. The timing at which the voltage waveform applied to the signal electrode at gradation level 2 or 67 changes from a selection voltage to a non-selection voltage is the pulse rise of the signal waveform (Fig. 3(b)) that determines the gradation pulse width. ” at the same time.

従来のI情調方法では、20°Cて階調表示か最も見易
くなるように階調のパルス幅を法定しても温度が変化す
ると第1図に示されるように実効電圧と透過率の関係が
変化するため例えば0°Cのときは階調レベル6以上が
見分けにくくなり、また40℃のときは階調レベル3以
下が見分けにくかった。しかし、本実施例では、温度に
応して階調のパルス幅を設定することにより、温度が変
化しても常に見易い階調表示が得られた。
In the conventional I-tone method, even if the pulse width of the gradation is set so that the gradation display becomes most visible at 20°C, as the temperature changes, the relationship between the effective voltage and the transmittance changes as shown in Figure 1. For example, when the temperature is 0° C., it is difficult to distinguish between gradation levels 6 and above, and when the temperature is 40° C., it is difficult to distinguish between gradation levels 3 and below. However, in this example, by setting the pulse width of the gradation according to the temperature, a gradation display that was always easy to see even when the temperature changed was obtained.

実施例2 上記実施例1ては、8階調表示を行っていたが本発明の
効果は3〜64階調の場合も同様の効果を有することが
認められている。また、階調レベルが64を越えるとき
も同様の効果を有することは言うまでもなく明らかであ
る。
Example 2 In Example 1, 8-gradation display was performed, but it has been recognized that the same effect of the present invention can be obtained in the case of 3 to 64 gradations. Furthermore, it is obvious that the same effect can be obtained when the gradation level exceeds 64.

温度の刻みも、上記実施例1ては10°Cとしているが
これは使用する液晶の温度特性を考慮し、例えば、特性
の温度依存性の大きな液晶を用いる場合は刻みを小さく
し、温度依存性の小さな液晶を用いた場合は大きくする
ことも可能である。
The temperature increments are also set to 10°C in Example 1, but this takes into account the temperature characteristics of the liquid crystal used. For example, if a liquid crystal whose characteristics are highly dependent on temperature is used, the increments may be made smaller and It is also possible to increase the size by using a liquid crystal with a small size.

[発明の効果] 以上述べたように本発明は、各階調レベルでの信号電極
に選択電圧が印加される時間と非選択電圧が印加される
時間の比を温度によって変化させることにより、温度に
よらず常に見易い階調表示が得られるという効果を有す
る。
[Effects of the Invention] As described above, the present invention changes the ratio of the time during which a selection voltage is applied to the signal electrode at each gradation level and the time during which a non-selection voltage is applied depending on the temperature. This has the effect that an easy-to-read gradation display can be obtained at all times.

第4図(a) 方法を示す図。Figure 4(a) Diagram showing the method.

(1〕) は従来の液晶装置の駆動 1・・・温度センサ 2・・・A/D変換器 3・ ・ROM 4・・・フリップフロップ 5 ・・カウンタ(1) is a conventional LCD device drive 1...Temperature sensor 2...A/D converter 3.・ROM 4...Flip-flop 5...Counter

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の一実施例で用いた液晶
装置の印加電圧の実効値と透過率の関係を示す図。 第2図は本発明の一実施例を実現するだめの回路の略図
。 第3図(a)〜(j)fjクロック信号と階調パルス幅
を決定する波形及び信号電極に印加される電圧波形を示
す図である。
FIGS. 1(a) to 1(c) are diagrams showing the relationship between the effective value of the applied voltage and the transmittance of the liquid crystal device used in one embodiment of the present invention. FIG. 2 is a schematic diagram of a circuit for implementing one embodiment of the present invention. FIGS. 3(a) to 3(j) are diagrams showing fj clock signals, waveforms for determining gradation pulse widths, and voltage waveforms applied to signal electrodes.

Claims (1)

【特許請求の範囲】[Claims] 走査電極を有する基板と信号電極を有する基板間に液晶
層を挟持し、かつ、該走査電極と信号電極の重なる部分
に表示画素を形成する液晶装置の階調表示を行う際に、
該走査電極には順次走査電圧を印加し、また該信号電極
と前記走査電極の交点に存在する表示画素で該信号電極
に印加される信号電圧波形と該走査電極に印加される走
査電圧波形の合成波形の実効電圧が該表示画素の階調レ
ベルに応じた実効電圧となるように該信号電極に印加さ
れる信号電圧波形の電位を走査電圧が印加されている間
に選択電圧と非選択電圧間で変化させる液晶装置の駆動
方法において、各階調レベルでの信号電極に選択電圧が
印加される時間と非選択電圧が印加される時間の比を温
度によって変化させることを特徴とする液晶装置の駆動
方法。
When performing gradation display in a liquid crystal device in which a liquid crystal layer is sandwiched between a substrate having a scanning electrode and a substrate having a signal electrode, and display pixels are formed in a portion where the scanning electrode and the signal electrode overlap,
Scanning voltages are sequentially applied to the scanning electrodes, and the signal voltage waveform applied to the signal electrode and the scanning voltage waveform applied to the scanning electrode are changed at display pixels existing at the intersections of the signal electrode and the scanning electrode. The potential of the signal voltage waveform applied to the signal electrode is changed between the selection voltage and the non-selection voltage while the scanning voltage is applied so that the effective voltage of the composite waveform becomes an effective voltage corresponding to the gradation level of the display pixel. A method for driving a liquid crystal device, characterized in that the ratio of the time during which a selection voltage is applied to a signal electrode at each gradation level and the time during which a non-selection voltage is applied is changed depending on the temperature. Driving method.
JP14484489A 1989-06-07 1989-06-07 Method for driving liquid crystal device Pending JPH0310217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14484489A JPH0310217A (en) 1989-06-07 1989-06-07 Method for driving liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14484489A JPH0310217A (en) 1989-06-07 1989-06-07 Method for driving liquid crystal device

Publications (1)

Publication Number Publication Date
JPH0310217A true JPH0310217A (en) 1991-01-17

Family

ID=15371739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14484489A Pending JPH0310217A (en) 1989-06-07 1989-06-07 Method for driving liquid crystal device

Country Status (1)

Country Link
JP (1) JPH0310217A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464807A2 (en) * 1990-07-06 1992-01-08 SELECO S.p.A. Circuit generating driving signals for display
DE4316114A1 (en) * 1992-06-08 1993-12-09 Mitsubishi Electric Corp X=ray beam mask used in X=ray lithography - comprises absorber contg. bismuth, titanium and nitrogen, and has amorphous structure
JPH06309929A (en) * 1993-04-07 1994-11-04 Taiwan Cement Corp High permittivity ceramic composition
US6512506B1 (en) 1997-09-22 2003-01-28 Sharp Kabushiki Kaisha Driving device for liquid crystal display element
US7196683B2 (en) 2000-04-10 2007-03-27 Sharp Kabushiki Kaisha Driving method of image display device, driving device of image display device, and image display device
US7345668B2 (en) 2003-07-31 2008-03-18 Seiko Epson Corporation Method of driving liquid crystal panel, liquid crystal device, and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464807A2 (en) * 1990-07-06 1992-01-08 SELECO S.p.A. Circuit generating driving signals for display
DE4316114A1 (en) * 1992-06-08 1993-12-09 Mitsubishi Electric Corp X=ray beam mask used in X=ray lithography - comprises absorber contg. bismuth, titanium and nitrogen, and has amorphous structure
DE4316114C2 (en) * 1992-06-08 2001-05-31 Mitsubishi Electric Corp X-ray mask and process for its manufacture
JPH06309929A (en) * 1993-04-07 1994-11-04 Taiwan Cement Corp High permittivity ceramic composition
US6512506B1 (en) 1997-09-22 2003-01-28 Sharp Kabushiki Kaisha Driving device for liquid crystal display element
US7196683B2 (en) 2000-04-10 2007-03-27 Sharp Kabushiki Kaisha Driving method of image display device, driving device of image display device, and image display device
US7345668B2 (en) 2003-07-31 2008-03-18 Seiko Epson Corporation Method of driving liquid crystal panel, liquid crystal device, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4148876B2 (en) Liquid crystal display device, driving circuit and driving method thereof
US6320562B1 (en) Liquid crystal display device
JPH0310217A (en) Method for driving liquid crystal device
US5541619A (en) Display apparatus and method of driving display panel
EP0306822B1 (en) Display system for ferroelectric liquid crystal
JPS6371889A (en) Drive circuit for display device
JP3854329B2 (en) Drive circuit for matrix display device
JP3110648B2 (en) Driving method of display device
JPH08241060A (en) Liquid crystal display device and its drive method
JPS62257197A (en) Driving of liquid crystal element
JPS59214015A (en) Liquid-crystal display device
JPH0331817A (en) Driving method for liquid crystal device
JPH032823A (en) Liquid crystal device and its driving method
CA2243383C (en) Method for driving a nematic liquid crystal
JP3312386B2 (en) Driving method of liquid crystal display device
JPH095706A (en) Matrix electrode structural display element driving device
JPS5891499A (en) Driving system of liquid crystal display
US20070115236A1 (en) Liquid crystal display device
JPS63201629A (en) Driving method of liquid crystal display device
JP3035404B2 (en) Display device
JP3515201B2 (en) Liquid crystal display device and driving method thereof
KR940007504B1 (en) Driving method of ferroelectric liquid crystal display device
JPH0469392B2 (en)
JP2621274B2 (en) Driving method of liquid crystal matrix panel
JPH05158442A (en) Liquid crystal display device driving method and liquid crystal display device