JPH0440356A - Electrophoresis device - Google Patents

Electrophoresis device

Info

Publication number
JPH0440356A
JPH0440356A JP2145314A JP14531490A JPH0440356A JP H0440356 A JPH0440356 A JP H0440356A JP 2145314 A JP2145314 A JP 2145314A JP 14531490 A JP14531490 A JP 14531490A JP H0440356 A JPH0440356 A JP H0440356A
Authority
JP
Japan
Prior art keywords
bubbles
electrophoresis
tank
migration
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2145314A
Other languages
Japanese (ja)
Inventor
Norio Baba
則夫 馬場
Hiroomi Kojima
小嶋 弘臣
Tomoyuki Miyazawa
智幸 宮澤
Yoshikazu Uchida
内田 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information Systems Ltd
Original Assignee
Hitachi Information Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information Systems Ltd filed Critical Hitachi Information Systems Ltd
Priority to JP2145314A priority Critical patent/JPH0440356A/en
Publication of JPH0440356A publication Critical patent/JPH0440356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enhance the sepn. performance of a migration sample and t automate the sepn. and refining of the migration sample by providing a bubble removing means which removes the bubbles existing in the buffer soln. in a migration chamber. CONSTITUTION:A buffer soln. is previously injected from an introducing hole 3 into the migration chamber 1 to form parallel flow. The migration sample is cracked to each of the respective components when the migration sample is injected from an injection pipe 4 into the chamber. These components are fraction collected from a fraction collection port via a fraction collection pipe 7. The bubbles float on the buffer soln. surface if the bubbles exist in the buffer soln. at this time. The bubbles are sucked through a pass filter 19 for gas, a filter retainer 21 and a suction pipe 23 into a vacuum pump 22 and are dis charged to the outside. Namely, the bubbles can be surely discharged even if the bubbles exist in the buffer soln. and, therefore, the sepn. performance of the migration sample is enhanced. In addition, the efficiency of the sepn. operation is enhanced as well as the bubbles can be removed even if a power source is not interrupted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は泳動試料を種々の成分に泳動分離する電気泳動
装置に係り、特に泳動槽に注入された緩衝液に存在する
気泡を除去するのに好適なものに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophoresis device that electrophoretically separates a sample into various components, and particularly relates to an electrophoresis device that electrophoretically separates an electrophoresis sample into various components, and particularly relates to an electrophoresis device that electrophoresis separates an electrophoresis sample into various components. Concerning what is suitable for.

[従来の技術] 泳動試料を分離する電気泳動装置にあっては、種々のも
のが提案され、実用に供されている。
[Prior Art] Various electrophoresis devices for separating electrophoresis samples have been proposed and put into practical use.

般の電気泳動装置にあっては図示していないが、泳動槽
に注入口から緩衝液を供給して該泳動槽内でその高さ方
向に沿って下方に向かう平行流を形成し、その泳動槽内
に泳動試料を上部から注入し。
Although not shown in the general electrophoresis apparatus, a buffer solution is supplied to the electrophoresis tank from the injection port to form a parallel flow downward along the height direction within the electrophoresis tank, and the electrophoresis is controlled. Inject the electrophoresis sample into the tank from the top.

電解槽の十電極及び−電極に直流電圧を印加すると、泳
動試料の各々の電荷量に基づく移動力と泳動試料の各々
の粒子が受ける流体抵抗差等により、泳動試料が夫々種
々の成分に泳動分離する。
When a DC voltage is applied to the ten and - electrodes of the electrolytic cell, the electrophoresis sample migrates into various components due to the moving force based on the amount of charge of each electrophoresis sample and the difference in fluid resistance that each particle of the electrophoresis sample receives. To separate.

その際、泳動分離した成分のうち、泳動槽の中央部を流
下したものが泳動槽の分取部から各成分毎に採取部に分
取され、泳動槽の中央部からずれたものが緩衝液と共に
泳動槽の排出部から取り込まれるようにしている。
At that time, among the electrophoretically separated components, those that flow down the center of the electrophoresis tank are separated from the separation section of the electrophoresis tank to the collection section for each component, and those that have shifted from the center of the electrophoresis tank are added to the buffer solution. At the same time, it is taken in from the discharge part of the electrophoresis tank.

また、泳動槽においては、緩衝液中に気泡が存在すると
、即ち緩衝液の泳動槽への注入時に気泡が侵入したり、
或いは泳動槽内の緩衝液に気泡が発生したりすると、そ
の気泡によって泳動槽内の緩衝液及び泳動試料の平行流
に乱流が生じ、そのため、泳動試料の分離性能が劣化す
ることから、気泡を除去する必要がある。
In addition, in a migration tank, if air bubbles are present in the buffer solution, air bubbles may enter the buffer solution when it is injected into the migration tank.
Alternatively, if air bubbles are generated in the buffer solution in the electrophoresis tank, the bubbles will cause turbulence in the parallel flow of the buffer solution and the electrophoresis sample in the electrophoresis tank, which will deteriorate the separation performance of the electrophoresis sample. needs to be removed.

従来技術では、気泡を除去するための手段が設けておら
ず、次に述べるように作業者によって気泡を除去してい
る。即ち、まず+、−電極に通電するための電源を遮断
し、次いで泳動槽の上部にあるキャップを取外し、その
後、泳動槽の下部側から緩衝液等の液体を注入し、泳動
槽内の液を上部のキャップ取付位置まで上昇させ、これ
に伴って気泡も上昇することにより気泡を取り除くよう
にしている。なお、キャップの取外しに際して電源を切
るのは、液体を泳動槽に注入したときに該泳動槽内の液
が外部に流出し、その流出した液を通じて作業者が感電
することがないように安全性を考慮している。
In the prior art, no means for removing air bubbles is provided, and air bubbles are removed by an operator as described below. That is, first cut off the power supply for energizing the + and - electrodes, then remove the cap on the top of the migration tank, and then inject a liquid such as a buffer from the bottom of the migration tank to drain the liquid in the migration tank. The air bubbles are removed by raising the cap to the upper cap attachment position, and the air bubbles also rise accordingly. Note that the reason to turn off the power when removing the cap is to ensure safety so that when liquid is injected into the migration tank, the liquid in the migration tank will leak outside and the worker will not receive an electric shock from the spilled liquid. is being considered.

[発明が解決しようとする課題] ところで、上記従来技術は、緩衝液中に存在しψ た気泡を除去する手段を有していなので、作業者を介し
行っている6 しかしながら、作業者によって行うと、前述の如く電源
を一旦遮断するので、その間泳動試料の分離・精製を中
止しなければならず、従ってそれだけ分離・精製能率が
低下する問題がある。また、気泡の除去に際しては、泳
動槽の気泡がある程度溜ってから行うので、除去するま
での間に泳動槽内で気泡によって乱流が起こり、そのた
め、泳動試料の分離性能が低下するおそれがある。
[Problems to be Solved by the Invention] By the way, the above-mentioned prior art does not have a means for removing air bubbles present in the buffer solution, so the removal is done by an operator. As mentioned above, since the power supply is temporarily shut off, the separation and purification of the electrophoresing sample must be stopped during that time, resulting in a problem that the efficiency of separation and purification is reduced accordingly. In addition, since air bubbles are removed after a certain amount of bubbles have accumulated in the electrophoresis tank, the bubbles may cause turbulence in the electrophoresis tank until they are removed, which may reduce the separation performance of the electrophoresis sample. .

本発明の目的は、上記事情に鑑み、泳動槽内の緩衝液に
気泡が存在しても、その気泡を電源を遮断することなく
確実にかつ容易に除去することができ、泳動試料の分離
性能を高めると共に分離能率を高めることができる電気
泳動装置を提供することにある。
In view of the above circumstances, an object of the present invention is to improve the separation performance of electrophoresis samples by being able to reliably and easily remove bubbles even if they exist in the buffer solution in the electrophoresis tank without cutting off the power supply. An object of the present invention is to provide an electrophoresis device that can increase separation efficiency as well as increase separation efficiency.

[課題を解決するための手段] 上記目的を達成するため、本発明においては、泳動槽内
の緩衝液中に存在した気泡を取り除く気泡除去手段を有
していることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention is characterized by having a bubble removing means for removing bubbles present in the buffer solution in the electrophoresis tank.

[作用] 緩衝液を泳動槽に注入して該泳動槽内で平行流を形成し
ておき、また電解槽内の電極に直流電圧を印加し、その
状態で泳動槽内に泳動試料を注入すると、泳動試料は各
々の成分毎に分解し、分取されることとなる。
[Operation] When a buffer solution is injected into the electrophoresis tank to form a parallel flow in the electrophoresis tank, and a DC voltage is applied to the electrodes in the electrolytic tank, and in this state, the electrophoresis sample is injected into the migration tank. The electrophoresis sample is decomposed into each component and separated.

その際、泳動槽において緩衝液に気泡が存在すると、そ
の気泡が液面まで上昇するが、上述の如く、泳動槽内の
緩衝液中に存在した気泡を取り除く気泡除去手段を有し
ているので、その気泡が気泡除去手段によって取り除か
れる。
At that time, if air bubbles are present in the buffer solution in the migration tank, the bubbles will rise to the liquid surface, but as mentioned above, since the buffer solution in the migration tank has a bubble removal means for removing the bubbles, , the air bubbles are removed by air bubble removal means.

従って、緩衝液に気泡が存在しても、その気泡を気泡除
去手段によって確実に排出できるので。
Therefore, even if air bubbles are present in the buffer solution, the air bubbles can be reliably removed by the air bubble removal means.

従来技術のように気泡がある程度できてから除去するも
のに比べると、泳動試料の分離性能を高めることができ
、しかも電源を遮断しなくとも除去できるので、分離作
業効率をも高めることができる。
Compared to conventional technology, which removes air bubbles after they have formed to a certain extent, it is possible to improve the separation performance of the electrophoresing sample, and also to increase the efficiency of separation work, since the removal can be done without shutting off the power.

[実施例] 以下、本発明の一実施例を第1図及び第2図により説明
する。第1図は本発明の電気泳動装置の一実施例を示す
縦断面の正面図、第2図は同じく縦断面の側面図である
[Example] An example of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a front view of a longitudinal section showing an embodiment of the electrophoresis device of the present invention, and FIG. 2 is a side view of the same longitudinal section.

実施例の電気泳動装置は、本体2に泳動槽1が形成され
ると共に、泳動槽1の両側に電解槽Aが形成されている
In the electrophoresis device of the embodiment, a migration tank 1 is formed in a main body 2, and electrolytic tanks A are formed on both sides of the migration tank 1.

詳しく述べると、泳動槽1は本体2の内部において、泳
動試料、緩衝液を入れるため第1図に示す如くその高さ
が幅より大きい寸法をなし、また第2図に示す如くその
幅より奥行きがさらに小さい寸法をなしてほぼ矩形状の
空間を画成している。
To be more specific, the electrophoresis tank 1 is inside the main body 2 and has dimensions such that the height is larger than the width as shown in Fig. 1 in order to contain the electrophoresis sample and the buffer solution, and the depth is larger than the width as shown in Fig. 2. has smaller dimensions and defines a generally rectangular space.

本体2はアクリル、硝子、セラミックス等の絶縁材で構
成されている。
The main body 2 is made of an insulating material such as acrylic, glass, or ceramics.

緩衝液は本体2の導入孔3から泳動槽1の上部に注入さ
れると、その泳動槽1の上部から下方に真直に流れる平
行流を形成し、その平行流によって泳動試料も同様に流
れるようにしている。導入孔3は本体2の泳動槽1の上
部と外部にある緩衝液のタンク(図示せず)との間を連
絡している。
When the buffer solution is injected into the upper part of the electrophoresis tank 1 from the introduction hole 3 of the main body 2, it forms a parallel flow that flows straight downward from the upper part of the electrophoresis tank 1, and the electrophoresis sample flows in the same way due to the parallel flow. I have to. The introduction hole 3 communicates between the upper part of the electrophoresis tank 1 of the main body 2 and an external buffer tank (not shown).

一方、泳動試料は種々の成分が混在したものであって、
本体2の注入管4から泳動槽1に注入され、緩衝液の平
行流に沿って泳動槽1内を流れるようにしている。注入
管4は本体2の導入孔3より下方位置に配管され、泳動
槽1と外部にある泳動試料のタンク(図示せず)との間
を連絡している。
On the other hand, the electrophoresis sample is a mixture of various components,
The buffer solution is injected into the migration tank 1 from the injection pipe 4 of the main body 2, and is caused to flow within the migration tank 1 along the parallel flow of the buffer solution. The injection pipe 4 is installed below the introduction hole 3 of the main body 2, and communicates between the migration tank 1 and an external migration sample tank (not shown).

また、前記泳動槽1の下部には第2図に示すように前槽
壁5aと後槽壁5bが、泳動槽1の前部と後部とに対向
して取付けられ、がっ泳動槽1の底部には分取口6が設
けられ、その分取口6に複数の分取管7が配管されると
共に、緩衝液を排出するための排出孔8が設けられてい
る。
Further, as shown in FIG. 2, a front tank wall 5a and a rear tank wall 5b are attached to the lower part of the migration tank 1 so as to face the front and rear parts of the migration tank 1. A preparative port 6 is provided at the bottom, a plurality of preparative tubes 7 are piped to the preparative port 6, and a discharge hole 8 for discharging the buffer solution is provided.

さらに、泳動槽1の左右の両側においては第1図に示す
ように陰イオン交換膜9.陽イオン交換膜10を隔てて
電解槽A、Aが夫々設けられている。各電解槽Aは、本
体2の両側において泳動槽1の幅方向の両端に夫々配置
された陰イオン交換膜9.陽イオン交換膜10を隔てし
かも前、後槽壁5a、5bとほぼ同じ高さをもって画成
された空間をなしている。該各電解槽Aには陰イオン交
換膜9側に生電極11が、かつ陽イオン交換膜10側に
一電極12が夫々配設され、しかも電解液が導入孔13
から内部に入り込んで排出孔14より流出するようにし
ている。生電極11及び−電極12は電源15の対応す
る極に接続されている。
Further, on both the left and right sides of the electrophoresis tank 1, as shown in FIG. 1, anion exchange membranes 9. Electrolytic cells A and A are provided with a cation exchange membrane 10 in between. Each electrolytic cell A has anion exchange membranes 9 . It forms a space separated by the cation exchange membrane 10 and having approximately the same height as the front and rear tank walls 5a and 5b. In each electrolytic cell A, a live electrode 11 is provided on the anion exchange membrane 9 side, and an electrode 12 is provided on the cation exchange membrane 10 side, and the electrolyte is introduced into the introduction hole 13.
It enters the interior through the hole and flows out through the discharge hole 14. Live electrode 11 and negative electrode 12 are connected to corresponding poles of power supply 15.

そして、電源17の投入によって双方の電極11.12
に直流電圧を印加したとき、泳動槽1に導入孔3から緩
衝液を注入して該泳動槽1に上下方向に向かう平行流を
形成させ、その状態で泳動試料を注入管4から泳動槽1
に注入すると、該泳動試料が泳動試料の各成分の電荷量
に基づく移動力と泳動試料の粒子が受ける流体抵抗の差
等によって泳動試料の各々の成分毎に移動して分離し、
分離した各成分が分取口6を経て分取管7に夫々分取さ
れる。
Then, by turning on the power supply 17, both electrodes 11 and 12
When a DC voltage is applied to the migration tank 1, a buffer solution is injected into the migration tank 1 from the introduction hole 3 to form a vertical parallel flow in the migration tank 1, and in this state, the migration sample is introduced from the injection tube 4 into the migration tank 1.
When the electrophoresis sample is injected into the electrophoresis sample, each component of the electrophoresis sample moves and separates due to the difference between the moving force based on the amount of charge of each component of the electrophoresis sample and the fluid resistance that the particles of the electrophoresis sample receive,
Each separated component is fractionated into a fractionating tube 7 through a fractionating port 6.

またさらに、双方の電極11.12に電圧を印加したと
き、泳動槽1に発生するジュール熱を冷却するために冷
却槽16が循環可能に設けられている。この冷却槽16
は第2図に示すように、本体2において前槽壁5a及び
後槽壁5bと夫々面して画成された空間をなしており、
冷却水が水導入孔17から供給される一方、水排出孔1
8から排水されることによって冷却槽16内を循環する
ようにしている。そのため、前槽壁5a、後槽壁5bは
冷却槽16の冷却効率を上げるため、熱伝導率の高い材
質のもので形成されている。
Furthermore, a cooling tank 16 is provided so as to be able to circulate in order to cool down the Joule heat generated in the migration tank 1 when a voltage is applied to both electrodes 11 and 12. This cooling tank 16
As shown in FIG. 2, in the main body 2, the space is defined by facing the front tank wall 5a and the rear tank wall 5b, respectively.
Cooling water is supplied from the water introduction hole 17, while the water discharge hole 1
By being drained from the cooling tank 8, the water is circulated within the cooling tank 16. Therefore, the front tank wall 5a and the rear tank wall 5b are made of a material with high thermal conductivity in order to increase the cooling efficiency of the cooling tank 16.

この電気泳動装置は、緩衝液を泳動槽1に注入したとき
に、或いは何等かの原因によって泳動槽1内の緩衝液中
に気泡が発生するので、その気泡を取り除く必要がある
In this electrophoresis apparatus, bubbles are generated in the buffer solution in the electrophoresis tank 1 when the buffer solution is injected into the electrophoresis tank 1 or for some other reason, and it is necessary to remove the bubbles.

そこで、実施例においては、緩衝液中の気泡を取り除く
気泡除去手段を有している。
Therefore, in the embodiment, a bubble removing means for removing bubbles in the buffer solution is provided.

該気泡除去手段は気体通過フィルタ19と気体排出機構
(符示せず)を具えている。気体通過フィルタ19は詳
細に図示していないが、複数の微小な通路が形成された
薄膜であって、例えば四沸化エチレン樹脂で形成されて
いる。そして、気体通過フィルタ19は本体2の上部に
形成された開口部2oにフィルタ押さえ21で取付けら
れることにより、泳動槽1内の液面位置に配置されてい
る。フィルタ押さえ21は本体2の開口部2oに挿入さ
れている。
The bubble removing means includes a gas passing filter 19 and a gas exhaust mechanism (not shown). Although not shown in detail, the gas passing filter 19 is a thin film in which a plurality of minute passages are formed, and is made of, for example, tetrafluoroethylene resin. The gas passing filter 19 is attached to an opening 2o formed in the upper part of the main body 2 with a filter holder 21, so that the gas passing filter 19 is disposed at a liquid level position in the migration tank 1. The filter holder 21 is inserted into the opening 2o of the main body 2.

前記気体排出機構は外部に設置した真空ポンプ22と、
真空ポンプ22の吸込み側に一端が連結されると共に他
端がキャップ24を通って開口部20に連結された吸込
み管23とからなっている。
The gas exhaust mechanism includes a vacuum pump 22 installed externally,
It consists of a suction pipe 23, one end of which is connected to the suction side of the vacuum pump 22, and the other end of which is connected to the opening 20 through a cap 24.

この気泡除去手段は、真空ポンプ22の吸引力によって
泳動槽1内を減圧させると、緩衝液に存在している気泡
が気体通過フィルタ19側に吸込まれ、その気泡が気体
通過フィルタ19を通り、かつフィルタ押さえ21.吸
込み管23を経て真空ポンプ22に吸引されることによ
り、気泡中の気体を外部に排出するようにしている。
This air bubble removing means reduces the pressure inside the migration tank 1 by the suction force of the vacuum pump 22, and the air bubbles present in the buffer solution are sucked into the gas passing filter 19, and the air bubbles pass through the gas passing filter 19. And filter holder 21. By being sucked into the vacuum pump 22 through the suction pipe 23, the gas in the bubbles is discharged to the outside.

そのため、フィルタ押さえ21が気体通過フィルタ19
の微小通路を通った気体を通過できるように形成され、
例えばアクリル等で形成されている。
Therefore, the filter holder 21 is attached to the gas passing filter 19.
is formed to allow gas to pass through the microchannels of
For example, it is made of acrylic or the like.

また、本体2の泳動槽1における液面付近の内壁2aが
山形形状に形成されている。即ち、前記山形形状の内壁
2aはその下部が緩衝液用の導入孔3側で幅広の空間を
形成し、その下部から頂部に至るに従って次第に幅を狭
めた空間を形成すると共にその頂部が気体通過フィルタ
19の下部中央と対応する位置に位置するようにしてあ
り、緩衝液の気泡を気体フィルタ19に導いて集めさせ
るようにしている。
Further, the inner wall 2a of the main body 2 near the liquid level in the migration tank 1 is formed in a chevron shape. That is, the chevron-shaped inner wall 2a forms a wide space at its lower part on the side of the introduction hole 3 for the buffer solution, and forms a space whose width gradually becomes narrower from the lower part to the top, and the top part forms a space for gas passage. It is located at a position corresponding to the lower center of the filter 19, so that bubbles of the buffer solution are guided to the gas filter 19 and collected therein.

次に実施例の電気泳動装置の作用について述べる。Next, the operation of the electrophoresis apparatus of the example will be described.

予め緩衝液を導入孔3から泳動槽1に注入して該泳動槽
1内で平行流を形成しておき、また電源15によって電
解槽A内の生電極11.−電極12に直流電圧を印加し
、その状態で泳動槽1内に注入管4から泳動試料を注入
すると、泳動試料は各々の成分毎に分解し1分取口6か
ら分取管7を経て分取されることとなる。
A buffer solution is previously injected into the electrophoresis tank 1 through the introduction hole 3 to form a parallel flow within the electrophoresis tank 1, and the live electrode 11. - When a DC voltage is applied to the electrode 12 and the electrophoresis sample is injected into the electrophoresis tank 1 from the injection tube 4 in this state, the electrophoresis sample is decomposed into each component and passes from the aliquot port 6 to the separation tube 7. It will be fractionated.

その際、泳動槽1において緩衝液に気泡が存在すると、
その気泡が緩衝液面に浮上する。浮上した気泡が気泡除
去手段によって取り除かれる。即ち、気泡除去手段が気
体通過フィルタ19と真空ポンプ22.吸込み管23か
らなる排出機構とを具えているので、緩衝液中の気泡が
気体通過フィルタ19を通過し、かつフィルタ押さえ2
1.吸込み管23を経て真空ポンプ22に吸込まれ、該
真空ポンプ22によって外部に排出される。
At that time, if bubbles are present in the buffer solution in migration tank 1,
The bubbles float to the surface of the buffer solution. The floated air bubbles are removed by air bubble removal means. That is, the bubble removing means includes the gas passing filter 19 and the vacuum pump 22. Since it is equipped with a discharge mechanism consisting of a suction pipe 23, air bubbles in the buffer solution pass through the gas passing filter 19, and the filter presser 2
1. It is sucked into the vacuum pump 22 through the suction pipe 23 and discharged to the outside by the vacuum pump 22.

従って、緩衝液に気泡が存在しても、その気泡を気泡除
去手段によって確実に排出できるので、従来技術のよう
に気泡がある程度できてから除去するものに比べると、
泳動試料の分離性能を高めることができる。しかも電源
15を遮断しなくとも除去できるので、分離作業効率を
も高めることができる。
Therefore, even if there are air bubbles in the buffer solution, the air bubbles can be reliably removed by the air bubble removal means, compared to conventional techniques that remove air bubbles after they have formed to a certain extent.
Separation performance of electrophoretic samples can be improved. Moreover, since it can be removed without shutting off the power supply 15, the efficiency of separation work can also be improved.

また、泳動槽1における液面付近の内112aが気泡を
気体通過フィルタ19に導けるよう山形形状をなしてい
るので、気泡が泳動槽1で散らばることがなく、液面に
浮き上がった気泡を集約させることができ、それだけ的
確に除去できる。
In addition, since the inner part 112a near the liquid surface in the migration tank 1 has a mountain-shaped shape so as to guide air bubbles to the gas passing filter 19, the air bubbles are not scattered in the migration tank 1, and the air bubbles floating on the liquid surface are concentrated. This allows for more accurate removal.

[発明の効果] 以上述べたように1本発明の請求項1,2によれば、緩
衝液に気泡が存在しても、その気泡を気泡除去手段によ
って確実に取り除くことができるように構成したので、
泳動試料の分離性能を高めることができ、しかも電源を
遮断しなくとも除去できて分離作業効率をも高めること
ができる結果、泳動試料の分離・精製の自動化を図り得
る効果がある。また請求項3によれば、泳動槽における
液面付近の内壁が山形形状をなし、液面に浮上した気泡
を気泡除去手段が除去しやすいように導くので、気泡の
除去を的確に行えると云う効果がある。
[Effects of the Invention] As described above, according to claims 1 and 2 of the present invention, even if air bubbles exist in the buffer solution, the air bubbles can be reliably removed by the air bubble removal means. So,
The separation performance of the electrophoresis sample can be improved, and it can be removed without shutting off the power supply, and the efficiency of separation work can be improved. As a result, the separation and purification of the electrophoresis sample can be automated. According to claim 3, the inner wall near the liquid surface in the electrophoresis tank has a mountain-shaped shape and guides the bubbles floating on the liquid surface so that they can be easily removed by the bubble removing means, so that the bubbles can be removed accurately. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電気泳動装置の一実施例を示す縦断面
の正面図、第2図は同じく縦断面の側面図である。 1・・・泳動槽、2・・・本体、2a・・・本体の内壁
、3・・・緩衝液の導入孔、4・・・泳動試料の注入管
、6・・・分取口、15・・・電源、19・・・気体通
過フィルタ、21・・・フィルタ押さえ、22・・・真
空ポンプ、23吸込み管。 第 2 図
FIG. 1 is a front view of a longitudinal section showing an embodiment of the electrophoresis device of the present invention, and FIG. 2 is a side view of the same longitudinal section. DESCRIPTION OF SYMBOLS 1... Migration tank, 2... Main body, 2a... Inner wall of main body, 3... Buffer introduction hole, 4... Injection tube for electrophoretic sample, 6... Preparation port, 15 ... Power source, 19... Gas passing filter, 21... Filter holder, 22... Vacuum pump, 23 Suction pipe. Figure 2

Claims (1)

【特許請求の範囲】 1、泳動槽内の緩衝液中に存在した気泡を取り除く気泡
除去手段を有することを特徴とする電気泳動装置。 2、前記気泡除去手段は、泳動槽における緩衝液に存在
した気泡を通過し得る気体通過フィルタと、気泡を気体
通過フィルタを通じて外部に排出する排出機構とを具え
ていることを特徴とする請求項1に記載の電気泳動装置
。 3、泳動槽における液面付近の内壁が、緩衝液に存在し
た気泡を気体通過フィルタに導く山形形状をなしている
ことを特徴とする請求項2に記載の電気泳動装置。
[Scope of Claims] 1. An electrophoresis apparatus characterized by having a bubble removing means for removing bubbles present in a buffer solution in a electrophoresis tank. 2. The bubble removing means includes a gas passing filter capable of passing air bubbles present in the buffer solution in the electrophoresis tank, and a discharge mechanism for discharging the bubbles to the outside through the gas passing filter. 1. The electrophoresis device according to 1. 3. The electrophoresis device according to claim 2, wherein the inner wall near the liquid surface of the electrophoresis tank has a chevron shape that guides air bubbles present in the buffer solution to a gas passing filter.
JP2145314A 1990-06-05 1990-06-05 Electrophoresis device Pending JPH0440356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145314A JPH0440356A (en) 1990-06-05 1990-06-05 Electrophoresis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145314A JPH0440356A (en) 1990-06-05 1990-06-05 Electrophoresis device

Publications (1)

Publication Number Publication Date
JPH0440356A true JPH0440356A (en) 1992-02-10

Family

ID=15382295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145314A Pending JPH0440356A (en) 1990-06-05 1990-06-05 Electrophoresis device

Country Status (1)

Country Link
JP (1) JPH0440356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502249A (en) * 2011-11-09 2012-06-20 Mps肉类加工机械(北京)有限公司 Pneumatic stopper and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502249A (en) * 2011-11-09 2012-06-20 Mps肉类加工机械(北京)有限公司 Pneumatic stopper and control method thereof

Similar Documents

Publication Publication Date Title
KR940001797B1 (en) Separating apparatus of water & oil
ATE45191T1 (en) METHOD OF ELECTROLYZING LIQUID ELECTROLYTES.
US3563880A (en) Gel electrophoresis unit
US5106477A (en) Electrophoresis buffer circulation apparatus
JPH0440356A (en) Electrophoresis device
DE3879020T2 (en) Transfer and electrophoresis processes.
CN111905412A (en) Liquid treatment apparatus and liquid treatment method
JPS59193111A (en) Oil purification apparatus
JP2957812B2 (en) Electrophoresis device
JP3042771U (en) Oil-water separation device
KR100552208B1 (en) Horizontal Electrode Placement Galvanic Purification System of Soil Using Solar Energy
EP3988932A1 (en) Method for recovering biological substance and device for recovering biological substance
CN207435435U (en) A kind of plant protoplast purifies instrument
EP0646662B1 (en) A cleaning system for electrolytic tanks
JP7448269B1 (en) Oil-water separation equipment and oil-water separation method
JPS6367557A (en) Non-carrier continuous electrophoresis apparatus
CN209327275U (en) A kind of electrophoretic apparatus for medical test
CN216141352U (en) Aggregation type oil-water separator
SVENDSEN A new elution system for isoelectric focusing in sucrose gradients
CN213285913U (en) Slag and oil removing device
CN214844963U (en) Horizontal electrophoresis tank
JP2680072B2 (en) Electrophoresis device
JPS60257858A (en) Method and apparatus for separating chip powder contained in cutting or grinding solution
SU1198014A1 (en) Electrocoagulator
JP2004020224A (en) Free flow electrophoretic device