JPH0412468A - High-temperature fuel cell - Google Patents
High-temperature fuel cellInfo
- Publication number
- JPH0412468A JPH0412468A JP2110484A JP11048490A JPH0412468A JP H0412468 A JPH0412468 A JP H0412468A JP 2110484 A JP2110484 A JP 2110484A JP 11048490 A JP11048490 A JP 11048490A JP H0412468 A JPH0412468 A JP H0412468A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- separator
- grooves
- electrolyte
- electrolyte plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims description 14
- 239000007789 gas Substances 0.000 claims abstract description 58
- 239000003792 electrolyte Substances 0.000 claims abstract description 38
- 239000002737 fuel gas Substances 0.000 claims abstract description 15
- 239000007800 oxidant agent Substances 0.000 claims abstract description 10
- 230000001590 oxidative effect Effects 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000007789 sealing Methods 0.000 abstract description 11
- 230000006866 deterioration Effects 0.000 abstract 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2483—Details of groupings of fuel cells characterised by internal manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高温型燃料電池に係わり、より詳細には平板型
燃料電池集積構造における燃料ガス及び酸化剤ガス通路
のためのマニホールドの構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to high temperature fuel cells, and more particularly to the structure of a manifold for fuel gas and oxidant gas passages in a planar fuel cell integrated structure.
高温型燃料電池としては、米国ウェスチングハウス・エ
レクトリック社において既に5J程度のパイロットプラ
ントが製造され、稼働しているが、これは円筒型といわ
れるタイプで、電力密度が小さいため小型化しにくい欠
点がある。As for high-temperature fuel cells, a pilot plant of approximately 5J has already been manufactured and is in operation at Westinghouse Electric Company in the United States, but this type is of the cylindrical type, and its low power density makes it difficult to downsize. be.
これに対して、平板型は1段あたりの厚みを小さくする
ことによって電力密度を上げることが可能であるという
特徴を有するが、ガス封止が難しいため、実証例は少な
い。平版型は、両面にアノードとカソードを形成した電
解質板と、両面に溝を有しガス通路と電気接合体を兼ね
るセパレータ(集電体)とを交互に集積した構造であり
、燃料ガス及び酸化剤ガスの供給及び排出は上記集積体
を筒型の容器に収納してガス封止し容器と集積体の間に
形成される開口部をもってマニホールドとし、ている。On the other hand, the flat plate type has the characteristic that it is possible to increase the power density by reducing the thickness per stage, but there are few demonstration examples because gas sealing is difficult. The lithographic type has a structure in which electrolyte plates with anodes and cathodes formed on both sides and separators (current collectors) with grooves on both sides and serving as gas passages and electrical connectors are stacked alternately. For supplying and discharging the agent gas, the above-mentioned aggregate is housed in a cylindrical container, sealed with gas, and an opening formed between the container and the aggregate is used as a manifold.
そして、一般に電解質としては安定化もしくは部分安定
化ジルコニアが、カソードとしてはLa (Sr) M
nO3またはla (Sr) COO3が、アノードと
してはNi/ZrO2が用いられている。またセパレー
タ(集電体)としてはLaCr0.又は耐熱合金が使用
されている。Generally, stabilized or partially stabilized zirconia is used as the electrolyte, and La (Sr) M is used as the cathode.
nO3 or la (Sr) COO3, and Ni/ZrO2 as the anode. Moreover, as a separator (current collector), LaCr0. Or heat-resistant alloys are used.
〔発明が解決しようとする課題〕
上記の平板型集積構造では、燃料ガス及び酸化剤ガスの
供給及び排出マニホールドが集積体(電池本体)の外部
に容器を用いて形成されるが、電池本体と容器の熱膨張
の違いにより、応力が発生してマニホールドを破損した
り、ガス封止が困難であるという問題がある。また、容
器内に電池本体を収容するため、垂直方向のガス封止部
分が存在して封止剤の保持が困難であるという問題があ
る。[Problems to be Solved by the Invention] In the flat plate type integrated structure described above, the fuel gas and oxidant gas supply and discharge manifolds are formed using containers outside the integrated body (battery main body). There are problems in that stress is generated due to differences in thermal expansion of the containers, which may damage the manifold and make gas sealing difficult. Further, since the battery body is housed in the container, there is a vertical gas sealing portion, which makes it difficult to retain the sealant.
本発明は、上記課題を解決するために、両面にアノード
とカソードを形成した電解質板と、両面に溝を有しガス
通路と電気接合体を兼ねるセパレータとを交互に集積し
てなる平板型燃料電池において、中央部を波板状としか
つ外周に沿って波板の頂面又は底面の一方から他方まで
延びる周壁を設けたセパレータを、平板状電解質板を介
して集積して、セパ゛レータと電解質板の間に形成され
る空間部により燃料ガス及び酸化剤ガスのガス通路を形
成しかつ該ガス通路を上記セパレータの該周壁によって
上記集積体内部に密閉した構造となし、さらに電解質板
とセパレータの接合部に孔を設けて電解質板の両面に位
置する燃料ガス及び酸化剤ガスのガス通路をそれぞれ接
続してなることを特徴とする高温型燃料電池を提供する
ものである。In order to solve the above-mentioned problems, the present invention provides a flat plate fuel which is formed by alternately integrating electrolyte plates with anodes and cathodes formed on both sides and separators having grooves on both sides and serving as gas passages and electrical connectors. In a battery, a separator having a corrugated central portion and a peripheral wall extending along the outer periphery from one of the top or bottom surfaces of the corrugated sheet to the other is assembled via a flat electrolyte plate to form a separator and a separator. A gas passage for fuel gas and oxidant gas is formed by a space formed between the electrolyte plates, and the gas passage is sealed inside the assembly by the peripheral wall of the separator, and further, the electrolyte plate and the separator are joined. The present invention provides a high-temperature fuel cell characterized in that holes are provided in the electrolyte plate and gas passages for fuel gas and oxidant gas located on both sides of the electrolyte plate are connected to each other.
セパレータの外周部にガスを密閉する枠を設けたことに
より、′電解質板とセパレータの集積体からなる電池本
体の内部に燃料ガス及び酸化剤ガスの導入排出路が形成
される。すなわち、燃料ガス及び酸化剤ガスの導入排出
路を形成するための外部容器を必要としない。したがっ
て、本体と容器の熱膨張差による容器の破壊、ガス封止
性の悪さが解消され、さらに全体が小型化される。また
、全体としてガス封止箇所が少なくなり、かつ垂直封止
箇所がなくなるので、封止剤の保持性、ガス封止性が向
上する。さらに、本発明のセパレータはプレス加工また
は型押し加工が可能な構造であるので、加工コストが低
減される。さらに、燃料ガスと酸化剤ガスが平行流(対
向流)であるので、直交流に比べて出力の向上が期待で
きる。By providing a gas-tight frame around the outer periphery of the separator, an introduction/exhaust path for fuel gas and oxidizing gas is formed inside the battery body, which is an assembly of electrolyte plates and separators. That is, there is no need for an external container for forming an introduction/exhaust path for fuel gas and oxidant gas. Therefore, damage to the container due to the difference in thermal expansion between the main body and the container and poor gas sealing properties are eliminated, and the overall size is further reduced. In addition, the number of gas sealing points is reduced as a whole, and there are no vertical sealing points, so that the retention of the sealant and the gas sealing property are improved. Furthermore, since the separator of the present invention has a structure that allows press processing or embossing, processing costs are reduced. Furthermore, since the fuel gas and the oxidizing gas flow in parallel (counterflow), it is expected that the output will be improved compared to a cross flow.
第1図に3段直列セルの集合様式を展開して示す。各セ
ルにおいて平板状電解質板11は両面にそれぞカソード
12及びアノード13が形成されている。FIG. 1 shows the arrangement of three-stage series cells in an expanded manner. In each cell, a cathode 12 and an anode 13 are formed on both sides of the flat electrolyte plate 11, respectively.
電解質板11は酸素伝導性のある電解質、例えば、部分
安定化ジルコニア、安定化ジルコニアなど公知の電解質
で作った板状物からなり、厚さは0.05〜0.3 m
m程度、より好ましくは0.08〜0.25mm程度が
適当である。0.05ωmよりも薄いと強度上問題があ
り、0.3闘を越えると電流路が長くなり好ましくない
。カソード12は酸素通路側なので高温下で酸素に対し
て耐食性のある導電性材料を用い、多孔状に形成する。The electrolyte plate 11 is made of a plate-like material made of a known electrolyte such as an oxygen-conducting electrolyte such as partially stabilized zirconia or stabilized zirconia, and has a thickness of 0.05 to 0.3 m.
A suitable length is about m, more preferably about 0.08 to 0.25 mm. If it is thinner than 0.05 ohm, there is a problem in terms of strength, and if it exceeds 0.3 ohm, the current path becomes long, which is not preferable. Since the cathode 12 is on the oxygen passage side, it is made of a conductive material that is resistant to oxygen corrosion at high temperatures, and is formed in a porous shape.
例えばLaxSr+−JnO*などの導電性複合酸化物
粉末を塗布する。塗布の手法としてははけ塗り法、スク
リーン印刷法がある。その他、多孔状膜の作製方法とし
てはCVD法、プラズマCVD法、スパッタ法、容射法
等が可能である。カソード12はガス透過性となる程度
に多孔性に形成する。アノード13は水素通路側で、高
温下で水素に対して耐食性のある導電性材料(例えば、
Ni/2rO2サーメツトなど)を多孔状に形成する。For example, a conductive composite oxide powder such as LaxSr+-JnO* is applied. Application methods include brushing and screen printing. Other possible methods for producing the porous film include a CVD method, a plasma CVD method, a sputtering method, and a radiation method. The cathode 12 is formed to be porous to the extent that it is gas permeable. The anode 13 is on the hydrogen passage side and is made of a conductive material (for example,
(Ni/2rO2 cermet, etc.) is formed into a porous shape.
アノード13もガス透過性に形成する。また、カソード
、アノードは多孔性の板状化が可能であれば、それを電
解質と付着させて使用することも可能である。The anode 13 is also formed to be gas permeable. Furthermore, if the cathode and anode can be made into porous plates, they can also be used by attaching them to an electrolyte.
各セルの両面にカソード12とアノード13を形成され
た電解質板11はガス通路と電気的接合体を兼ねたセパ
レータ14を介して集積する。セパレータ14は金属ま
たは例えばLa、Sr+ 、tcr03等の導電性セラ
ミックスで形成する。Electrolyte plates 11, each having a cathode 12 and an anode 13 formed on both sides of each cell, are integrated via a separator 14 which serves as a gas passage and an electrical connector. The separator 14 is made of metal or conductive ceramics such as La, Sr+, TCR03, etc.
第2図に示す如く、セパレータ14の両面に溝14a、
14bを形成してそれぞれガス通路を構成している。溝
14a、14bはセパレータの両面に平行に配置され、
表面の山(電極との接合部分)が裏面の溝(ガス通路)
となる。この平行溝14a・14bからなる中央波板部
(セパレータ本体部分)に対して、外周部には表面の山
14bと同一面をなす枠14cとその枠14cの内側に
沿って裏面の山と同一面をなす溝14dが形成され、こ
れによって溝14a、14bはセパレータ14を電解質
板11と集積したとき、外周部の枠14cと溝14dに
よって外部から密閉される。As shown in FIG. 2, grooves 14a are formed on both sides of the separator 14.
14b are formed to constitute gas passages, respectively. Grooves 14a and 14b are arranged in parallel on both sides of the separator,
The ridges on the surface (joint part with the electrode) are the grooves on the back (gas passage)
becomes. For the central corrugated plate part (separator body part) consisting of the parallel grooves 14a and 14b, a frame 14c on the outer periphery is flush with the peaks 14b on the front surface, and a frame 14c along the inside of the frame 14c is flush with the peaks on the back surface. A groove 14d forming a plane is formed, so that when the separator 14 is integrated with the electrolyte plate 11, the grooves 14a and 14b are sealed from the outside by the frame 14c on the outer periphery and the groove 14d.
セパレータ14の平行溝14a及び14bのそれぞれの
両端部には孔14e、14fを形成して、集積時に上下
のガス通路14a、14bを連通させる。このような構
造であるため、金属を材料とする場合にはプレスによる
製作、セラミックスを材料とする場合にはグリーンの状
態での型押し後に焼結することにより、バルク体からの
加工を必要としない。Holes 14e and 14f are formed at both ends of each of the parallel grooves 14a and 14b of the separator 14, so that the upper and lower gas passages 14a and 14b communicate with each other during integration. Because of this structure, if the material is metal, it must be manufactured by pressing, or if the material is ceramic, it must be processed from a bulk body by stamping in a green state and then sintering. do not.
このことにより、セパレータの加工費用を低減すること
ができる。また、燃料ガスと酸化剤ガスが平行流である
ことから、従来の直交流に比べて高い出力密度が得られ
ることが期待できる。This makes it possible to reduce the processing cost of the separator. Furthermore, since the fuel gas and the oxidant gas flow in parallel, it is expected that a higher power density will be obtained than in the conventional cross flow.
電解質板11、セパレータ14を集積して組み立てると
きには、電解質板11(正確には電極12.13)とセ
パレータ14の間でガスリークしないように封止する必
要がある。これは例えば軟化点が約800℃のガラスペ
ーストで封止すればよい。このガラスペーストは電池の
作動温度(900−1000℃)では十分に軟化してガ
スを封止する。第3図はこの集積構造の横断面を示し、
両面にカソード12及びアノード13を形成した電解質
板11とセパレータ14の波板部とを交互に集積する。When the electrolyte plate 11 and the separator 14 are integrated and assembled, it is necessary to seal the space between the electrolyte plate 11 (more precisely, the electrodes 12 and 13) and the separator 14 to prevent gas leakage. For example, this may be sealed with a glass paste having a softening point of about 800°C. This glass paste softens sufficiently at battery operating temperatures (900-1000°C) to seal in gas. Figure 3 shows a cross section of this integrated structure.
Electrolyte plates 11 having cathodes 12 and anodes 13 formed on both sides and corrugated plate portions of separators 14 are stacked alternately.
上下の波板の山と山を一致させると、セパレータ14と
電解質板11との間に形成されるガス通路14a (第
3図中A)と14b(第3図中F)もそれぞれ上下に一
列に並ぶので、第4図の如く、セパレータ14と電解質
板11との接合部に孔14e、14fを設けると、上下
のガス通路14a、14b(それぞれA、F)は連通ず
る。もっとも、第4図では模式的に示したが、実際には
溝14a、14bの両端部に孔14a、14a’14b
、14b’が形成されるので、孔14aと14b1孔1
4a′と14b′とは一列には並ばない。When the peaks of the upper and lower corrugated plates are aligned, the gas passages 14a (A in FIG. 3) and 14b (F in FIG. 3) formed between the separator 14 and the electrolyte plate 11 are also aligned vertically. Therefore, if holes 14e and 14f are provided at the junction between separator 14 and electrolyte plate 11 as shown in FIG. 4, upper and lower gas passages 14a and 14b (A and F, respectively) will communicate with each other. However, although shown schematically in FIG. 4, in reality the holes 14a, 14a'14b
, 14b' are formed, so holes 14a and 14b1 hole 1
4a' and 14b' are not lined up in a line.
このような構造であるため、第1図の如く、集積体の端
の電池のセパレータ14にガス供給用のマニホールド1
5.16を設置してガスを供給することになる。しかし
、ガス通路はセル内を貫いて設けられているため、各セ
ルに直接スを供給するための構造を設ける必要はなく、
電池を容器内に設置するような外部マニホールド型セル
の場合に懸念されるセル(特に金属セパレータの場合)
とマニホールドの熱膨張差によるマニホールドの破壊等
の問題は生じない。また、ガス封止25を必要とするの
は第4図の如く電解質板11とセパレータ14の間のみ
であり、従来の外部マニホールド型のような縦方向の封
止が必要ないため、封止箇所は少なく、封止材の保持は
容易である。Because of this structure, as shown in FIG.
5.16 will be installed to supply gas. However, since the gas passages are provided through the cells, there is no need to provide a structure to directly supply gas to each cell.
Cells of concern in the case of external manifold type cells where the battery is installed in a container (especially in the case of metal separators)
Problems such as destruction of the manifold due to the difference in thermal expansion between the manifold and the manifold do not occur. In addition, gas sealing 25 is required only between the electrolyte plate 11 and separator 14 as shown in FIG. The sealing material is easy to hold.
第1図は集合様式に従い3段直列の高温型燃料電池を製
作した。Figure 1 shows a three-stage series high-temperature fuel cell fabricated according to the assembly pattern.
電解質板11にはイツトリアを3モルパーセント添加し
たジルコニアである部分安定化ジルコニアラ用いた。ま
た、セパレータ14にはニッケル系合金を用いた電解質
板は寸法50 X50 X O,2mmの板状物を用い
た。そして、酸素通路側にLao、 5Sro、 +M
nO3粉末(平均粒径約5#m)をはけ塗り法で厚さ0
,10〜0.50mmに塗布してカソード12とし、水
素通路側にN+/Zr0z (10/ 1重量比)のサ
ーメット混合粉末をはけ塗り法で厚さ0.10〜0.5
0mmに塗布してアノード13とした。セパレー14の
寸法は50X50mmで高さ5mm、溝の深さ4.0
mmとした。For the electrolyte plate 11, partially stabilized zirconia, which is zirconia to which 3 mole percent of ittria was added, was used. Further, as the separator 14, a plate-shaped electrolyte plate made of a nickel-based alloy and having dimensions of 50 x 50 x O and 2 mm was used. And Lao, 5Sro, +M on the oxygen passage side
Apply nO3 powder (average particle size approximately 5#m) to a thickness of 0 using the brush coating method.
, 10 to 0.50 mm to form the cathode 12, and on the hydrogen passage side, apply a cermet mixed powder of N+/Zr0z (10/1 weight ratio) to a thickness of 0.10 to 0.5 mm by brushing.
Anode 13 was prepared by coating the film to a thickness of 0 mm. The dimensions of the separator 14 are 50 x 50 mm, height 5 mm, and groove depth 4.0
mm.
この電解質板11とセパレータ14を第1図の如く集積
し、電解質板11とセパレータ14の間に軟化点が約8
00℃のガラスペーストを塗布してガス封止用とした。The electrolyte plate 11 and separator 14 are integrated as shown in FIG.
00°C glass paste was applied to seal the gas.
前記の如く、このガラスペーストは電池の作動温度10
00℃で軟化してガスを封止する。As mentioned above, this glass paste has a battery operating temperature of 10
It softens at 00°C and seals in gas.
こうして集積した電池にガス配管を接続した。Gas piping was connected to the batteries thus assembled.
電気の取り出し部には白金リード線を溶接し、電気的に
接続した。A platinum lead wire was welded to the electricity outlet for electrical connection.
このようにして作製した高温型燃料電池を加熱した。室
温から150℃までは1℃/minで加熱し、ガラスペ
ーストの溶媒、塗布電極の溶媒を蒸発させた。150℃
−350℃までは5℃/m i nで昇温した。350
℃以上では水素通路側には、アノードの酸化を防止する
為、窒素ガスを流し、5℃/rninで1000℃まで
昇温した。その後、1000℃に保持してアノード側に
水素、カソード側に酸素を流し、発電を開始した。開放
電圧は3.8vであった。放電特性を下記の表に示す。The high temperature fuel cell thus produced was heated. It was heated at a rate of 1° C./min from room temperature to 150° C. to evaporate the solvent of the glass paste and the applied electrode. 150℃
The temperature was raised at a rate of 5°C/min up to -350°C. 350
℃ or higher, nitrogen gas was flowed into the hydrogen passage side to prevent oxidation of the anode, and the temperature was raised to 1000°C at a rate of 5°C/rnin. Thereafter, the temperature was maintained at 1000°C, hydrogen was flowed to the anode side, and oxygen was flowed to the cathode side, and power generation was started. The open circuit voltage was 3.8v. The discharge characteristics are shown in the table below.
ガスクロスリークは水素の0.3%以下であった。Gas cross leakage was less than 0.3% of hydrogen.
本発明によれば、平板型の高温型燃料電池において、電
解質板とセパレータの集積構造の内部に燃料ガス及び酸
化剤ガスの導入排出路が形成され、本体と容器の熱膨張
差にもとすく容器の破壊、ガス封止性の悪さが解決され
、また全体が小型化される。さらに、全体として、封止
剤の保持性、ガス封止性が向上する。さらに、本発明の
セパレータはプレス加工または型押し加工が可能な構造
であるので、加工コストが低減される。さらに、燃料ガ
スと酸化剤ガスが平行流(対向流)であるので、゛直交
流に比べて出力の向上が期待できる。According to the present invention, in a flat plate type high-temperature fuel cell, an introduction/exhaust passage for fuel gas and oxidizing gas is formed inside the integrated structure of an electrolyte plate and a separator, and the difference in thermal expansion between the main body and the container can be easily accommodated. Breakage of the container and poor gas sealing properties are solved, and the overall size is reduced. Furthermore, the retention of the sealant and gas sealing properties are improved as a whole. Furthermore, since the separator of the present invention has a structure that allows press processing or embossing, processing costs are reduced. Furthermore, since the fuel gas and the oxidant gas flow in parallel (counterflow), it is expected that the output will be improved compared to cross-flow.
第1図は実施例の平板型の高温型燃料電池の集積構造を
示す展開図、第2図はセパレータの三面図及び斜視図、
第3図及び第4図は実施例の高温型燃料電池の内部集積
構造を示す部分断面図である。
11・・・電解質板、 12・・・カソード、1
3・・・アノード、14・・・セパレータ、14a =
14b・・・溝(ガス通路)、14c = 14d・
・・枠部、 14e 、 14 f ・・・孔。FIG. 1 is a developed view showing the integrated structure of a flat plate type high temperature fuel cell according to an embodiment, FIG. 2 is a three-sided view and a perspective view of a separator,
3 and 4 are partial cross-sectional views showing the internal integrated structure of the high temperature fuel cell according to the embodiment. 11... Electrolyte plate, 12... Cathode, 1
3... Anode, 14... Separator, 14a =
14b... Groove (gas passage), 14c = 14d.
...Frame portion, 14e, 14f...hole.
Claims (1)
両面に溝を有しガス通路と電気接合体を兼ねるセパレー
タとを交互に集積してなる平板型燃料電池において、中
央部を波板状としかつ外周に沿って波板の頂面又は底面
の一方から他方まで延びる周壁を設けたセパレータを、
平板状電解質板を介して集積して、セパレータと電解質
板の間に形成される空間部により燃料ガス及び酸化剤ガ
スのガス通路を形成しかつ該ガス通路を上記セパレータ
の該周壁によって上記集積体内部に密閉した構造となし
、さらに電解質板とセパレータの接合部に孔を設けて電
解質板の両面に位置する燃料ガス及び酸化剤ガスのガス
通路をそれぞれ接続してなることを特徴とする高温型燃
料電池。 2、前記セパレータが、中央部を波板状とし、最外周部
を波板の頂面又は底面の一方と一致させ、かつ該最外周
部の内側に沿って底が波板の頂面又は底面の他方と一致
する溝を設けた構造とし、よって該セパレータを平板状
電解質板を介して集積すると、セパレータと電解質板の
間に形成される空間部によりそれぞれ燃料ガス及び酸化
剤ガスのガス通路が形成されかつ該ガス通路を上記集積
体内部に密閉した構造となる請求項1に記載の高温型燃
料電池。[Claims] 1. An electrolyte plate with an anode and a cathode formed on both sides;
In a flat plate fuel cell, which has grooves on both sides and is made up of alternating stacks of gas passages and separators that also serve as electrical connectors, the central part is shaped like a corrugated plate, and one of the top or bottom surfaces of the corrugated plate is formed along the outer periphery. A separator with a peripheral wall extending from one to the other,
The fuel gas and the oxidant gas are integrated through a flat electrolyte plate, and a space formed between the separator and the electrolyte plate forms a gas passage for the fuel gas and the oxidizing gas, and the gas passage is connected to the inside of the aggregate by the peripheral wall of the separator. A high-temperature fuel cell characterized by having a sealed structure and further having holes provided at the joints between the electrolyte plate and the separator to connect gas passages for fuel gas and oxidizing gas located on both sides of the electrolyte plate. . 2. The separator has a central portion shaped like a corrugated sheet, an outermost peripheral portion that coincides with either the top surface or the bottom surface of the corrugated sheet, and a bottom along the inside of the outermost peripheral portion that is the top surface or the bottom surface of the corrugated sheet. Therefore, when the separators are integrated via a flat electrolyte plate, the spaces formed between the separator and the electrolyte plate form gas passages for fuel gas and oxidant gas, respectively. 2. The high-temperature fuel cell according to claim 1, wherein the gas passage is sealed inside the assembly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2110484A JPH0412468A (en) | 1990-04-27 | 1990-04-27 | High-temperature fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2110484A JPH0412468A (en) | 1990-04-27 | 1990-04-27 | High-temperature fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0412468A true JPH0412468A (en) | 1992-01-17 |
Family
ID=14536902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2110484A Pending JPH0412468A (en) | 1990-04-27 | 1990-04-27 | High-temperature fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0412468A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0627778A1 (en) * | 1993-03-15 | 1994-12-07 | Osaka Gas Co., Ltd. | Fuel cell system and fuel cells therefor |
WO2001029923A1 (en) * | 1999-10-15 | 2001-04-26 | Alliedsignal Inc. | Unitized solid oxide fuel cell |
US6296962B1 (en) | 1999-02-23 | 2001-10-02 | Alliedsignal Inc. | Design for solid oxide fuel cell stacks |
US7049826B2 (en) | 2000-09-11 | 2006-05-23 | Oht Inc. | Inspection device and inspection method |
-
1990
- 1990-04-27 JP JP2110484A patent/JPH0412468A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0627778A1 (en) * | 1993-03-15 | 1994-12-07 | Osaka Gas Co., Ltd. | Fuel cell system and fuel cells therefor |
US5508128A (en) * | 1993-03-15 | 1996-04-16 | Osaka Gas Co., Ltd. | Fuel cell system and fuel cells therefor |
US6296962B1 (en) | 1999-02-23 | 2001-10-02 | Alliedsignal Inc. | Design for solid oxide fuel cell stacks |
WO2002001661A1 (en) * | 1999-02-23 | 2002-01-03 | Alliedsignal Inc. | Interconnector design for solid oxide fuel cell stacks |
WO2001029923A1 (en) * | 1999-10-15 | 2001-04-26 | Alliedsignal Inc. | Unitized solid oxide fuel cell |
JP2003512705A (en) * | 1999-10-15 | 2003-04-02 | アライドシグナル・インコーポレイテツド | Unit solid oxide fuel cell |
US6649296B1 (en) | 1999-10-15 | 2003-11-18 | Hybrid Power Generation Systems, Llc | Unitized cell solid oxide fuel cells |
US7049826B2 (en) | 2000-09-11 | 2006-05-23 | Oht Inc. | Inspection device and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6589681B1 (en) | Series/parallel connection of planar fuel cell stacks | |
EP1230706B1 (en) | Radial planar fuel cell stack construction for solid electrolytes | |
JP4790577B2 (en) | Solid oxide fuel cell module, fuel cell using the same, and manufacturing method thereof | |
US20040023101A1 (en) | Electrochemical cell stack assembly | |
US9455453B2 (en) | Fuel cell, and fuel cell stack | |
US9608285B2 (en) | Stack for a solid oxide fuel cell using a flat tubular structure | |
CA2880153C (en) | Fuel cell and fuel cell stack with maintained electrical connection | |
JP2009520315A (en) | Electrochemical battery holder and stack | |
WO2001029923A1 (en) | Unitized solid oxide fuel cell | |
JPH0412468A (en) | High-temperature fuel cell | |
JPH02276166A (en) | Solid electrolyte fuel cell | |
JP3244310B2 (en) | Solid oxide fuel cell | |
JPH02168568A (en) | Solid electrolyte fuel cell | |
US11271221B2 (en) | Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack | |
JP2980921B2 (en) | Flat solid electrolyte fuel cell | |
JP3063952B2 (en) | Hollow flat solid electrolyte fuel cell | |
JPH0722058A (en) | Flat solid electrolyte fuel cell | |
JPH0850911A (en) | Flat solid electrolyte fuel cell | |
JPH0260063A (en) | Stacked fuel cell | |
JP3301558B2 (en) | Flat solid electrolyte fuel cell | |
JP2944141B2 (en) | High temperature fuel cell | |
JPH06150958A (en) | Solid electrolyte fuel cell | |
JP2000306590A (en) | Solid electrolyte fuel cell | |
KR20220104863A (en) | Separator module for solid oxide fuel cell with concave-convex pattern and stack comprising the same | |
JP3447837B2 (en) | Power generator |