JPH035745B2 - - Google Patents

Info

Publication number
JPH035745B2
JPH035745B2 JP58040798A JP4079883A JPH035745B2 JP H035745 B2 JPH035745 B2 JP H035745B2 JP 58040798 A JP58040798 A JP 58040798A JP 4079883 A JP4079883 A JP 4079883A JP H035745 B2 JPH035745 B2 JP H035745B2
Authority
JP
Japan
Prior art keywords
charge generation
generation layer
pctio
photoreceptor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58040798A
Other languages
Japanese (ja)
Other versions
JPS59166959A (en
Inventor
Taketoshi Matsura
Micha Fujiki
Takeshi Okada
Koichi Arishima
Akyuki Tate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4079883A priority Critical patent/JPS59166959A/en
Publication of JPS59166959A publication Critical patent/JPS59166959A/en
Publication of JPH035745B2 publication Critical patent/JPH035745B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、近赤外領域特に750nm以上の波長領
域に高い光感度を有する積層型電子写真感光体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated electrophotographic photoreceptor having high photosensitivity in the near-infrared region, particularly in the wavelength region of 750 nm or more.

〔従来技術〕[Prior art]

従来電子写真感光体としては感光層が1層であ
り、無定形セレン、酸化亜鉛、硫化カドミウム等
の無機化合物又はポリビニルカルバゾール−トリ
ニトロフルオレノン、ピリリウム塩−トリフエニ
ルメタン等の有機化合物よりなる単層型感光体並
びに電荷発生層と電荷移動層に機能的に分離さ
れ、電荷発生層にセレン、ジスアゾ化合物、イン
ジゴ化合物、スクアリツク酸誘導体、フタロシア
ニン化合物を用いた積層型感光体が知られてい
る。
Conventionally, electrophotographic photoreceptors have a single photosensitive layer, which is a single layer made of an inorganic compound such as amorphous selenium, zinc oxide, or cadmium sulfide, or an organic compound such as polyvinylcarbazole-trinitrofluorenone or pyrylium salt-triphenylmethane. 2. Description of the Related Art Laminated photoreceptors are known, which are functionally separated into a charge generation layer and a charge transfer layer, and in which the charge generation layer contains selenium, a disazo compound, an indigo compound, a squaric acid derivative, or a phthalocyanine compound.

これらの感光体の感光波長領域は金属フタロシ
アニン化合物を除き、いずれも紫外〜可視領域に
あり、700nm以上の近赤外領域では感度は大きく
低下する。そこで近赤外領域に感度をもたせるた
め種類の増感方法が試みられ、その例として硫化
カドミウム、酸化亜鉛における色素増感及びセレ
ンにおけるテルルによる増感が知られている。こ
れらの増感方法においても現在のところ750nm以
上の長波長領域では感度が著しく低下する。更に
色素増感では色素の安定性、テルルによるセレン
の増感では感光体の物理的・電気的安定性が問題
となる。
The sensitivity wavelength range of these photoreceptors, except for metal phthalocyanine compounds, are all in the ultraviolet to visible range, and the sensitivity decreases significantly in the near-infrared range of 700 nm or more. Therefore, various sensitization methods have been attempted in order to provide sensitivity in the near-infrared region, and known examples include dye sensitization using cadmium sulfide and zinc oxide, and sensitization using tellurium in selenium. Even in these sensitization methods, the sensitivity is currently significantly reduced in the long wavelength region of 750 nm or more. Furthermore, dye sensitization poses problems with the stability of the dye, and selenium sensitization with tellurium poses problems with the physical and electrical stability of the photoreceptor.

一方、金属フタロシアニン化合物を用いた感光
体は米国特許第3357989号明細書、特開昭49−
11136号公報、米国特許第4214907号明細書、英国
特許第1268422号明細書等に見られるように、感
度ピークはその中心金属により変動するが、いず
れも700〜750nmにあり750nm以上では漸次感度
は低下し実用的な感度ではない。
On the other hand, photoreceptors using metal phthalocyanine compounds are disclosed in U.S. Pat.
As seen in Publication No. 11136, US Pat. No. 4,214,907, British Patent No. 1,268,422, etc., the sensitivity peak varies depending on the central metal, but all are between 700 and 750 nm, and the sensitivity gradually decreases above 750 nm. The sensitivity is lowered and is not practical.

以上述べたように、今までのところ750nm以上
に高感度を有する感光体は実用化していないのが
現状である。
As mentioned above, the current situation is that no photoreceptor having high sensitivity at 750 nm or more has been put into practical use so far.

〔発明の目的〕[Purpose of the invention]

本発明は、これらの問題点を解決するためにな
されたものであり、その目的は、750nm以上の光
波長域において、優れた光感度を有し、耐刷性に
優れた積層型電子写真感光体を提供することにあ
る。
The present invention was made to solve these problems, and its purpose is to provide a laminated electrophotographic photosensitive material that has excellent photosensitivity in the light wavelength range of 750 nm or more and has excellent printing durability. It's about offering your body.

〔発明の構成〕[Structure of the invention]

すなわち、本発明を概説すれば、本発明は積層
型電子写真感光体に関する発明であつて、導電性
基板上に電荷発生層及び電荷移動層を積層した積
層型電子写真感光体において、基板上にチタニル
フタロシアニンを蒸着し、次いで可溶性溶剤の蒸
気に接触させることにより形成される電荷発生層
であつて、且つ (A) 赤外吸収スペクトルにおいて、727cm-1、752
cm-1、892cm-1、1052cm-1、1072cm-1、1118cm
-1、1332cm-1に強い吸収をもち、773cm-1、779
cm-1、879cm-1、966cm-1、972cm-1、1160cm-1
弱い吸収をもつこと、及び (B) X線回折スペクトルにおいて、ブラツグ角
(2θ)7.5゜、12.6゜、13.0゜、25.4゜、26.2゜、28.6
゜に
強い回折ピークを有すること により示される分光特性を示す結晶構造を有する
電荷発生層を設けたことを特徴とする。
That is, to summarize the present invention, the present invention relates to a laminated electrophotographic photoreceptor, in which a charge generation layer and a charge transfer layer are laminated on a conductive substrate. A charge generation layer formed by depositing titanyl phthalocyanine and then contacting it with vapor of a soluble solvent, and (A) having an infrared absorption spectrum of 727 cm -1 , 752
cm -1 , 892cm -1 , 1052cm -1 , 1072cm -1 , 1118cm
-1 , has strong absorption at 1332cm -1 , 773cm -1 , 779
cm -1 , 879cm -1 , 966cm -1 , 972cm -1 , and 1160cm -1 , and (B) in the X-ray diffraction spectrum, Bragg angles (2θ) of 7.5°, 12.6°, 13.0°, 25.4°, 26.2°, 28.6
It is characterized by providing a charge generation layer having a crystal structure exhibiting spectral characteristics indicated by a strong diffraction peak at .degree.

既に本発明者らは特開昭58−158649号におい
て、750nm以上の光波長域において優れた光感度
を有する電荷発生層用材料として、クロロアルミ
ニウムフタロシアニン(以下AlPcClと略記す
る)、クロロアルミニウムクロロフタロシアニン
(AlClPcCl)が優れていることを示したが、その
後金属フタロシアニンについて鋭意検討した結果
第1図に示すチタニルフタロシアニン(以下
PcTiOと略記する)が750nm以上の光波長域で
優れた光感度を示すことを見出した。すなわち第
1図はPcTiOの構断式を示す。
The present inventors have already reported in JP-A-58-158649 that chloroaluminum phthalocyanine (hereinafter abbreviated as AlPcCl) and chloroaluminum chlorophthalocyanine were used as charge generation layer materials having excellent photosensitivity in the light wavelength region of 750 nm or more. (AlClPcCl) was shown to be superior, but as a result of intensive studies on metal phthalocyanines, as shown in Figure 1, titanyl phthalocyanine (hereinafter referred to as
We have discovered that PcTiO (abbreviated as PcTiO) exhibits excellent photosensitivity in the light wavelength range of 750 nm or more. That is, FIG. 1 shows the structural formula of PcTiO.

第2図は本発明による積層型電子写真感光体の
構成の一例を示す断面概略図である。第2図にお
いて、符号1は金属基板、2はブロツキング層、
3は電荷発生層、4は電荷移動層を意味する。
FIG. 2 is a schematic cross-sectional view showing an example of the structure of a laminated electrophotographic photoreceptor according to the present invention. In FIG. 2, numeral 1 is a metal substrate, 2 is a blocking layer,
3 means a charge generation layer, and 4 means a charge transfer layer.

金属基板1の例にはアルミニウム、銅、鉄、ス
テンレス等の導電性材料がある。ブロツキング層
2は薄い絶縁性膜で、金属基板としてアルミニウ
ムを使用した場合は、その酸化物であるAl2O3
(数10オングストローム)がその役割を果す。本
発明による電荷発生層3は真空蒸着とその後の溶
剤処理によつて形成される。使用可能な可溶性溶
剤の例にはテトラヒドロフラン、メタノール、ア
セトン、メチルエチルケトン、α−クロロナフタ
レン、ピリジン等がある。電荷移動層4は、3で
発生した電荷を感光体表面へ移動させる層であつ
て、電荷発生層の感光波長領域の光に対して透過
性であることが必要であり、電荷移動剤単体、又
は、これを結合剤である樹脂に溶解、分散させた
形で電荷移動層が形成される。
Examples of the metal substrate 1 include conductive materials such as aluminum, copper, iron, and stainless steel. The blocking layer 2 is a thin insulating film, and if aluminum is used as the metal substrate, its oxide Al 2 O 3
(several tens of angstroms) plays that role. The charge generating layer 3 according to the present invention is formed by vacuum deposition followed by solvent treatment. Examples of soluble solvents that can be used include tetrahydrofuran, methanol, acetone, methyl ethyl ketone, alpha-chloronaphthalene, pyridine, and the like. The charge transfer layer 4 is a layer that transfers the charges generated in step 3 to the surface of the photoreceptor, and must be transparent to light in the photosensitive wavelength range of the charge generation layer. Alternatively, a charge transfer layer is formed by dissolving and dispersing this in a resin as a binder.

単独の移動剤としてはポリビニルカルバゾー
ル、セレン等が使用できる。分散形に用いる移動
剤としては、N−ビニルカルゾール、2,5−ビ
ス(4−ジエチルアミノフエニル)−1,3,5
−オキサジアゾール、1−フエニル−3−(p−
ジエチルアミノスチリル)−5−(p−ジエチルア
ミノフエニル)−ピラゾリン、1−フエニル−3
−メチル−5−ピラゾリン、アセトベンゾチアゾ
リル−2−ヒドラゾン、p−ジエチルアミノアル
デヒドジフエニルヒドラゾン等を挙げることがで
きる。また、移動剤を分散させる樹脂としては、
ポリメチルメタクリレート、ポリカーボネート
A、ポリカーボネートZ、ポリ塩化ビニル、シリ
コーン樹脂等が挙げられる。樹脂に対する移動剤
の比は0.1〜0.6が好ましい。電荷移動層の厚さは
特に限定されないが、受容電位との関係より10〜
20μmとするのが適当である。
As a single transfer agent, polyvinylcarbazole, selenium, etc. can be used. Transfer agents used in the dispersed form include N-vinylcarzole, 2,5-bis(4-diethylaminophenyl)-1,3,5
-oxadiazole, 1-phenyl-3-(p-
diethylaminostyryl)-5-(p-diethylaminophenyl)-pyrazoline, 1-phenyl-3
-Methyl-5-pyrazoline, acetobenzothiazolyl-2-hydrazone, p-diethylaminoaldehyde diphenylhydrazone, and the like. In addition, as a resin for dispersing the transfer agent,
Examples include polymethyl methacrylate, polycarbonate A, polycarbonate Z, polyvinyl chloride, silicone resin, and the like. The ratio of transfer agent to resin is preferably 0.1 to 0.6. The thickness of the charge transfer layer is not particularly limited, but from the relationship with the acceptance potential, it is
A suitable thickness is 20 μm.

以下、本発明で使用するPcTiOの合成方法と、
電荷発生層の作製方法について述べる。
Below, the method for synthesizing PcTiO used in the present invention,
A method for manufacturing the charge generation layer will be described.

(1) PcTiOの合成法 PcTiOは下記に示す反応方程式に基づいて合
成した。
(1) Synthesis method of PcTiO PcTiO was synthesized based on the reaction equation shown below.

(2) 電荷発生層の作製方法 上記合成法で得られたPcTiOを10-5〜10-6トル
の真空下で、アルミニウム基板上に0.05〜0.5μm、
好ましくは0.08〜0.1μmの厚さで蒸着した。この
蒸着膜をテトラヒドロフランの飽和蒸気中に1〜
24時間放置する。
(2) Method for producing charge generation layer PcTiO obtained by the above synthesis method was deposited on an aluminum substrate to a thickness of 0.05 to 0.5 μm under a vacuum of 10 -5 to 10 -6 Torr.
It is preferably deposited to a thickness of 0.08 to 0.1 μm. This vapor-deposited film was placed in saturated vapor of tetrahydrofuran for 1~
Leave it for 24 hours.

この溶媒処理により赤外吸収スペクトル及びX
線回折スペクトルは、それぞれ第3図、第4図の
ような変化を示すと共に、電子スペクトルは、第
5図に示すように極大吸収波長域が長波長側にシ
フトする。
By this solvent treatment, the infrared absorption spectrum and
The line diffraction spectra show changes as shown in FIGS. 3 and 4, respectively, and the maximum absorption wavelength region of the electron spectrum shifts to the longer wavelength side as shown in FIG. 5.

第3図は、PcTiOの溶剤処理による赤外吸収
スペクトルの変化を示したグラフであり、横軸は
波数(cm-1)、縦軸は透過度を示す。第4図は同
じく溶剤処理によるX線回折スペクトルの変化を
示したグラフであり、横軸はブラツク角(2θ)、
縦軸は強度を示す。第5図は同じく溶剤処理によ
る電子スペクトルの変化を示したグラフであり、
横軸は波長(nm)、縦軸は吸光度を示す。
FIG. 3 is a graph showing changes in the infrared absorption spectrum due to solvent treatment of PcTiO, where the horizontal axis shows the wave number (cm -1 ) and the vertical axis shows the transmittance. Figure 4 is a graph showing changes in the X-ray diffraction spectrum due to solvent treatment, and the horizontal axis is the black angle (2θ);
The vertical axis indicates strength. Figure 5 is a graph showing the change in electronic spectrum due to solvent treatment.
The horizontal axis shows wavelength (nm), and the vertical axis shows absorbance.

以下、それぞれ具体的に説明する。溶剤処理さ
れたPcTiO蒸着膜は、第3図に示したように、
赤外吸収スペクトルにおいて、727cm-1、752cm
-1、892cm-1、1052cm-1、1072cm-1、1118cm-1
1332cm-1に強い吸収をもち、773cm-1、779cm-1
879cm-1、966cm-1、972cm-1、1160cm-1に弱い吸
収をもち、また第4図に示したように、X線回折
スペクトルにおいて、ブラツグ角(2θ)7.5゜、
12.6゜、13.0゜、25.4゜、26.2゜、28.6゜に強い回折ピ

クを示し、更に第5図に示したように、電子スペ
クトルにおいて、720nmから830nmと長波長側へ
のシフトを示す。
Each will be specifically explained below. As shown in Figure 3, the solvent-treated PcTiO deposited film has the following properties:
In the infrared absorption spectrum, 727cm -1 and 752cm
-1 , 892cm -1 , 1052cm -1 , 1072cm -1 , 1118cm -1 ,
It has strong absorption at 1332cm -1 , 773cm -1 , 779cm -1 ,
It has weak absorption at 879cm -1 , 966cm -1 , 972cm -1 and 1160cm -1 , and as shown in Figure 4, in the X-ray diffraction spectrum, the Bragg angle (2θ) is 7.5°,
It shows strong diffraction peaks at 12.6°, 13.0°, 25.4°, 26.2°, and 28.6°, and further shows a shift toward longer wavelengths from 720 nm to 830 nm in the electronic spectrum, as shown in Figure 5.

この長波長側に吸収ピークがシフトした
PcTiOの蒸着膜を本発明における電荷発生層と
した。
The absorption peak shifted to this longer wavelength side.
A deposited film of PcTiO was used as a charge generation layer in the present invention.

〔実施例〕〔Example〕

次に、本発明を実施例により具体的に説明する
が、本発明はこれらに限定されるものではない。
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例 1 前記製造法によつて作成した0.06〜0.08μmの膜
厚を持つPcTiOの電荷発生層の上に、ポリカー
ボネートZ10.7%、p−ジエチルアミノアルデヒ
ド−ジフエニルヒドラゾン10.7%、クロロホルム
78.6%からなる溶液をスピンコートし、窒素気流
中、40℃で2時間乾燥させ、ついで、40℃の真空
乾燥器で10時間以上乾燥させる。この時の電荷移
動層の膜厚は15μmであつた。
Example 1 On a charge generation layer of PcTiO having a film thickness of 0.06 to 0.08 μm prepared by the above manufacturing method, 10.7% of polycarbonate Z, 10.7% of p-diethylaminoaldehyde-diphenylhydrazone, and chloroform were added.
A solution consisting of 78.6% is spin-coated and dried at 40° C. for 2 hours in a nitrogen stream, and then dried in a vacuum dryer at 40° C. for 10 hours or more. The thickness of the charge transfer layer at this time was 15 μm.

この積層感光体を5kVの放電で負に帯電させ、
その表面電位の光減衰を測定し、表面電位を半減
するに必要な光量(μJ/cm2)を感度として評価
した。
This laminated photoreceptor is negatively charged with a 5kV discharge,
The optical attenuation of the surface potential was measured, and the amount of light (μJ/cm 2 ) required to halve the surface potential was evaluated as the sensitivity.

その結果、850nmにおいて0.5μJ/cm2の半減露
光量、受容電位600Vの良好な結果を得た。
As a result, good results were obtained with a half-reduced exposure dose of 0.5 μJ/cm 2 and an acceptance potential of 600 V at 850 nm.

比較のために、溶剤処理を行わなかつた以外は
実施例1と同様にして積層型感光体を作製した。
For comparison, a laminated photoreceptor was produced in the same manner as in Example 1 except that no solvent treatment was performed.

比較例(A)と実施例1(B)のそれぞれの感光体の分
光感度を第6図に示す。すなわち、第6図は
PcTiOを電荷発生層とした感光体の分光感度を、
波長(nm)(横軸)と半減露光量(μJ/cm2)(縦
軸)の関係で示したグラフである。第6図から明
らかなように、本発明による感光体は800nm以上
の長波長領域に感度ピークを有すると共に、比較
例に比べ全波長領域において感度の向上が見られ
た。
The spectral sensitivities of the photoreceptors of Comparative Example (A) and Example 1 (B) are shown in FIG. In other words, Figure 6 is
The spectral sensitivity of a photoreceptor with PcTiO as a charge generation layer is
This is a graph showing the relationship between wavelength (nm) (horizontal axis) and half-decreased exposure amount (μJ/cm 2 ) (vertical axis). As is clear from FIG. 6, the photoreceptor according to the present invention has a sensitivity peak in a long wavelength region of 800 nm or more, and an improvement in sensitivity was observed in the entire wavelength region compared to the comparative example.

また、耐刷性の比較のために、上記PcTiOと
同じ条件でAlPcClを蒸着し、溶剤処理して得た
層を電荷発生層とする以外、実施例1と同様にし
て積層型感光体〔比較例(C)〕を作製した。
In addition, for comparison of printing durability, a laminated photoreceptor [comparison] was prepared in the same manner as in Example 1, except that AlPcCl was vapor-deposited under the same conditions as the above-mentioned PcTiO, and the layer obtained by solvent treatment was used as the charge generation layer. Example (C)] was prepared.

評価の方法は、市販のプリンタに感光体を装着
し、A4版普通紙に繰返し印字したとき、その印
字濃度の変化を測定することにより行つた。その
結果を第7図に示す。すなわち、第7図は本発明
の実施例1(B)と比較例(C)の各感光体の耐刷性を、
A4印字数(×103)(横軸)と、光学濃度〔log
(Io/I)〕(縦軸)との関係で示したグラフであ
る。
The evaluation was carried out by attaching a photoreceptor to a commercially available printer and measuring the change in print density when repeatedly printing on A4 size plain paper. The results are shown in FIG. That is, FIG. 7 shows the printing durability of each photoreceptor of Example 1 (B) of the present invention and Comparative Example (C).
Number of A4 prints (×10 3 ) (horizontal axis) and optical density [log
(Io/I)] (vertical axis).

第7図に示したように、本発明のPcTiO感光
体では、1万枚以上の印字で、その濃度の低下は
10%以下であることが判つた。これはTi=O結
合がAl−Cl結合に比して化学的に安定であるた
めと推定される。
As shown in Figure 7, with the PcTiO photoreceptor of the present invention, the density decreases after printing more than 10,000 sheets.
It was found to be less than 10%. This is presumed to be because the Ti=O bond is chemically more stable than the Al-Cl bond.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による、PcTiO
蒸着膜をその可溶性溶剤の蒸気により処理して得
られる薄膜を電荷発生層とする積層型電子写真感
光体は、750nm以上の長波長域に高感度を有し、
且つ耐刷性に優れているので、半導体レーザを光
源とするレーザプリンタ用感光体として利用でき
るという顕著な効果が奏せられる。
As explained above, PcTiO according to the present invention
A laminated electrophotographic photoreceptor whose charge generation layer is a thin film obtained by treating a deposited film with the vapor of its soluble solvent has high sensitivity in the long wavelength region of 750 nm or more.
In addition, since it has excellent printing durability, it can be used as a photoreceptor for a laser printer using a semiconductor laser as a light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で使用する電荷発生層用
PcTiO化合物の構造式を示し、第2図は本発明
による積層型電子写真感光体の構成の一例を示す
断面概略図、第3図、第4図及び第5図は
PcTiOの溶剤処理による、それぞれ赤外吸収ス
ペクトル、X線回折スペクトル及び電子スペクト
ルの変化を示したグラフ、第6図はPcTiOを電
荷発生層とした本発明の1実施例(B)と比較例(A)の
各感光体の分光感度を示したグラフ、第7図は本
発明の1実施例(B)と比較例(C)の各感光体の耐刷性
を示したグラフである。 1:金属基板、2:ブロツキング層、3:電荷
発生層、4:電荷移動層。
Figure 1 shows the charge generation layer used in the present invention.
The structural formula of the PcTiO compound is shown, FIG. 2 is a schematic cross-sectional view showing an example of the structure of the laminated electrophotographic photoreceptor according to the present invention, and FIGS. 3, 4, and 5 are
Graphs showing changes in infrared absorption spectrum, X-ray diffraction spectrum, and electronic spectrum due to solvent treatment of PcTiO, respectively. Figure 6 shows an example (B) of the present invention and a comparative example (B) using PcTiO as a charge generation layer. A) is a graph showing the spectral sensitivity of each photoreceptor, and FIG. 7 is a graph showing the printing durability of each photoreceptor of Example (B) of the present invention and Comparative Example (C). 1: Metal substrate, 2: Blocking layer, 3: Charge generation layer, 4: Charge transfer layer.

Claims (1)

【特許請求の範囲】 1 導電性基板上に電荷発生層及び電荷移動層を
積層した積層型電子写真感光体において、基板上
にチタニルフタロシアニンを蒸着し、次いで可溶
性溶剤の蒸気に接触させることにより形成される
電荷発生層であつて、且つ (A) 赤外吸収スペクトルにおいて、727cm-1、752
cm-1、892cm-1、1052cm-1、1072cm-1、1118cm
-1、1332cm-1に強い吸収をもち、773cm-1、779
cm-1、879cm-1、966cm-1、972cm-1、1160cm-1
弱い吸収をもつこと、及び (B) X線回折スペクトルにおいて、ブラツグ角
(2θ)7.5゜、12.6゜、13.0゜、25.4゜、26.2゜、28.6
゜に
強い回折ピークを有すること により示される分光特性を示す結晶構造を有する
電荷発生層を設けたことを特徴とする積層型電子
写真感光体。
[Scope of Claims] 1. In a laminated electrophotographic photoreceptor in which a charge generation layer and a charge transport layer are laminated on a conductive substrate, titanyl phthalocyanine is deposited on the substrate and then brought into contact with vapor of a soluble solvent. and (A) in the infrared absorption spectrum, 727 cm -1 , 752
cm -1 , 892cm -1 , 1052cm -1 , 1072cm -1 , 1118cm
-1 , has strong absorption at 1332cm -1 , 773cm -1 , 779
cm -1 , 879cm -1 , 966cm -1 , 972cm -1 , and 1160cm -1 , and (B) in the X-ray diffraction spectrum, Bragg angles (2θ) of 7.5°, 12.6°, 13.0°, 25.4°, 26.2°, 28.6
1. A laminated electrophotographic photoreceptor comprising a charge generation layer having a crystal structure exhibiting spectral characteristics indicated by a strong diffraction peak at .degree..
JP4079883A 1983-03-14 1983-03-14 Laminated type electrophotographic sensitive body Granted JPS59166959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079883A JPS59166959A (en) 1983-03-14 1983-03-14 Laminated type electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079883A JPS59166959A (en) 1983-03-14 1983-03-14 Laminated type electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS59166959A JPS59166959A (en) 1984-09-20
JPH035745B2 true JPH035745B2 (en) 1991-01-28

Family

ID=12590639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079883A Granted JPS59166959A (en) 1983-03-14 1983-03-14 Laminated type electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS59166959A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145249A (en) * 1984-08-10 1986-03-05 Dainippon Ink & Chem Inc Laminate type electrophotographic sensitive body and its manufacture
JPS61109056A (en) * 1984-11-01 1986-05-27 Mitsubishi Chem Ind Ltd Lamination type electrophotographic sensitive body
JPH0629976B2 (en) * 1985-03-22 1994-04-20 大日本インキ化学工業株式会社 Single layer type electrophotographic photoreceptor
JPH0629975B2 (en) * 1985-04-16 1994-04-20 大日本インキ化学工業株式会社 Multilayer type photoconductor for electrophotography
JPS6267094A (en) * 1985-09-18 1987-03-26 Mitsubishi Chem Ind Ltd Crystalline oxytitanium phthalocyanine and photosensitive material for electrophotography
JPS62272272A (en) * 1986-05-21 1987-11-26 Dainippon Ink & Chem Inc Electrophotographic sensitive body
JP2563813B2 (en) * 1987-11-04 1996-12-18 新電元工業 株式会社 Method for manufacturing electrophotographic photoreceptor
JPH02134647A (en) * 1988-11-15 1990-05-23 Somar Corp Laminated electrophotographic sensitive body
JPH02134646A (en) * 1988-11-15 1990-05-23 Somar Corp electrophotographic photoreceptor
JP2714838B2 (en) * 1989-01-09 1998-02-16 コニカ株式会社 Electrophotographic photoreceptor
DE69006961T2 (en) * 1989-07-21 1994-06-23 Canon Kk Oxytitanium phthalocyanine, process for its preparation and use of this electrophotoconductive element.
JPH0715067B2 (en) * 1989-07-21 1995-02-22 キヤノン株式会社 Oxytitanium phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same
EP0433172B1 (en) * 1989-12-13 1996-03-06 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US5227271A (en) * 1990-10-23 1993-07-13 Canon Kabushiki Kaisha Electrophotographic photosensitive member
EP0482922B1 (en) * 1990-10-24 1997-01-08 Canon Kabushiki Kaisha Process for producing crystalline oxytitanium phthalocyanine
JP2801426B2 (en) * 1991-04-24 1998-09-21 キヤノン株式会社 Oxytitanium phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same
EP0538889B1 (en) * 1991-10-25 1998-06-03 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and electrophotographic apparatus, device unit, and facsimile machine employing the same
US5384625A (en) * 1992-12-28 1995-01-24 Canon Kabushiki Kaisha Image forming method
US5405954A (en) * 1993-06-18 1995-04-11 Xerox Corporation Metal phthalocyanines and processes for the preparation thereof
JPH08209023A (en) 1994-11-24 1996-08-13 Fuji Electric Co Ltd Titanyloxyphthalocyanine crystal, its production method and electrophotographic photoreceptor
US5874570A (en) * 1995-11-10 1999-02-23 Fuji Electric Co., Ltd. Titanyloxyphthalocyanine crystals, and method of preparing the same
US5958637A (en) * 1996-07-24 1999-09-28 Hitachi Chemical Company, Ltd. Electrophotographic photoreceptor and coating solution for production of charge transport layer
JP4668121B2 (en) 2006-05-12 2011-04-13 株式会社リコー Image forming apparatus
JP4825167B2 (en) 2007-05-11 2011-11-30 株式会社リコー Electrophotographic photosensitive member, image forming apparatus, and process cartridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494338A (en) * 1972-05-02 1974-01-16
JPS57148745A (en) * 1981-03-11 1982-09-14 Nippon Telegr & Teleph Corp <Ntt> Lamination type electrophotographic receptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494338A (en) * 1972-05-02 1974-01-16
JPS57148745A (en) * 1981-03-11 1982-09-14 Nippon Telegr & Teleph Corp <Ntt> Lamination type electrophotographic receptor

Also Published As

Publication number Publication date
JPS59166959A (en) 1984-09-20

Similar Documents

Publication Publication Date Title
JPH035745B2 (en)
JPH0531137B2 (en)
JP2814872B2 (en) Hydroxygallium phthalocyanine crystal, method for producing the same, and electrophotographic photoreceptor using the same
EP0180930A2 (en) Crystalline oxytitanium phthalocyanine and photoreceptor for use in electrophotography
EP0584754B1 (en) Process for producing hydroxygallium phthalocyanine
JPH0560863B2 (en)
JP3343275B2 (en) Phthalocyanine composition, method for producing the same, electrophotographic photoreceptor using the same, and coating liquid for charge generation layer
JPH08231878A (en) Electrophotographic element and coating composition
US5328788A (en) Organic photoconductive material for electrophotography and method for making the same
DE3850697T2 (en) Electrophotographic plate.
EP0810481B1 (en) Electrophotographic photoreceptor
JP2861116B2 (en) Electrophotographic photoreceptor
JP3350834B2 (en) Electrophotographic photoreceptor
JP2844266B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH06145550A (en) Phthalocyanine composition, its production, electro-photograhic photoreceptor containing same, and coating fluid containing same for change generation layer
JP3619668B2 (en) Electrophotographic photoreceptor
JPS58158649A (en) Laminate type electrophotographic receptor
JPH1063022A (en) Electrophotographic photoreceptor
JP3451751B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH11305462A (en) Electrophotographic photoreceptor
JPH03273258A (en) Electrophotographic sensitive body
JPH05271566A (en) Oxotitanylphthalocyanine composition, its production and electronic photographic sensitizer using the same
JPS62177069A (en) Novel phthalocyanine crystal and electrophotographic photosensitive material using said crystal
JPH11305469A (en) Electrophotographic photoreceptor
JPH01291256A (en) Electrophotographic sensitive body