JPH0360043A - Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin film - Google Patents
Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin filmInfo
- Publication number
- JPH0360043A JPH0360043A JP19515389A JP19515389A JPH0360043A JP H0360043 A JPH0360043 A JP H0360043A JP 19515389 A JP19515389 A JP 19515389A JP 19515389 A JP19515389 A JP 19515389A JP H0360043 A JPH0360043 A JP H0360043A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- film
- forming
- channel
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 50
- 239000004065 semiconductor Substances 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 239000013078 crystal Substances 0.000 claims abstract description 34
- 239000010408 film Substances 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 7
- 238000000137 annealing Methods 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 2
- 238000000059 patterning Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000005468 ion implantation Methods 0.000 abstract description 3
- 238000002161 passivation Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 16
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、絶縁物基板上に低温プロセスで高移動度半導
体薄膜を形成する半導体薄膜の製造方法およびこの半導
体薄膜が用いられている高移動度、高耐圧でリーク電流
の少ない薄膜トランジスタの製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor thin film in which a high-mobility semiconductor thin film is formed on an insulating substrate by a low-temperature process, and a high-mobility semiconductor thin film in which this semiconductor thin film is used. The present invention relates to a method for manufacturing a thin film transistor with high breakdown voltage and low leakage current.
(従来の技術)
近年ガラス基板上に薄M!能動デバイスをつくりこむ技
術は、大面積透過型液晶デイスプレィや密着型イメージ
センサ等を初めとする各所に応用が自衛され、研究が活
発化している。(Prior art) In recent years, thin M on glass substrates! Technology for creating active devices is being applied to a variety of applications, including large-area transmissive liquid crystal displays and contact image sensors, and research is becoming more active.
そのなかでも大面積に均一に成膜できるa−3t:Hは
、既に製品レベルの応用が進んでいる。しかし、a−3
t:Hでは移動度が非常に低いためその応用分野が制限
されている。すなわち、光センサやスイッチングデバイ
スとしては応用可能であるが、これらを駆動する周辺回
路を同時につくりこもうとした場合、移動度が単結晶シ
リコンの約1000分の1と低いので、必要とする遠さ
の駆動回路を製作することができない、現在、このよう
な駆動回路はシリコンウェハ上で製作され、ワイヤボン
ディングで薄膜デバイスと接続しているのが現状である
。Among them, a-3t:H, which can be uniformly formed into a film over a large area, is already being applied to the product level. However, a-3
t:H has a very low mobility, which limits its field of application. In other words, it can be applied as an optical sensor or a switching device, but if you try to create peripheral circuits to drive these devices at the same time, the mobility is about 1/1000th that of single-crystal silicon, so it cannot be Currently, such drive circuits are fabricated on silicon wafers and connected to thin film devices using wire bonding.
しかし、製造コストや配線の歩どまりなどの点から、将
来的には全薄膜化が必要とされている。However, from the viewpoint of manufacturing cost and wiring yield, it will be necessary to make the entire structure thinner in the future.
全薄膜化のためにはガラス基板上に高移動度薄膜を製作
する手段が必要となる。最近では、ガラス基板上で単結
晶シリコンを得ることも可能となってきているが、その
ためには、かなりの高温プロセスを必要とし、ガラス基
板も含め他の部分が高温にさらされてしまう、その結果
、使用するガラス基板として耐熱性の高い材料を用いな
ければならず、他部への損傷の問題等が生じてくる。In order to make the entire film thinner, a means to fabricate a high-mobility thin film on a glass substrate is required. Recently, it has become possible to obtain single-crystal silicon on a glass substrate, but this requires a fairly high-temperature process, and other parts, including the glass substrate, are exposed to high temperatures. As a result, a material with high heat resistance must be used as the glass substrate, which causes problems such as damage to other parts.
そこで、低温プロセスで均一に高移動度の半導体薄膜お
よび薄膜能動デバイスを作成する研究が活発に行われて
いる。その一つとして多結晶シリコンのTPTの研究開
発が行われている。Therefore, active research is being conducted to create semiconductor thin films and thin film active devices with uniformly high mobility using low-temperature processes. As one of these, research and development on polycrystalline silicon TPT is being conducted.
第5図(a)と(b)は従来のプレーナ型薄膜トランジ
スタの13fiを示した平面図および断面図である。こ
の構造は次の製造工程を経て得られる。FIGS. 5(a) and 5(b) are a plan view and a sectional view showing 13fi of a conventional planar thin film transistor. This structure is obtained through the following manufacturing steps.
即ち、まず、絶縁基板3上に多結晶シリコンを形成し、
ソース・ドレイン低抵抗半導体層4を形成する0次に活
性層となる多結晶シリコン5をアイランド化しゲート絶
縁1li7、ゲート電極8を形成後、ゲート電極をパタ
ーン化する。その後、ゲート′@極8をマスクとしてイ
オン注入によりソース・ドレイン領域を形成する。更に
、層間絶縁膜10の形成、コ、ンタクトホール形成を行
い、メタル配線11を行う。That is, first, polycrystalline silicon is formed on the insulating substrate 3,
After forming the polycrystalline silicon 5 which becomes the zero-order active layer forming the source/drain low resistance semiconductor layer 4 into an island and forming the gate insulator 1li7 and the gate electrode 8, the gate electrode is patterned. Thereafter, source/drain regions are formed by ion implantation using the gate'@pole 8 as a mask. Further, an interlayer insulating film 10 is formed, a contact hole is formed, and a metal wiring 11 is formed.
ここで、さらに活性層となる薄膜半導体層を500Å以
下の超薄膜化することによりトランジスタの性能は格段
に向上し、最近では低温で電界−麺果移動度100cm
’ /V、s以上の性能が得られる。Here, the performance of transistors has been significantly improved by making the thin film semiconductor layer, which becomes the active layer, ultra-thin to 500 Å or less, and recently, the electric field - noodle mobility has been improved to 100 cm at low temperatures.
'/V,s or higher performance can be obtained.
(発明が解決しようとする課題)
しかし、多結晶シリコン薄膜トランジスタではどうして
も結晶粒界での散乱が移動度を妨げる1つの大きい要因
となり、粒界を含む限りはこれ以上の性能向上は困難で
ある。(Problems to be Solved by the Invention) However, in polycrystalline silicon thin film transistors, scattering at crystal grain boundaries is a major factor that impedes mobility, and as long as grain boundaries are included, it is difficult to further improve performance.
最近の研究では非晶質シリコンの低温固相成長法により
結晶粒径は5μm程度のものまでできており、このよう
な大粒径多結晶シリコン膜の場合、チャネル内部に結晶
粒界を1つも含まない薄膜トランジスタを製作すること
も不可能ではない。Recent research has shown that crystal grain sizes of about 5 μm can be produced using low-temperature solid-phase growth methods for amorphous silicon, and in the case of such large-grain polycrystalline silicon films, even one grain boundary exists inside the channel. It is not impossible to fabricate thin film transistors that do not contain the same.
そのためには結晶粒に合わせてトランジスタを製作しな
ければならないが、結晶の核発生の位置を制御すること
は現状では困難であるためチャネル内部に結晶粒界を含
まないトランジスタを製作することは実用的には困難で
ある。しかも、結晶粒が大きくなるとチャネル内部に含
む粒界数が減少するのでトランジスタの特性のばらつき
が大きくなるという欠点も含んでいる。To achieve this, it is necessary to manufacture transistors that match the crystal grains, but it is currently difficult to control the position of crystal nucleation, so it is not practical to manufacture transistors that do not contain grain boundaries inside the channel. It is difficult to do so. Moreover, as the crystal grains become larger, the number of grain boundaries included within the channel decreases, which also has the disadvantage of increasing variations in transistor characteristics.
そこで本発明では、結晶核の発生位置を制御できる成膜
方法を提供し、この成膜方法を用いて結晶の核発生の位
置を常にトランジスタのチャネル中央に起こるよう制御
し、トランジスタチャネルのサイズを5μm以内にする
ことによりトランジスタチャネルに常に結晶粒界を含ま
ないで薄膜ICを製作する方法を提供するものである。Therefore, the present invention provides a film formation method that can control the position of crystal nucleus generation, and uses this film formation method to control the position of crystal nucleus generation so that it always occurs at the center of the transistor channel, thereby reducing the size of the transistor channel. This provides a method of manufacturing a thin film IC without always including crystal grain boundaries in the transistor channel by keeping the thickness within 5 μm.
(課題を解決するための手段)
前述の課題を解決するために本発明の半導体薄膜の製造
方法は、絶縁性基板上に非晶質シリコンを堆積し、65
0℃以下の低温アニールにより結晶成長させる半導体薄
膜の製造方法において、多結晶薄膜半導体層による微小
突起物を形成する工程と、この上部に非晶質半導体薄膜
を形成し、前記突起物を中心に結晶成長させる工程とを
有する。(Means for Solving the Problems) In order to solve the above-mentioned problems, the method for manufacturing a semiconductor thin film of the present invention deposits amorphous silicon on an insulating substrate,
A method for manufacturing a semiconductor thin film in which crystals are grown by low-temperature annealing at 0° C. or lower, which includes a step of forming minute protrusions using a polycrystalline thin film semiconductor layer, forming an amorphous semiconductor thin film on top of the micro-protrusions, and forming the amorphous semiconductor thin film on top of the micro-protrusions. and a step of growing a crystal.
また、本発明の薄膜トランジスタの製造方法は、絶縁性
基板上に低抵抗半導体層を形成し、この低抵抗半導体層
をパターニングしてソース・ドレイン領域を形成すると
ともに成長核となりうる突起物を形成する工程と、この
上に成膜した非晶質シリコン膜を650℃以下の低温ア
ニールにより突起物を中心に結晶を成長させる工程と、
この突起物をさけて幅が前記結晶の粒径以下のチャネル
をチャネルの中央部に突起がくるように形成する工程と
、このチャネル上部にゲート絶縁膜および、ゲート電極
を形成する工程とを有する。Furthermore, the method for manufacturing a thin film transistor of the present invention includes forming a low-resistance semiconductor layer on an insulating substrate, and patterning this low-resistance semiconductor layer to form source/drain regions and protrusions that can serve as growth nuclei. a step of growing crystals around the protrusions by annealing the amorphous silicon film formed thereon at a low temperature of 650° C. or less;
A step of forming a channel having a width equal to or less than the grain size of the crystal while avoiding the protrusion so that the protrusion is located in the center of the channel, and a step of forming a gate insulating film and a gate electrode on the upper part of the channel. .
(作用〉
結晶成長の核は基板、シリコン膜界面より発生している
ことが明らかとなっている。ここで基板に凹凸がある場
合、膜にストレスが生じ、そこが核となる可能性が高い
。(Effect) It is clear that the nucleus of crystal growth is generated from the interface between the substrate and the silicon film.If the substrate has unevenness, stress will be generated in the film, and there is a high possibility that the nucleus will become there. .
本発明では、チャネル中央部に突起物を形成し、この突
起物を中心に結晶成長させることにより、結晶の位置制
御を可能にする方法である。この突起物をソース・ドレ
インの低抵抗層を形成する層で同時に製作しておけばL
DD構造薄膜トランジスタの製作工程に比ベニ枚数の増
加はない4.tた、このような突起物を中心に成長した
結晶粒の内部のみをチャネルに使い、しかも層間リーク
を防ぐため突起物のある部分を避けてダブルチャネル構
造とすることにより結晶粒界を含まないトランジスタを
制御性よく製作することができる。In the present invention, a protrusion is formed in the center of the channel, and the crystal is grown around the protrusion, thereby making it possible to control the position of the crystal. If this protrusion is made at the same time as the layer that forms the low resistance layer of the source and drain, L
4. There is no increase in the number of sheets compared to the manufacturing process of DD structure thin film transistors. In addition, only the inside of the crystal grains that have grown around these protrusions are used as channels, and in order to prevent interlayer leakage, the part with the protrusions is avoided to create a double channel structure, which does not include grain boundaries. Transistors can be manufactured with good controllability.
尚、ソース・ドレイン用のシリコン層の境界部分も結晶
粒の核と成り得るが、微小突起部の方がストレスが大き
く核発生が起こり易いこと、ソース・ドレインの境界部
分から結晶成長が起こったとしても、チャネル部とこの
ソース・ドレイン用半導体層の距離とを制御することに
よりチャネル部に結晶粒界を含まないように制御するこ
とができるから、いずれにしてもチャネル部に結晶粒界
を含まないようにすることが可能である。Note that the boundary between the source and drain silicon layers can also become the nucleus of crystal grains, but microprotrusions have greater stress and nucleation is more likely to occur, and crystal growth occurs from the source and drain boundary. However, by controlling the distance between the channel part and this source/drain semiconductor layer, the channel part can be controlled so as not to include crystal grain boundaries. It is possible to exclude it.
また、この構造のトランジスタはドレイン端の近傍のみ
ドーピング濃度が低いLDDII造を有しており、ソー
ス・トレイン間の耐圧は高く、リーク電流についても従
来のトランジスタに比べ改善されている。更に、ドレイ
ン端部に結晶粒界を含まないため、多結晶シリコン薄膜
トランジスタのリーク電流の原因といわれている粒界ト
ラップを介したエミッシッン電流も抑えられ、リーク電
流に関してもかなり改善される。その結果、高速化、低
リーク電流化を実現できる。Further, the transistor with this structure has an LDDII structure in which the doping concentration is low only near the drain end, and the withstand voltage between the source and the train is high, and leakage current is also improved compared to conventional transistors. Furthermore, since the drain end does not contain grain boundaries, emissive current via grain boundary traps, which is said to be the cause of leakage current in polycrystalline silicon thin film transistors, is also suppressed, resulting in a considerable improvement in leakage current. As a result, higher speed and lower leakage current can be achieved.
(実施例) 次に本発明について図面を参照しながら説明する。(Example) Next, the present invention will be explained with reference to the drawings.
第1図(a)は本発明による半導体薄膜の製造方法によ
り形成された半導体薄膜である。FIG. 1(a) shows a semiconductor thin film formed by the method for manufacturing a semiconductor thin film according to the present invention.
絶縁性基板上に予め形成しておいた多結晶半導体の微小
突起物1上に非晶質半導体を成膜し、600℃〜650
℃の温度でアニールを行い、突起物1を中心に結晶粒2
を成長せしめ、結晶粒2が整然と並んだ多結晶半導体薄
膜を形成する。An amorphous semiconductor film is formed on micro-protrusions 1 of polycrystalline semiconductor formed in advance on an insulating substrate, and heated at 600°C to 650°C.
Annealing is performed at a temperature of
is grown to form a polycrystalline semiconductor thin film in which crystal grains 2 are arranged in an orderly manner.
一方、同図(b)は、従来の固相成長法により成膜した
多結晶薄膜であるが、突起物1がないので、結晶粒はラ
ンダムに配置された多結晶半導体薄膜が作成されている
ことが分かる。On the other hand, the same figure (b) shows a polycrystalline semiconductor thin film formed by the conventional solid phase growth method, but since there is no protrusion 1, a polycrystalline semiconductor thin film is created in which the crystal grains are randomly arranged. I understand that.
第2図(a)〜(h)は本発明による製造方法の一実施
例を示す工程図であり、同図(a)。FIGS. 2(a) to 2(h) are process diagrams showing one embodiment of the manufacturing method according to the present invention, and FIG.
(c)、(e)、(g>は各工程における装置の平面図
、(b)、(d)、(f)、(h)は各工程における装
置の断面図である。(c), (e), and (g> are plan views of the apparatus in each step, and (b), (d), (f), and (h) are cross-sectional views of the apparatus in each step.
先ず、第2図(a)と(b)に示すように、ガラス基板
3上にソース・ドレイン領域を形成する低抵抗半導体層
4を形成しパターン化する。このとき、2つのチャネル
間のほぼ中央部に突起物を同時に設ける0次に活性層5
として、非晶質シリコンを2000人成膜し、600〜
650℃でアニールして固相成長により多結晶化した後
、アイランド化する。この成長時チャネル中央部の突起
物が結晶成長の核となり易いため、ここを中心として点
線のような結晶粒6が得られる。その結果、チャネル内
にはすくなくともチャネルを横切る結晶粒界は存在しな
い、このとき突起物の点では眉間ショートなどが発生し
易いためチャネルはこの突起物部分を避はダブルチャネ
ル構造としている(第2図(C)、(d))。First, as shown in FIGS. 2(a) and 2(b), a low resistance semiconductor layer 4 for forming source/drain regions is formed on a glass substrate 3 and patterned. At this time, a protrusion is simultaneously provided in the 0-order active layer 5 approximately at the center between the two channels.
As a result, 2000 people deposited amorphous silicon, and 600 ~
After annealing at 650° C. to polycrystallize by solid phase growth, it is made into an island. During this growth, since the protrusion at the center of the channel tends to become a nucleus for crystal growth, crystal grains 6 as shown by dotted lines are obtained around this protrusion. As a result, there is no grain boundary that crosses the channel within the channel.At this time, short-circuits between the eyebrows are likely to occur at the point of the protrusion, so the channel has a double channel structure (second Figures (C), (d)).
そして、ゲート絶縁膜7と、ゲート″t[!8を成膜し
、ゲート電極パターンを形成する。その後、ゲート電極
をマスクとしてイオン注入法により自己整合的に低濃度
のソース・ドレイン領域を形成する(第2図(e)、(
f))、パヅシベーション膜形成後、コンタクトホール
を形成する。その後、電極メタル層1工を成脱し、電極
パターンを形成すると、チャネル内部に結晶粒界を含ま
ないトランジスタが簡単に得られる(第2図(g)。Then, a gate insulating film 7 and a gate "t[!8" are formed to form a gate electrode pattern. Then, using the gate electrode as a mask, low concentration source/drain regions are formed in a self-aligned manner by ion implantation. (Figure 2(e), (
f)) After forming the passivation film, a contact hole is formed. Thereafter, by depositing and removing the first electrode metal layer and forming an electrode pattern, a transistor containing no crystal grain boundaries inside the channel can be easily obtained (FIG. 2(g)).
(h))、また本発明の方法によれば、リーク電流の少
ないLDD構遺が得られ、しかも選択エツチングプロセ
スを必要とせず制御性、再現性も高い。(h)) Furthermore, according to the method of the present invention, an LDD structure with low leakage current can be obtained, and furthermore, it does not require a selective etching process and has high controllability and reproducibility.
実際に製作した薄膜トランジスタのドレイン電流のゲー
ト電圧による変化を示す特性図が第4図に示されている
0図中、実線が本発明の方法により製作された薄膜トラ
ンジスタの特性、破線が従来の方法で製作した多結晶シ
リコン薄膜トランジスタの特性である。第4図から明ら
かなように、電界効果移動度、リーク電流とも大きく改
善されている。A characteristic diagram showing the change in drain current due to gate voltage of an actually manufactured thin film transistor is shown in Figure 4.In Figure 4, the solid line is the characteristic of the thin film transistor manufactured by the method of the present invention, and the broken line is the characteristic of the thin film transistor manufactured by the conventional method. These are the characteristics of the manufactured polycrystalline silicon thin film transistor. As is clear from FIG. 4, both field effect mobility and leakage current are greatly improved.
また、チャネル幅の大きなトランジスタを得たい場合は
、第3図(a)と(b)に示すように各チャネル幅は5
μm以下のままマルチチャネルにしてチャネル数を増や
せばどのようなW/L比の一トノランジスタも製作でき
る。この場合、図に示すように、突起物部分および粒界
部分を避けてチャネルを形成する。In addition, if you want to obtain a transistor with a large channel width, each channel width should be 5.
If the number of channels is increased by increasing the number of channels while keeping the size smaller than μm, a transistor with any W/L ratio can be manufactured. In this case, as shown in the figure, channels are formed avoiding the protrusion portions and grain boundary portions.
(発明の効果)
以上詳述したように、本発明による薄膜の製造方法によ
り結晶粒の位置の制御が可能となる。また、この成膜性
を用いた薄膜トランジスタの製造方法によりチャネル内
部に少なくともチャネルを横切る結晶粒界を含まない薄
膜トランジスタが簡単な工程で再現性よく製作できる。(Effects of the Invention) As detailed above, the thin film manufacturing method according to the present invention enables control of the position of crystal grains. Further, by a method of manufacturing a thin film transistor using this film forming property, a thin film transistor that does not include at least a grain boundary crossing the channel inside the channel can be manufactured with good reproducibility through simple steps.
更に、この製造方法により得られた薄膜トランジスタで
はしきい値などのばらつきが小さく、回路設計のマージ
ンが高くとれるようになる。Furthermore, the thin film transistors obtained by this manufacturing method have small variations in threshold values, etc., allowing a high margin in circuit design.
第1図(a)と(b)は本発明と従来方法により得られ
た半導体薄膜を示す図、第2図(a)〜(h)は本発明
による製造方法の各工程における装置の平面図と断面図
、第3図(a)と(b)はチャネル幅の大きなトランジ
スタを得る場合の実施例を示す図、第4図は本発明と従
来方法により得られたトランジスタの特性を示す図、第
5図(a)と(b)は従来の多結晶薄膜トランジスタを
示す図である。
1・・・突起物、2・・・半導体薄膜、3・・・ソース
・ドレイン低抵抗半導体層、5・・・半導体層、6・・
・結晶粒、7・・・ゲート絶縁膜、8・・・ゲート絶縁
膜、9・・・不純物イオン、10・・・層間絶縁膜、1
1・・・電極メタル。FIGS. 1(a) and (b) are diagrams showing semiconductor thin films obtained by the present invention and the conventional method, and FIGS. 2(a) to (h) are plan views of the apparatus in each step of the manufacturing method according to the present invention. 3(a) and 3(b) are diagrams showing an example of obtaining a transistor with a large channel width, and FIG. 4 is a diagram showing characteristics of transistors obtained by the present invention and the conventional method. FIGS. 5(a) and 5(b) are diagrams showing a conventional polycrystalline thin film transistor. DESCRIPTION OF SYMBOLS 1... Protrusion, 2... Semiconductor thin film, 3... Source/drain low resistance semiconductor layer, 5... Semiconductor layer, 6...
・Crystal grain, 7... Gate insulating film, 8... Gate insulating film, 9... Impurity ion, 10... Interlayer insulating film, 1
1... Electrode metal.
Claims (2)
℃以下の低温アニールにより結晶成長させる半導体薄膜
の製造方法において、多結晶薄膜半導体層による微小突
起物を形成する工程と、この上部に非晶質半導体薄膜を
形成し、前記突起物を中心に結晶成長させる工程とを有
することを特徴とする半導体薄膜の製造方法。(1) Depositing amorphous silicon on an insulating substrate,
A method for producing a semiconductor thin film in which crystal growth is performed by low-temperature annealing at a temperature below 10°C includes a step of forming microprotrusions using a polycrystalline thin film semiconductor layer, forming an amorphous semiconductor thin film on top of the microprotrusions, and growing crystals around the protrusions. 1. A method for manufacturing a semiconductor thin film, comprising the step of growing a semiconductor thin film.
抵抗半導体層をパターニングしてソース・ドレイン領域
を形成するとともに成長核となりうる突起物を形成する
工程と、この上に成膜した非晶質シリコン膜を650℃
以下の低温アニールにより突起物を中心に結晶を成長さ
せる工程と、この突起物をさけて幅が前記結晶の粒径以
下のチャネルをチャネルの中央部に突起がくるように形
成する工程と、このチャネル上部にゲート絶縁膜および
、ゲート電極を形成する工程とを有することを特徴とす
る薄膜トランジスタの製造方法。(2) A process of forming a low-resistance semiconductor layer on an insulating substrate, patterning this low-resistance semiconductor layer to form source/drain regions, and forming protrusions that can serve as growth nuclei, and forming a film on this layer. The amorphous silicon film was heated to 650°C.
A step of growing a crystal around the protrusion by low-temperature annealing as described below, a step of forming a channel with a width equal to or less than the grain size of the crystal while avoiding the protrusion so that the protrusion is located in the center of the channel; A method for manufacturing a thin film transistor, comprising the steps of forming a gate insulating film and a gate electrode above a channel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19515389A JPH0360043A (en) | 1989-07-27 | 1989-07-27 | Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19515389A JPH0360043A (en) | 1989-07-27 | 1989-07-27 | Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0360043A true JPH0360043A (en) | 1991-03-15 |
Family
ID=16336313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19515389A Pending JPH0360043A (en) | 1989-07-27 | 1989-07-27 | Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0360043A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9301811A (en) * | 1992-10-28 | 1994-05-16 | Ryoden Semiconductor Syst Eng | Thin film field effect transistor and method of manufacturing it, as well as a semiconductor element provided therewith. |
US6528397B1 (en) | 1997-12-17 | 2003-03-04 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same |
JP2004006800A (en) * | 2002-04-16 | 2004-01-08 | Seiko Epson Corp | Method of manufacturing semiconductor device, semiconductor device, electro-optical device, integrated circuit, electronic equipment |
CN100452423C (en) * | 1993-02-15 | 2009-01-14 | 株式会社半导体能源研究所 | Semiconductor device |
-
1989
- 1989-07-27 JP JP19515389A patent/JPH0360043A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL9301811A (en) * | 1992-10-28 | 1994-05-16 | Ryoden Semiconductor Syst Eng | Thin film field effect transistor and method of manufacturing it, as well as a semiconductor element provided therewith. |
US5514880A (en) * | 1992-10-28 | 1996-05-07 | Mitsubishi Denki Kabushiki Kaisha | Field effect thin-film transistor for an SRAM with reduced standby current |
US5736438A (en) * | 1992-10-28 | 1998-04-07 | Mitsubishi Denki Kabushiki Kaisha | Field effect thin-film transistor and method of manufacturing the same as well as semiconductor device provided with the same |
CN100452423C (en) * | 1993-02-15 | 2009-01-14 | 株式会社半导体能源研究所 | Semiconductor device |
US6528397B1 (en) | 1997-12-17 | 2003-03-04 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same |
US6806498B2 (en) | 1997-12-17 | 2004-10-19 | Matsushita Electric Industrial Co., Ltd. | Semiconductor thin film, method and apparatus for producing the same, and semiconductor device and method of producing the same |
JP2004006800A (en) * | 2002-04-16 | 2004-01-08 | Seiko Epson Corp | Method of manufacturing semiconductor device, semiconductor device, electro-optical device, integrated circuit, electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7372073B2 (en) | Semiconductor thin film, semiconductor device and manufacturing method thereof | |
JPS59208783A (en) | thin film transistor | |
US6531348B2 (en) | Method for crystallizing amorphous silicon and fabricating thin film transistor using crystallized silicon | |
JP2005510063A (en) | Mask for polycrystalline silicon and method of manufacturing thin film transistor using the same | |
KR100966420B1 (en) | Polysilicon Liquid Crystal Display Device and Manufacturing Method Thereof | |
JP2700277B2 (en) | Method for manufacturing thin film transistor | |
KR100790059B1 (en) | Semiconductor device, method of making the same and liquid crystal display device | |
JP2505736B2 (en) | Method for manufacturing semiconductor device | |
KR100474385B1 (en) | A method of crystallizing an amorphous silicon thin film and using the method of manufacturing a crystalline silicon thin film transistor | |
JP3708150B2 (en) | Thin film transistor substrate | |
JPH0360043A (en) | Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin film | |
JP3284899B2 (en) | Semiconductor device and manufacturing method thereof | |
US7166501B2 (en) | Method for fabricating polycrystalline silicon liquid crystal display device | |
JPS6273660A (en) | Thin film transistor device and its manufacturing method | |
JPH10209467A (en) | Thin film semiconductor device | |
JPH02275641A (en) | Manufacture of semiconductor device | |
JPH06169086A (en) | Polycrystalline silicon thin film transistor | |
JP2000183351A (en) | Manufacture of thin-film semiconductor device | |
JPH02189935A (en) | Manufacture of thin-film transistor | |
JPH0541519A (en) | Thin-film transistor and its manufacture | |
JPH07263704A (en) | Thin film transistor and manufacture thereof | |
JP3198378B2 (en) | Method for manufacturing semiconductor device | |
KR100709282B1 (en) | Thin film transistor and manufacturing method | |
JPH0697193A (en) | Semiconductor device and manufacture thereof | |
KR100955380B1 (en) | Method for manufacturing polysilicon liquid crystal display element |