JPH052185B2 - - Google Patents

Info

Publication number
JPH052185B2
JPH052185B2 JP60227556A JP22755685A JPH052185B2 JP H052185 B2 JPH052185 B2 JP H052185B2 JP 60227556 A JP60227556 A JP 60227556A JP 22755685 A JP22755685 A JP 22755685A JP H052185 B2 JPH052185 B2 JP H052185B2
Authority
JP
Japan
Prior art keywords
voltage
temperature
electrodes
liquid
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60227556A
Other languages
Japanese (ja)
Other versions
JPS6285852A (en
Inventor
Hideo Sugimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MERUBABU BOEKI KK
Original Assignee
MERUBABU BOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MERUBABU BOEKI KK filed Critical MERUBABU BOEKI KK
Priority to JP22755685A priority Critical patent/JPS6285852A/en
Publication of JPS6285852A publication Critical patent/JPS6285852A/en
Publication of JPH052185B2 publication Critical patent/JPH052185B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は液体の塩分濃度計に関し、特に、一組
の電極間の電導度の測定に基づいて塩分を求める
塩分濃度計に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a liquid salinity meter, and more particularly to a salinity meter that determines salinity based on the measurement of electrical conductivity between a set of electrodes.

<従来の技術> いわゆる測定セルと呼ばれる一組の電極を具備
し、それを被測定液中に浸すことによりその液の
導電率Kを測定する装置は、例えば実開昭56−
65478号公報に開示されている。この文献に開示
された導電率計は、セル定数Jの補正を精度よく
行うため、測定セルと並列に設けられた基準抵抗
Rkと、測定セルとこの基準抵抗Rkを選択する切
換スイツチを備えていることが特徴である。その
ため、測定セルに印加される交流電源電圧の変動
に依らずに測定値が得られるという利点がある。
<Prior art> A device equipped with a set of electrodes called a so-called measurement cell and measuring the electrical conductivity K of a liquid by immersing it in the liquid to be measured is disclosed, for example, in U.S. Pat.
It is disclosed in Publication No. 65478. The conductivity meter disclosed in this document has a reference resistor installed in parallel with the measurement cell in order to accurately correct the cell constant J.
Rk, a measurement cell, and a changeover switch for selecting this reference resistance Rk. Therefore, there is an advantage that a measurement value can be obtained without depending on fluctuations in the AC power supply voltage applied to the measurement cell.

この装置を用いて、例えば食塩水の濃度を測定
するときは、まず、濃度が既知の例えば5%の食
塩水を標準温度25℃に保持した電導度を測定して
スパン較正を行い、次に、被測定食塩水の温度を
25℃に保つて同様にして電導度を測定しなければ
ならない。
When using this device to measure the concentration of, for example, saline water, first perform span calibration by measuring the conductivity of a saline solution with a known concentration, such as 5%, held at a standard temperature of 25°C, and then perform span calibration. , the temperature of the saline solution to be measured is
Conductivity must be measured in the same way while keeping the temperature at 25°C.

<発明が解決しようとする問題点> 現実の塩分測定、例えば海水の塩分、水族館の
水槽の塩分、熱いみそ汁の塩分、食品工業の工程
中の流れる液の塩分等を測定するとき、被測定液
の温度を25℃に保ことは不可能である。
<Problems to be solved by the invention> When measuring actual salinity, for example, the salinity of seawater, the salinity of an aquarium tank, the salinity of hot miso soup, the salinity of a flowing liquid during a process in the food industry, etc. It is impossible to maintain the temperature at 25℃.

また、標準試験液を常備しておいて測定の都度
スパン調整することは、測定セルの浸漬の都度、
他の液が侵入したり、自然蒸発によつて標準試験
液の導電率が変化するため、度々試験液を新しい
ものと交換しなければならず使用上不便である。
In addition, keeping a standard test solution on hand and adjusting the span each time the measurement cell is immersed is a good idea.
Because the conductivity of the standard test liquid changes due to intrusion of other liquids or natural evaporation, the test liquid must be replaced frequently with a new one, which is inconvenient in use.

さらに、もし軽率にスパン調整用ボリユームを
廻してしまうと、その後の測定が無意味になり、
再度較正作業からやり直さなければならない。
Furthermore, if you carelessly turn the span adjustment volume, subsequent measurements will be meaningless.
You will have to start the calibration process again.

特に重要な問題は、現実の被試験液がNaclま
たはKclだけの水溶液であることはむしろ稀であ
つて、海水、みそ汁のような種々の組成物が溶け
込んでおり、従つて温度補正係数の正確な値は未
知であり、標準濃度の試験液を予め作ることがで
きないことである。
A particularly important problem is that the actual test liquid is rarely an aqueous solution of only Nacl or Kcl, but contains various compositions such as seawater and miso soup, and therefore it is difficult to accurately determine the temperature correction coefficient. This value is unknown and it is not possible to prepare test solutions of standard concentrations in advance.

そこで本発明の主たる目的は、被測定液の温度
が標準温度25℃以外のときでも使用することがで
き、標準試験液を常備する必要がない塩分計を提
供することである。
Therefore, the main object of the present invention is to provide a salinity meter that can be used even when the temperature of the liquid to be measured is other than the standard temperature of 25° C., and does not require the constant provision of a standard test liquid.

本発明の他の目的は、測定セルを含む測定プロ
ーブと本体部分とが着脱自在であつて測定プロー
ブに互換性があり、セル常数が、被測定液の種類
が特定されれば測定プローブごとに銘記されてい
る塩分計を提供することである。
Another object of the present invention is that the measurement probe including the measurement cell and the main body are detachable and compatible, and that the cell constant can be changed for each measurement probe once the type of liquid to be measured is specified. The purpose is to provide a salinity meter that is accredited.

本発明の更に他の目的は、導電率の濃度特性、
温度特性がアナログ量であり、実用範囲において
は殆ど線形であることに鑑み、デジタル演算処
理、デジタルメモリを使用せず、そのためにデジ
タル化に伴う誤差を含まず、塩分濃度が完全に連
続的に求められる塩分計を提供することである。
Still another object of the present invention is to provide concentration characteristics of conductivity;
Considering that the temperature characteristic is an analog quantity and is almost linear in the practical range, it does not use digital calculation processing or digital memory, and therefore does not include errors caused by digitization, and the salinity concentration is completely continuous. Our goal is to provide the desired salinity meter.

<問題点を解決するための手段> 本発明の液体の塩分濃度計は、測定すべき液体
中に浸される一組の電極と温度センサーを備えた
測定セルと、発振器出力から可変抵抗器R1を通
して上記一組の電極の一方に電圧を印加する励振
電圧印加手段と、上記一組の電極の他方の電流を
増幅して導電検出電圧edを得る導電検出手段と、
上記温度センサーの出力信号に基づき所定の温度
補償電圧erを得る温度補償手段と、上記導電検出
電圧edを上記温度補償電圧erで除算した商を演算
する演算手段と、その演算結果を表示する出力手
段と、互に連動する2回路切換スイツチS1,S2
備え、第一の切換スイツチS1は、そのコモン端子
Cが上記導電検出手段の入力端に接続され、その
一つの切換接点aが上記一組の電極の他方4に接
続され、もう一つの切換接点bが所定の抵抗値を
もつ固定抵抗Rsを介して一組の電極の一方3に
接続されたものであり、第2の切換スイツチS2
は、そのコモン端子Cが上記温度補償手段の入力
端に接続され、その一つの切換接点aが上記温度
センサーに接続され、もう一つの切換接点bが所
定の電圧源に接続されたものである較正手段とを
有することにより特徴づけられる。
<Means for Solving the Problems> The liquid salinity meter of the present invention includes a measuring cell equipped with a set of electrodes and a temperature sensor immersed in the liquid to be measured, and a variable resistor R connected from the oscillator output. excitation voltage applying means for applying a voltage to one of the set of electrodes through 1 ; conductivity detection means for amplifying the current of the other of the set of electrodes to obtain a conductivity detection voltage ed;
Temperature compensation means for obtaining a predetermined temperature compensation voltage er based on the output signal of the temperature sensor, calculation means for calculating the quotient of dividing the conductivity detection voltage ed by the temperature compensation voltage er, and an output for displaying the calculation result. and two-circuit changeover switches S 1 and S 2 that interlock with each other, the first changeover switch S 1 has its common terminal C connected to the input end of the conductivity detection means, and its one changeover contact a. is connected to the other 4 of the set of electrodes, another switching contact b is connected to one 3 of the set of electrodes via a fixed resistor Rs having a predetermined resistance value, and the second Changeover switch S 2
is one in which the common terminal C is connected to the input terminal of the temperature compensating means, one switching contact a is connected to the temperature sensor, and the other switching contact b is connected to a predetermined voltage source. Calibration means.

<作用> 液体中へ一組の電極をもつ測定セルを浸し、そ
の電極に励振電圧eiを印加すると、その液体の導
電率に比例して電極間に電流が流れる。例えば温
度25℃の純食塩水の導電率は67.2mS/cmであり、
これの温度係数αは2.17%/℃であることが知ら
れている。
<Operation> When a measurement cell with a set of electrodes is immersed in a liquid and an excitation voltage e i is applied to the electrodes, a current flows between the electrodes in proportion to the conductivity of the liquid. For example, the conductivity of pure saline at a temperature of 25℃ is 67.2mS/cm,
It is known that the temperature coefficient α of this is 2.17%/°C.

導電検出電圧edは、測定セルの構造と、交流電
源の電圧と、可変抵抗器R1の設定状態と、被測
定物の導電率と、増幅器の利得に依存する。そし
て、このときの導電率は温度に依存している。一
方、温度補償電圧erは、第3図に示すように、温
度センサーの検知温度を変数とする一次関数であ
る。この勾配は被測定物の導電率の温度係数αと
一致していることが好ましいが、みそ汁、海水の
ように不純物を含むものであつてはほぼ2〜3%
の範囲におさまつているので、多用途の塩分計で
あつても、実用上差しつかえのない勾配に設定す
ることができる。
The conductivity detection voltage ed depends on the structure of the measurement cell, the voltage of the AC power supply, the setting state of the variable resistor R1 , the conductivity of the object to be measured, and the gain of the amplifier. The conductivity at this time depends on the temperature. On the other hand, the temperature compensation voltage e r is a linear function whose variable is the temperature detected by the temperature sensor, as shown in FIG. It is preferable that this slope corresponds to the temperature coefficient α of the conductivity of the object to be measured, but if it contains impurities such as miso soup or seawater, it is approximately 2 to 3%.
Since the slope is within the range of , even a multi-purpose salinity meter can be set to a slope that is acceptable for practical purposes.

演算手段は、導電検出電圧edの温度tと温度係
数αを含む因子{1+α(t−25)}と、温度補償
電圧erの同じ因子{1+α(t−25)}を消去す
る。
The calculation means eliminates a factor {1+α(t-25)} including the temperature t and temperature coefficient α of the conduction detection voltage e d and the same factor {1+α(t-25)} of the temperature compensation voltage e r .

切換スイツチは測定状態aと較正状態bを切換
える手動スイツチである。較正状態bに切換えら
れると、導電検出電圧edと温度補償電圧erの演算
手段への導入が断たれ、可変抵抗器R1の設定状
態のみに依存する電圧が出力手段に導入される。
その結果、出力手段の表示値と可変抵抗器R1
設定位置は一次の対応関係をもち、従つてあらか
じめ較正された表示値を示すように可変抵抗器を
設定すれば、測定セルの構造とそのばらつき、そ
の他の要素のばらつきを補正することができ、被
測定物の種類ごとにその表示値を定めておけば、
標準液による絶対較正を行うことなく簡易に較正
を行うことができる。
The changeover switch is a manual switch for switching between measurement state a and calibration state b. When switched to the calibration state b, the conduction detection voltage e d and the temperature compensation voltage er are not introduced into the calculation means, and a voltage that depends only on the setting state of the variable resistor R 1 is introduced into the output means.
As a result, the displayed value of the output means and the setting position of the variable resistor R 1 have a first-order correspondence, and therefore, if the variable resistor is set to indicate a pre-calibrated displayed value, it will depend on the structure of the measuring cell. It is possible to correct this variation and the variation of other factors, and if the display value is determined for each type of object to be measured,
Calibration can be easily performed without performing absolute calibration using standard solutions.

<実施例> 第1図に本発明の一実施例の回路図を示す。<Example> FIG. 1 shows a circuit diagram of an embodiment of the present invention.

発振器1は振幅一定な交流発振器である。その
出力端子にコンデンサC1と可変抵抗R1の直列回
路が接続され、その可変端子がバツフアアンプ2
の入力線に接続され、バツフアアンプ2の出力線
が測定セルの一方の電極3に接続されている。従
つて、この電極3と接地間には第2図に示すよう
な振幅eiの方形波交流電圧が励振電圧として印加
される。
Oscillator 1 is an AC oscillator with constant amplitude. A series circuit of capacitor C 1 and variable resistor R 1 is connected to the output terminal, and the variable terminal is connected to buffer amplifier 2.
The output line of the buffer amplifier 2 is connected to one electrode 3 of the measurement cell. Therefore, a square wave AC voltage having an amplitude e i as shown in FIG. 2 is applied as an excitation voltage between the electrode 3 and the ground.

測定セルは電気的には2極の電極であるが、構
造的には例えば第7図に示すように円筒13内に
3個の電極板14,15,16を配設し、両端の
もの14,16を共通接続して1組の電極を形成
している。
The measurement cell has two electrodes electrically, but in terms of structure, for example, as shown in FIG. , 16 are commonly connected to form one set of electrodes.

測定セルの他方の電極4は、切換スイツチS1
端子aに接続され、コモン端子cは増幅器5に入
力されている。この増幅器5は帰還抵抗Rfを持
ち、励振電圧eiにより生ずる電流を検出してお
り、検出電圧e0を出力する。スイツチS1のもう一
つの端子bは抵抗Rsを通じて測定セルの電極3
に接続されている。この抵抗Rsは測定セルの電
極間抵抗Rcの擬似抵抗である。増幅器5の出力
e0は同期整流回路6に入力されて、直流アナログ
信号に整流される。この同期整流回路6は発振器
1の方形波出力と同期してスイツチング要素S3
S4が交互にオンオフし、コンデンサC3を充電す
る。この同期整流回路6の出力電圧edは、被測定
液の導電率の温度係数をα、温度25℃における被
測定液中に測定セルを浸したときの電極間抵抗を
Rc25、励起電圧の振幅をei、増幅器5の帰還抵抗
をRfとしたとき ed=Rf・ei/Rc25{1+α(t−25)} ……(1) と表わされる。この電圧edを導電検出電圧とす
る。
The other electrode 4 of the measuring cell is connected to the terminal a of the changeover switch S 1 , and the common terminal c is input to the amplifier 5. This amplifier 5 has a feedback resistor Rf, detects the current generated by the excitation voltage e i , and outputs a detected voltage e 0 . The other terminal b of switch S1 is connected to electrode 3 of the measuring cell through resistor Rs.
It is connected to the. This resistance Rs is a pseudo resistance of the interelectrode resistance Rc of the measurement cell. Amplifier 5 output
e 0 is input to the synchronous rectifier circuit 6 and rectified into a DC analog signal. This synchronous rectifier circuit 6 synchronizes with the square wave output of the oscillator 1 and switches the switching elements S 3 ,
S 4 alternately turns on and off, charging capacitor C 3 . The output voltage e d of this synchronous rectifier circuit 6 is determined by α, the temperature coefficient of conductivity of the liquid to be measured, and the resistance between the electrodes when the measuring cell is immersed in the liquid to be measured at a temperature of 25°C.
When R c25 is the amplitude of the excitation voltage, e i is the feedback resistance of the amplifier 5, and Rf is the feedback resistance of the amplifier 5, it is expressed as ed = Rf·e i /R c25 {1+α(t-25)} (1). This voltage ed is defined as the conductivity detection voltage.

測定セルの電極4には温度センサー7が付設さ
れて、このセンサー7の端子は温度検出器8に接
続されている。この温度検出器8は測定セルの温
度に比例したアナログ電圧etを出力する。切換ス
イツチS2はスイツチS1と連動している。スイツチ
S2の接点aは温度検出器8の出力端子に接続され
ている。スイツチS2の接点bには、基準電圧Es
を2個の抵抗R2とR3で分割したレフアンス電圧 eT=R3/R2+R3・Es ……(2) が導入される。この基準電圧Esは所定の定電圧
源であればよい。抵抗Rsと、抵抗R2,R3の分圧
比の関係は、抵抗Rsが例えば温度25℃における
濃度5%の純食塩水に測定セルを浸したときの電
極間電気抵抗に相当する値であれば、レフアンス
電圧eTは温度25℃における温度検出電圧et25に相
当する値になるよう設定される。
A temperature sensor 7 is attached to the electrode 4 of the measuring cell, and the terminal of this sensor 7 is connected to a temperature detector 8. This temperature detector 8 outputs an analog voltage e t proportional to the temperature of the measuring cell. Changeover switch S2 is interlocked with switch S1 . switch
Contact a of S 2 is connected to the output terminal of temperature detector 8. The reference voltage Es is applied to contact b of switch S2 .
A reference voltage e T = R 3 /R 2 + R 3 · Es ...(2) is introduced, which is obtained by dividing the voltage by two resistors R 2 and R 3 . This reference voltage Es may be a predetermined constant voltage source. The relationship between the resistance Rs and the partial pressure ratio of the resistances R 2 and R 3 is such that the resistance Rs is a value corresponding to the electrical resistance between the electrodes when the measurement cell is immersed in pure saline solution with a concentration of 5% at a temperature of 25°C. For example, the reference voltage e T is set to a value corresponding to the temperature detection voltage e t25 at a temperature of 25°C.

温度補償回路9は、標準温度25℃における出力
電圧erをE25として、温度補償電圧 er=E25{1+α(t−25)} ……(3) を出力する。この(3)式を第3図に示す。
The temperature compensation circuit 9 outputs a temperature compensation voltage e r =E 25 {1+α(t−25)} (3) where the output voltage er at a standard temperature of 25° C. is E 25 . This equation (3) is shown in Figure 3.

アナログ除算器10は塩分濃度を求めるため除
算ed/erを実行する。(1)(3)両式より除算の商mは m=ed/er=Rf・ei/Rc25{1+α(t+25
)}/E25{1+α(t−25)}=Rf・ei/E25・Rc25
…(4) となる。この(4)式から明らかなように測定セルの
温度tが消去されている。
The analog divider 10 performs the division e d / er to determine the salinity concentration. (1) (3) From both equations, the division quotient m is m=e d / e r = Rf・e i /R c25 {1+α(t+25
)}/E 25 {1+α(t-25)}=Rf・e i /E 25・R c25
…(4) becomes. As is clear from this equation (4), the temperature t of the measurement cell is eliminated.

表示器11は塩分百分率を表示する。アナログ除
算器10としてA/D変換器を用い電圧erを基準
電圧とし、電圧edを入力電圧(被変換電圧)とす
れば、直ちにデジタル出力を得ることができる。
なお、測定器本体側と測定プローブ側とはコネク
タ12により着脱自在に接続されている。
The display 11 displays the salt percentage. If an A/D converter is used as the analog divider 10, the voltage er is used as a reference voltage, and the voltage ed is used as an input voltage (voltage to be converted), a digital output can be obtained immediately.
Note that the measuring device main body side and the measuring probe side are detachably connected by a connector 12.

ここで、電極間抵抗Rcにばらつきがあつてそ
の係数をセル定数Jとし、電圧eiの可変係数をj
とすれば、(4)式は、 m=Rf・j・ei/E25・JRc25 ……(4)′ (4)式と同じ塩分濃度mを得るためにはj=Jと
なる。すなわち(4)式が標準状態とすればRc25にJ
だけのばらつきがあれば電圧eiもJに相当する分
だけ可変設定することにより所定のmを得る。更
に(4)′式においてスイツチS1,S2をb側に倒すと
E25の代わりにETが、JRC25の代わりにRsが挿入
されて出力表示濃度m′は m′=Rf・Jei/ETRS となる。ここにRf/ETRcは定数であり、表示値m′は セル定数Jに比例したものとなる。すなわち、セ
ル定数Jのばらつきを補正するために設定した
Jeiによつてm′はJに比例した値を得る。
Here, the coefficient of variation in the interelectrode resistance Rc is taken as the cell constant J, and the variable coefficient of the voltage e i is j
Then, equation (4) is m=Rf・j・e i /E 25・JR c25 ……(4)′ In order to obtain the same salinity concentration m as in equation (4), j=J. In other words, if equation (4) is in the standard state, R c25 becomes J
If there is a variation of J, the voltage e i is also variably set by an amount corresponding to J to obtain a predetermined value m. Furthermore, in equation (4)', if switches S 1 and S 2 are moved to side b,
E T is inserted in place of E 25 and Rs is inserted in place of JRC 25 , so that the output display density m' becomes m'=Rf·Je i /E T R S. Here, Rf/ ETRc is a constant, and the displayed value m' is proportional to the cell constant J. In other words, it was set to correct the variation in cell constant J.
Depending on Je i, m' obtains a value proportional to J.

従つて例えば5%食塩水の標準試験液にて塩分
濃度表示mが5%を表示するようにeiを調整して
JeiとしたのちスイツチS1,S2をb側に切換えた
ときのm′の値が較正値となる。
Therefore, for example, adjust e i so that the salinity display m displays 5% in a standard test solution of 5% saline.
The value of m' when the switches S 1 and S 2 are switched to the b side after setting Je i becomes the calibration value.

所定の電極にて標準試験液を用いて以上の較正
を行えばそれ以降は上記較正値の設定により測定
の都度、較正作業を必要としなくなる。
If the above calibration is performed using a standard test solution with a predetermined electrode, the calibration work will no longer be required every time a measurement is made by setting the above-mentioned calibration value.

次に、上記実施例の使用方法について説明す
る。
Next, how to use the above embodiment will be explained.

この塩分計の製造者は、例えば濃度5%の純食
塩水を温度25℃に保持して標準試験液とし、これ
に測定セルの電極3,4を浸して表示器11が5
%を指示するように可変抵抗器R1を調節する。
この可変抵抗器R1の設定状態をそのままにして
おいて切換スイツチS1,S2をa接点からb接点側
に切換え、そのときの表示値(%)を読み、これ
を較正値として記録する。この較正値は、この測
定セルが食塩水の塩分濃度を測定するときの個有
の数値であつて、これをその測定セルに銘記す
る。この較正値は換言すれば設定目標値を意味し
ている。
The manufacturer of this salinity meter, for example, maintains pure salt water with a concentration of 5% at a temperature of 25°C as a standard test liquid, immerses the electrodes 3 and 4 of the measurement cell in this, and then displays the indicator 11 at 5%.
Adjust variable resistor R 1 to indicate %.
Leave the setting of variable resistor R 1 as it is, change the changeover switches S 1 and S 2 from the A contact to the B contact side, read the displayed value (%) at that time, and record this as the calibration value. . This calibration value is a unique numerical value used when this measuring cell measures the salt concentration of saline water, and is recorded in the measuring cell. In other words, this calibration value means a set target value.

使用者は、まず切換スイツチS1,S2をb接点側
に切換え、測定セルに銘記されている表示値
(%)になるよう可変抵抗器R1を調節する。これ
で較正作業は終わる。その後は、可変抵抗器R1
の設定状態を固定したまま、食塩水の濃度を測定
すれば、その測定時の温度に影響されることなく
測定を行うことができる。上記の実施例におい
て、スイツチS1のb接点回路に抵抗Rsを接続し、
スイツチS2のb接点回路に抵抗R2,R3の分圧回
路を接続したが、本発明の内蔵較正手段は上記実
施例に限定されることなく、例えば増幅器5の帰
還抵抗Rfの切換え、同期整流回路6の出力回路
への減衰器の選択的挿入、温度補償回路10の出
力回路への減衰器の選択的挿入等の代替手段によ
り実施することもできる。
The user first switches the changeover switches S 1 and S 2 to the b contact side and adjusts the variable resistor R 1 to the displayed value (%) written on the measurement cell. This completes the calibration process. After that, the variable resistor R 1
If the concentration of the saline solution is measured while the setting state of is fixed, the measurement can be performed without being affected by the temperature at the time of measurement. In the above embodiment, a resistor Rs is connected to the b contact circuit of switch S1 ,
Although a voltage divider circuit of resistors R 2 and R 3 is connected to the b-contact circuit of switch S 2 , the built-in calibration means of the present invention is not limited to the above embodiment, and can be used, for example, by switching the feedback resistor Rf of the amplifier 5, It can also be implemented by alternative means, such as selectively inserting an attenuator into the output circuit of the synchronous rectifier circuit 6 or selectively inserting an attenuator into the output circuit of the temperature compensation circuit 10.

第4図に本発明の一変形実施例の回路図を示
す。この実施例が第1図のものと相違する点は、
温度センサー7のばらつきを補償するために、温
度検出器8に半固定抵抗器R4を設けたことであ
る。すなわち、温度検知回路の等価回路を第5図
のように表わした場合、温度検知電圧etは et=Rt/Rt+R4+R5・Es ……(5) となる。ここでセンサー抵抗Rtのばらつき係数
をxとすれば上式のRtをxRtに置換すればよい
が、etを変えないためには(R4+R5)をもx(R4
+R5)に置換すればよい。この置換は、半固定
抵抗R4の調整により実現される。
FIG. 4 shows a circuit diagram of a modified embodiment of the present invention. The difference between this embodiment and the one in FIG.
In order to compensate for variations in the temperature sensor 7, the temperature detector 8 is provided with a semi-fixed resistor R4 . That is, when the equivalent circuit of the temperature detection circuit is expressed as shown in FIG. 5, the temperature detection voltage e t is e t =Rt/Rt+R 4 +R 5 ·Es (5). Here , if the variation coefficient of sensor resistance Rt is x, then Rt in the above equation can be replaced by xRt, but in order to keep e t unchanged, (R 4 + R 5 ) can also be replaced by
+R 5 ). This replacement is realized by adjusting the semi-fixed resistor R4 .

第6図に本発明の他の変形実施例の回路図を示
す。この実施例が第1図のものと相違する点は、
測定セルに銘記された較正値のばらつきをなくし
て、どの測定セルも例えば10%の固定された較正
値、すなわち設定目標値になるよう、擬似抵抗
Rsを測定セルのプローブ側に移したことにある。
FIG. 6 shows a circuit diagram of another modified embodiment of the present invention. The difference between this embodiment and the one in FIG.
In order to eliminate variations in the calibration values recorded on the measurement cells and to ensure that every measurement cell has a fixed calibration value of, for example, 10%, that is, the set target value, the pseudo resistance is used.
The reason is that Rs has been moved to the probe side of the measurement cell.

すなわち、スイツチS1の接点bをコネクタ12
の本体側端子に接続し、これと対応するプローブ
側に擬似抵抗Rsが接続されており、この抵抗Rs
は、半固定抵抗により較正されている。
In other words, contact b of switch S1 is connected to connector 12.
is connected to the terminal on the main body side, and a pseudo resistor Rs is connected to the corresponding probe side.
is calibrated by a semi-fixed resistor.

従つて、使用者は使用に先立ち切換スイツチ
S1,S2をb接点側に切換え、いかなる測定セルで
あつても表示値が例えば10%になるように可変抵
抗器R1を調節するだけで較正作業が終了する。
Therefore, the user must turn on the selector switch before use.
The calibration work is completed by simply switching S 1 and S 2 to the b contact side and adjusting the variable resistor R 1 so that the displayed value is, for example, 10% in any measurement cell.

<発明の効果> 本発明によれば、測定セルの電流に係る導電検
出電圧を温度補償電圧で除算することより、被測
定物の導電率の温度係数αを消去しているので、
標準温度25℃以外のときでも測定することができ
る。また、切換スイツチを較正側に切換えて表示
器の値が予め定めされている値になるよう可変抵
抗器を設定するだけで較正作業が終了するので、
標準試験液を常備する必要がなく、使用上大層便
利である。
<Effects of the Invention> According to the present invention, the temperature coefficient α of the conductivity of the object to be measured is eliminated by dividing the conductivity detection voltage related to the current of the measurement cell by the temperature compensation voltage.
Measurements can be taken even at temperatures other than the standard temperature of 25°C. In addition, the calibration work can be completed by simply switching the switch to the calibration side and setting the variable resistor so that the value on the display becomes the predetermined value.
There is no need to keep standard test solutions on hand, making it extremely convenient to use.

また本発明によれば、測定計本体部と測定プロ
ーブ部を着脱自在に構成することができ、本体部
と測定プローブ部を別個に製作することができる
ので製造工程の管理が容易になり、更にプローブ
に互換性があるので使用者にとつても便利であ
る。
Further, according to the present invention, the measuring meter main body and the measuring probe can be configured to be detachable, and the main body and the measuring probe can be manufactured separately, making it easier to manage the manufacturing process. The interchangeability of the probes is very convenient for users.

更に本発明によれば、導電検出手段、温度補償
手段および演算手段をアナログ回路で構成してい
るので回路構成が簡単化され、しかもデジタル化
に伴う誤差が発生せず連続的で高精度な測定値が
得られる。
Furthermore, according to the present invention, the conductivity detection means, temperature compensation means, and calculation means are constructed from analog circuits, which simplifies the circuit configuration and allows for continuous and highly accurate measurement without the errors associated with digitization. value is obtained.

また更に本発明によれば、A/D変換器、デジ
タルコンピユータ、およびコンピユータソフトウ
エアを必要とせず、いかなる被測定液に対しても
容易に較正操作ができるので、ポケツタブルの小
形であつて、いかなる用途にも適用できる汎用の
高精度な塩分濃度計を安価に提供することが可能
になつた。
Furthermore, according to the present invention, the calibration operation can be easily performed for any liquid to be measured without requiring an A/D converter, a digital computer, or computer software. It has become possible to provide a general-purpose, high-precision salinity meter that can be used for various purposes at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路図、第2図
は第1図の励振電圧eiの波形図、第3図は第1図
の温度補償回路9の特性図、第4図は本発明の一
変形実施例を示す回路図、第5図は第4図の温度
検知回路の等価回路図、第6図は本発明の他の変
形実施例を示す回路図である。第7図は本発明の
測定セルの一例を示す断面図である。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram of the excitation voltage e i in FIG. 1, FIG. 3 is a characteristic diagram of the temperature compensation circuit 9 in FIG. 1, and FIG. FIG. 5 is an equivalent circuit diagram of the temperature detection circuit of FIG. 4, and FIG. 6 is a circuit diagram showing another modified embodiment of the present invention. FIG. 7 is a sectional view showing an example of the measurement cell of the present invention.

Claims (1)

【特許請求の範囲】 1 測定すべき液体中に浸される一組の電極と温
度センサーを備えた測定セルと、発振器出力から
可変抵抗器R1を通して上記一組の電極の一方3
に電圧を印加する励振電圧印加手段と、上記一組
の電極の他方4の電流を増幅して導電検出電圧
edを得る導電検出手段と、上記温度センサーの
出力信号に基づき所定の温度補償電圧erを得る温
度補償手段と、上記導電検出電圧edを上記温度
補償電圧erで除算した商を演算する演算手段と、
その演算結果を表示する出力手段と、互に連動す
る2回路切換スイツチS1,S2を備え、第一の切換
スイツチS1は、そのコモン端子Cが上記導電検出
手段の入力端に接続され、その一つの切換接点a
が上記一組の電極の他方4に接続され、もう一つ
の切換接点bが所定の抵抗値を持つ固定抵抗Rs
を介して一組の電極の一方3に接続されたもので
あり、第二の切換スイツチS2は、そのコモン端子
Cが上記温度補償手段の入力端に接続され、その
一つの切換接点aが上記温度センサーに接続さ
れ、もう一つの切換接点bが所定の電圧源に接続
されたものである較正手段とを有する、液体の塩
分濃度計。 2 上記温度補償電圧erが、測定すべき液体の導
電率の温度係数をα、その液体の測定時の温度を
t(摂氏)としたとき{1+α(t−25)}の関数
である、特許請求の範囲第1項記載の液体の塩分
濃度計。 3 測定器本体と、上記一組の電極を含む測定プ
ローブが着脱自在に構成されており、上記固定抵
抗Rsが測定プローブ側に設けられた半固定抵抗
器である、特許請求の範囲第1項記載の液体の塩
分濃度計。 4 上記較正手段の第一および第二の切換スイツ
チS1,S2が上記もう一つの切換接点b側に切換え
られた状態で、上記可変抵抗器R1を設定する際、
その設定目標位置に対応する上記出力手段の表示
値が測定プローブに銘記されている、特許請求の
範囲第1項、第2項または第3項記載の液体の塩
分濃度計。
[Claims] 1. A measuring cell with a set of electrodes and a temperature sensor immersed in the liquid to be measured, and one of the set of electrodes 3 from the oscillator output through a variable resistor R1 .
an excitation voltage applying means for applying a voltage to the electrodes, and a conduction detection voltage by amplifying the current of the other one of the pair of electrodes
conductivity detection means for obtaining a predetermined temperature compensation voltage er based on the output signal of the temperature sensor; and calculation means for computing a quotient obtained by dividing the conductivity detection voltage ed by the temperature compensation voltage er. ,
It is equipped with an output means for displaying the calculation result, and two-circuit changeover switches S 1 and S 2 that interlock with each other, and the first changeover switch S 1 has its common terminal C connected to the input terminal of the conductivity detection means. , one switching contact a
is connected to the other one of the pair of electrodes 4, and another switching contact b is a fixed resistor Rs having a predetermined resistance value.
The second changeover switch S2 has its common terminal C connected to the input end of the temperature compensation means, and its one changeover contact a and a calibration means connected to the temperature sensor, the other switching contact b being connected to a predetermined voltage source. 2. A patent in which the temperature compensation voltage er is a function of {1+α(t-25)}, where α is the temperature coefficient of conductivity of the liquid to be measured, and t (Celsius) is the temperature of the liquid at the time of measurement. A liquid salinity meter according to claim 1. 3. Claim 1, wherein the measuring instrument body and the measuring probe including the set of electrodes are configured to be detachable, and the fixed resistor Rs is a semi-fixed resistor provided on the measuring probe side. Salinity meter for the liquid described. 4 When setting the variable resistor R 1 with the first and second changeover switches S 1 and S 2 of the calibration means being switched to the other switching contact b side,
A liquid salinity meter according to claim 1, 2 or 3, wherein the display value of the output means corresponding to the set target position is recorded on the measurement probe.
JP22755685A 1985-10-11 1985-10-11 Salinometer for liquid Granted JPS6285852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22755685A JPS6285852A (en) 1985-10-11 1985-10-11 Salinometer for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22755685A JPS6285852A (en) 1985-10-11 1985-10-11 Salinometer for liquid

Publications (2)

Publication Number Publication Date
JPS6285852A JPS6285852A (en) 1987-04-20
JPH052185B2 true JPH052185B2 (en) 1993-01-11

Family

ID=16862753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22755685A Granted JPS6285852A (en) 1985-10-11 1985-10-11 Salinometer for liquid

Country Status (1)

Country Link
JP (1) JPS6285852A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536208Y2 (en) * 1987-07-17 1993-09-13
JP3520669B2 (en) * 1996-05-29 2004-04-19 日本インテック株式会社 Electrolytic flow channel water conductivity measuring device
JP3631347B2 (en) * 1997-01-17 2005-03-23 日本インテック株式会社 Electrolytic water conductivity measurement control circuit
DE19921079C2 (en) * 1999-04-30 2002-09-19 Stiftung A Wegener Inst Polar Method for determining the salinity of liquids and device for carrying out the method
JP2002005862A (en) * 2000-06-20 2002-01-09 Teruo Kawaida Circuit for measuring salinity concentration
US8513956B2 (en) * 2010-07-26 2013-08-20 Mettler-Toledo Thornton, Inc. Calibration of conductivity measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198749A (en) * 1982-05-13 1983-11-18 Masayoshi Hoshina Apparatus for measuring concentration of electrolyte solution
JPS5960265A (en) * 1982-09-29 1984-04-06 Mitsubishi Electric Corp Specific resistance measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198749A (en) * 1982-05-13 1983-11-18 Masayoshi Hoshina Apparatus for measuring concentration of electrolyte solution
JPS5960265A (en) * 1982-09-29 1984-04-06 Mitsubishi Electric Corp Specific resistance measuring apparatus

Also Published As

Publication number Publication date
JPS6285852A (en) 1987-04-20

Similar Documents

Publication Publication Date Title
US3566233A (en) Method and apparatus for measuring impedance of a conducting medium with a calibrated probe
US2871446A (en) Wide-range resistance and resistivity measuring apparatus
US4823087A (en) Salimeter
US4160946A (en) Device for measuring conductivity of a solution
KR910015851A (en) pH and specific ion concentration measuring method and device
US4259633A (en) Method and apparatus for measuring the moisture content of wood
JPS599865B2 (en) Magnetic field measurement method
JPH052185B2 (en)
US5872454A (en) Calibration procedure that improves accuracy of electrolytic conductivity measurement systems
US4321544A (en) Method and improved apparatus for obtaining temperature-corrected readings of ion levels and readings of solution temperature
US4266187A (en) Method and apparatus for measuring effectiveness of a corrosion inhibitor
US3593118A (en) Apparatus for measuring the electrical conductivity of liquids having dielectric-faced electrodes
EP0730149A2 (en) Linearized potentiometric electrode
Svelto et al. Compact and accurate digital thermometer based on Anderson’s loop and Pt-100 sensor
US3763007A (en) Systems for measuring corrosion rate
US3867687A (en) Servo gain control of liquid conductivity meter
JPS6314784B2 (en)
US3075143A (en) Electrical measuring equipment
WO2001075459A1 (en) Electrical conductivity measurement circuit
GB556649A (en) Improvements in apparatus for and methods of measuring or controlling the value of ph, or of the conductivity of solutions or of oxidation reduction potentials and the like
Svelto et al. Compact and accurate digital thermometer based on an Anderson's loop and a Pt-100 sensor
JP2593324B2 (en) Gas pressure gauge
Daneman et al. Method of Applying a Modern Potentiometer for Resistance Thermometry
US3495169A (en) Modified kelvin bridge with yoke circuit resistance for residual resistance compensation
RU2057294C1 (en) Instrument transducer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term