JPH0574486A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH0574486A
JPH0574486A JP3230090A JP23009091A JPH0574486A JP H0574486 A JPH0574486 A JP H0574486A JP 3230090 A JP3230090 A JP 3230090A JP 23009091 A JP23009091 A JP 23009091A JP H0574486 A JPH0574486 A JP H0574486A
Authority
JP
Japan
Prior art keywords
battery
solvent
lithium
electrolytic solution
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3230090A
Other languages
Japanese (ja)
Other versions
JP3066126B2 (en
Inventor
Hiroshi Watanabe
浩志 渡辺
Seiji Yoshimura
精司 吉村
Masatoshi Takahashi
昌利 高橋
Ryuji Oshita
竜司 大下
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3230090A priority Critical patent/JP3066126B2/en
Publication of JPH0574486A publication Critical patent/JPH0574486A/en
Application granted granted Critical
Publication of JP3066126B2 publication Critical patent/JP3066126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte battery such that preservation characteristic and discharge characteristic as well as cycle characteristic in a secondary battery can be enhanced. CONSTITUTION:In a nonaqueous electrolyte battery provided with a positive electrode 1, a negative electrode 2 using lithium as active material, and a nonaqueous electrolyte consisting of a solvent and a solute, the solvent of the nonaqueous electrolyte contains a main solvent and another solvent to which at least one part of the main solvent is coupled by unsaturated bond.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極と、リチウムを活
物質とする負極と、溶媒及び溶質から成る非水系電解液
とを備えた非水系電解液電池に関し、特に非水系電解液
の溶媒の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolytic solution battery provided with a positive electrode, a negative electrode using lithium as an active material, and a non-aqueous electrolytic solution comprising a solvent and a solute, and particularly to a solvent for the non-aqueous electrolytic solution. Regarding the improvement of.

【0002】[0002]

【従来の技術】この種の電池は、高電圧,高エネルギー
密度を有するので、近年、様々な用途に用いられてい
る。加えて、上記電池は水溶液系電解液を用いた電池と
比べて保存特性等に優れており、高信頼性を有するとい
う利点もある。しかしながら、負極に用いられるリチウ
ムは還元性が非常に高いため、電解液と接触してリチウ
ムの表面に電解液の還元成分から成る皮膜が生成するこ
とになる。この場合、上記皮膜の性質によっては不都合
が生じることがあるため、皮膜の性質は電池の保存特性
等に多大の影響を与えることになる。特に、長期保存に
おいては重要な影響を及ぼす。
2. Description of the Related Art Batteries of this kind have been used for various purposes in recent years because they have high voltage and high energy density. In addition, the above-described battery has excellent storage characteristics and the like as compared with a battery using an aqueous electrolyte solution, and has an advantage of having high reliability. However, since lithium used for the negative electrode has a very high reducibility, it comes into contact with the electrolytic solution to form a film made of a reducing component of the electrolytic solution on the surface of lithium. In this case, inconvenience may occur depending on the properties of the film, and thus the properties of the film have a great influence on the storage characteristics and the like of the battery. In particular, it has an important effect on long-term storage.

【0003】ここで、上記皮膜の性質は、電解液の種類
と密接な関係があることが一般に知られており、現在で
も種々の溶媒や添加剤についての研究が盛んに行われて
いる。しかしながら、未だ充分な特性を有する電解液を
見出すことができない。
Here, it is generally known that the properties of the above-mentioned film are closely related to the type of the electrolytic solution, and even now, various solvents and additives are being actively studied. However, it has not been possible to find an electrolytic solution having sufficient characteristics.

【0004】[0004]

【発明が解決しようとする課題】本発明はかかる現状に
鑑みてなされたものであり、保存特性や放電特性及び二
次電池においてはサイクル特性を向上させることができ
る非水系電解液電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a non-aqueous electrolyte battery capable of improving storage characteristics, discharge characteristics, and cycle characteristics of secondary batteries. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、正極と、リチウムを活物質とする負極と、
溶媒及び溶質から成る非水系電解液とを備えた非水系電
解液電池において、前記非水系電解液の溶媒は、主溶媒
と、この主溶媒の少なくとも一部が不飽和結合された溶
媒とが含有されていることを特徴とする。
In order to achieve the above object, the present invention comprises a positive electrode, a negative electrode containing lithium as an active material, and
In a non-aqueous electrolytic solution battery comprising a non-aqueous electrolytic solution comprising a solvent and a solute, the solvent of the non-aqueous electrolytic solution contains a main solvent and a solvent in which at least a part of this main solvent is unsaturated-bonded. It is characterized by being.

【0006】[0006]

【作用】上述した如く、リチウムの表面は電解液の還元
生成物である薄い皮膜によって覆われており、この皮膜
の性質によって電池の特性が異なることになる。例え
ば、この皮膜が非常に緻密で且つイオン絶縁性のもので
あれば、保存特性はある程度向上するが、電池の内部イ
ンピーダンスが上昇し、更に充分な放電特性(二次電池
の場合には充放電特性)を得ることができない。また、
上記皮膜とリチウムとの密着性が充分でない場合には、
皮膜が脱落し易くなるため、新たに出現するリチウム表
面が電解液と反応し、負極容量が低下したり、長期の保
存による特性が劣化する。
As described above, the surface of lithium is covered with a thin film which is a reduction product of the electrolytic solution, and the characteristics of the battery differ depending on the properties of this film. For example, if this film is very dense and has ion-insulating properties, the storage characteristics will improve to some extent, but the internal impedance of the battery will increase, and moreover, sufficient discharge characteristics (in the case of a secondary battery, charging / discharging will occur). Characteristic) cannot be obtained. Also,
If the adhesion between the film and lithium is not sufficient,
Since the film is likely to fall off, the newly appearing lithium surface reacts with the electrolytic solution, and the capacity of the negative electrode decreases, and the characteristics due to long-term storage deteriorate.

【0007】このようなことを考慮すれば、上記皮膜と
しては以下に示すような特性を有することが望ましい。
リチウム表面への密着性に優れ且つ緻密である。この
ような特性を有していれば、電解液とリチウムとの反応
がリチウム内部まで進行するのを防ぐことができる。
イオン導電性に優れている。
In view of the above, it is desirable that the above film has the following characteristics.
It has excellent adhesion to the lithium surface and is dense. With such characteristics, the reaction between the electrolytic solution and lithium can be prevented from proceeding to the inside of lithium.
Excellent ionic conductivity.

【0008】このような特性を有していれば、電池の内
部インピーダンスが上昇するのを抑制することができ
る。そこで、本発明者は、電解液の溶媒として種々の溶
媒を検討した。その結果、主溶媒に、主溶媒の少なくと
も一部を不飽和化した溶媒が添加されていれば、放電特
性やサイクル特性が優れると共に保存特性も向上するこ
とを見出した。
With such characteristics, it is possible to prevent the internal impedance of the battery from rising. Therefore, the present inventor examined various solvents as the solvent of the electrolytic solution. As a result, they have found that if a solvent in which at least a part of the main solvent is unsaturated is added to the main solvent, the discharge characteristics and the cycle characteristics are excellent and the storage characteristics are improved.

【0009】これは、溶媒の少なくとも一部を不飽和化
すれば、リチウム負極に優先的に吸着され、この結果リ
チウム負極表面に安定な保護膜が形成される。特に、主
溶媒の少なくとも一部を不飽和化した溶媒を添加した場
合には、分子レベルにおける主溶媒との混合性にも優れ
ることになるため、薄くて、且つ緻密で均質な被膜が生
成されることになる。このように、リチウム負極表面に
生成される被膜が薄ければ、リチウムイオン導電性に優
れ、また、上記被膜が緻密で均質であれば電解液とリチ
ウムとの反応がリチウム内部まで進行しない。
This is because if at least a part of the solvent is desaturated, it is preferentially adsorbed on the lithium negative electrode, and as a result, a stable protective film is formed on the surface of the lithium negative electrode. In particular, when a solvent in which at least a part of the main solvent is desaturated is added, the mixing property with the main solvent at the molecular level is also excellent, so that a thin, dense and uniform film is formed. Will be. Thus, if the coating film formed on the surface of the lithium negative electrode is thin, the lithium ion conductivity is excellent, and if the coating film is dense and homogeneous, the reaction between the electrolytic solution and lithium does not proceed to the inside of lithium.

【0010】このような理由によって、放電特性や保存
特性を向上させることができる。尚、このような効果
は、一次電池,二次電池を問わず出現するものである
が、特に二次電池においては、充電時に析出する活性な
リチウムが電解液と反応するのを抑制することができる
ため、サイクル寿命も向上させることができる。
For these reasons, the discharge characteristics and storage characteristics can be improved. It should be noted that such an effect appears regardless of whether the battery is a primary battery or a secondary battery, but particularly in a secondary battery, it is possible to suppress the reaction of active lithium deposited during charging with an electrolytic solution. Therefore, the cycle life can be improved.

【0011】[0011]

【実施例】(第1実施例)本発明の第1実施例を、第1
図乃至第3図に基づいて、以下に説明する。尚、本第1
実施例及び下記第2実施例においては、非水系電解液一
次電池について説明する。 〔実施例〕第1図は本発明の一実施例に係る偏平型非水
系電解液一次電池の断面図であり、リチウム金属から成
る負極2は負極集電体7の内面に圧着されており、この
負極集電体7はフェライト系ステンレス鋼(SUS43
0)から成る断面略コ字状の負極缶5の内底面に固着さ
れている。上記負極缶5の周端はポリプロピレン製の絶
縁パッキング8の内部に固定されており、絶縁パッキン
グ8の外周にはステンレスから成り上記負極缶5とは反
対方向に断面略コ字状を成す正極缶4が固定されてい
る。この正極缶4の内底面には正極集電体6が固定され
ており、この正極集電体6の内面には正極1が固定され
ている。この正極1と前記負極2との間には、本発明の
主要部を成す電解液が含浸されたセパレータ3が介装さ
れている。尚、電池寸法は直径20.0mm、厚み2.5
mmである。
(First Embodiment) The first embodiment of the present invention is
A description will be given below with reference to FIGS. In addition, this first
In Examples and the second example below, a non-aqueous electrolyte primary battery will be described. [Examples] FIG. 1 is a cross-sectional view of a flat type non-aqueous electrolyte primary battery according to an example of the present invention, in which a negative electrode 2 made of lithium metal is pressure-bonded to an inner surface of a negative electrode current collector 7. This negative electrode current collector 7 is made of ferritic stainless steel (SUS43
(0) is fixed to the inner bottom surface of the negative electrode can 5 having a substantially U-shaped cross section. A peripheral end of the negative electrode can 5 is fixed inside an insulating packing 8 made of polypropylene, and an outer periphery of the insulating packing 8 is made of stainless steel and has a substantially U-shaped cross section in a direction opposite to the negative electrode can 5. 4 is fixed. The positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 4, and the positive electrode 1 is fixed to the inner surface of the positive electrode current collector 6. Between the positive electrode 1 and the negative electrode 2, a separator 3 impregnated with an electrolytic solution, which is a main part of the present invention, is interposed. The battery size is 20.0 mm in diameter and 2.5 in thickness.
mm.

【0012】ここで、前記正極1は、以下のようにして
作製した。先ず、350〜430℃の温度範囲で熱処理
した活物質である二酸化マンガンと、導電剤としてのカ
ーボン粉末と、結着剤としてのフッ素樹脂粉末とを8
5:10:15の重量比で混合する。次いで、この混合
物を加圧成型した後、250〜350℃の温度範囲で熱
処理することにより作製した。
Here, the positive electrode 1 was manufactured as follows. First, 8 parts of manganese dioxide, which is an active material heat-treated in the temperature range of 350 to 430 ° C., carbon powder as a conductive agent, and fluororesin powder as a binder, are added.
Mix at a weight ratio of 5:10:15. Next, this mixture was pressure-molded and then heat-treated in the temperature range of 250 to 350 ° C.

【0013】一方、前記負極2は、リチウム圧延板を所
定寸法に打ち抜くことにより作製した。また、上記電解
液としては、エチレンカーボネート(以下、ECと略
す)と、ブチレンカーボネート(以下、BCと略す)
と、1,2−ジメトキシエタン(以下、DMEと略す)
との混合溶媒(体積比2:2:6)に、添加剤としてビ
ニレンカーボネート(以下、VCと略す)を上記ECに
対する体積比で3%添加し、更にトリフルオロメタンス
ルホン酸リチウム(LiCF3 SO3 )を上記溶媒に対
して1モル/リットルの割合で添加したものを用いた。
On the other hand, the negative electrode 2 was produced by punching a rolled lithium plate into a predetermined size. Further, as the electrolytic solution, ethylene carbonate (hereinafter abbreviated as EC) and butylene carbonate (hereinafter abbreviated as BC) are used.
And 1,2-dimethoxyethane (hereinafter abbreviated as DME)
3% by volume of vinylene carbonate (hereinafter abbreviated as VC) as an additive in a mixed solvent (volume ratio 2: 2: 6) with respect to the above EC, and further lithium trifluoromethanesulfonate (LiCF 3 SO 3 1) was added to the above solvent at a ratio of 1 mol / liter.

【0014】このようにして作製した電池を、以下
(A)電池と称する。 〔比較例1〕電解液に、VCを添加しない他は、上記実
施例と同様にして電池を作製した。このようにして作製
した電池を、以下(W)電池と称する。 〔実験1〕上記本発明の(A)電池と比較例の(W)電
池とにおける保存前後の放電特性を調べたので、それら
の結果をそれぞれ図2及び図3に示す。尚、実験条件
は、300Ωの定抵抗放電という条件であり、また、保
存条件は60℃の恒温槽中で3カ月保存するという条件
である。また、各電池を5個づつ用いた。
The battery thus manufactured is hereinafter referred to as (A) battery. [Comparative Example 1] A battery was produced in the same manner as in the above-described example except that VC was not added to the electrolytic solution. The battery thus manufactured is hereinafter referred to as a (W) battery. [Experiment 1] The discharge characteristics of the battery (A) of the present invention and the battery (W) of the comparative example before and after storage were examined. The results are shown in FIGS. 2 and 3, respectively. The experimental condition is a constant resistance discharge of 300Ω, and the storage condition is a condition of storing in a constant temperature bath at 60 ° C. for 3 months. Also, five batteries were used for each.

【0015】図2及び図3から明らかなように、保存前
の放電特性では両者に差異はないが、保存後の放電特性
においては本発明の(A)電池は比較例の(W)電池に
比べて向上していることが認められる。 〔実験2〕上記本発明の(A)電池と比較例の(W)電
池とにおける、保存前後の電池内部インピーダンスを測
定したので、その結果を下記表1に示す。また、各電池
5個づつ用いた。
As is clear from FIGS. 2 and 3, there is no difference in the discharge characteristics before storage, but in the discharge characteristics after storage, the battery (A) of the present invention is comparable to the battery (W) of the comparative example. It is recognized that it is improved compared to the above. [Experiment 2] The internal impedances of the battery (A) of the present invention and the battery (W) of the comparative example were measured before and after storage. The results are shown in Table 1 below. Also, 5 batteries were used for each battery.

【0016】[0016]

【表1】 [Table 1]

【0017】表1より明らかなように、保存前は両者に
差異は認められないが、保存期間を経過するにしたがっ
て比較例の(W)電池は本発明の(A)電池に比べて電
池内部インピーダンスが増加することが認められる。こ
のように電池内部インピーダンスが増加することに起因
して、上記実験1で示す如く保存後の放電特性が低下す
るものと考えられる。
As is clear from Table 1, no difference is observed between the two before storage, but as the storage period elapses, the battery (W) of the comparative example has a more internal structure than the battery (A) of the present invention. It is observed that the impedance increases. It is considered that the discharge characteristic after storage is deteriorated as shown in Experiment 1 due to the increase in the internal impedance of the battery.

【0018】(第2実施例) 〔実施例〕電解液として、プロピレンカーボネート(以
下、PCと略す)とテトラヒドロフラン(以下、THF
と略す)との等体積混合溶媒に、添加剤としてフラン
(以下、Fと略す)を上記THFに対する体積比で0.
5%添加し、更にトリフルオロメタンスルホン酸リチウ
ムを上記溶媒に対して1モル/リットルの割合で溶解さ
せたものを用る他は、上記第1実施例の実施例と同様に
して電池を作製した。
(Second Embodiment) [Example] As an electrolytic solution, propylene carbonate (hereinafter abbreviated as PC) and tetrahydrofuran (hereinafter THF)
In an equal volume mixed solvent with furan (hereinafter abbreviated as F) as an additive at a volume ratio of 0.1 to THF.
A battery was made in the same manner as in the above-mentioned Example of Example 1 except that 5% was added and lithium trifluoromethanesulfonate was dissolved in the above solvent at a ratio of 1 mol / liter. ..

【0019】このようにして作製した電池を、以下
(B)電池と称する。 〔比較例〕電解液にFを添加しない他は、上記実施例と
同様にして電池を作製した。このようにして作製した電
池を、以下(X)電池と称する。 〔実験〕上記本発明の(B)電池と比較例の(X)電池
とにおける、保存前後の電池内部インピーダンスを測定
したので、その結果を下記表2に示す。尚、各電池を5
個づつ用いた。
The battery thus manufactured is hereinafter referred to as (B) battery. [Comparative Example] A battery was produced in the same manner as in the above-described example except that F was not added to the electrolytic solution. The battery thus manufactured is hereinafter referred to as (X) battery. [Experiment] The internal impedances of the battery (B) of the present invention and the battery (X) of the comparative example were measured before and after storage. The results are shown in Table 2 below. In addition, each battery is 5
Used individually.

【0020】[0020]

【表2】 [Table 2]

【0021】表2より明らかなように、保存前は両者に
差異は認められないが、保存期間を経過するにしたがっ
て比較例の(X)電池は本発明の(B)電池に比べて電
池内部インピーダンスが増加することが認められる。ま
た、図示はしないが、このように電池内部インピーダン
スが増加することに起因して、比較例の(X)電池は保
存後の放電特性が低下するといことを実験により確認し
ている。
As is clear from Table 2, there is no difference between the two before storage, but as the storage period elapses, the battery (X) of the comparative example has a better internal structure than the battery (B) of the present invention. It is observed that the impedance increases. Although not shown, it has been confirmed by experiments that the discharge characteristic after storage of the battery (X) of the comparative example deteriorates due to the increase of the battery internal impedance as described above.

【0022】(第3実施例)本発明の第3実施例を、図
4に基づいて、以下に説明する。尚、本第3実施例及び
下記の第4実施例においては非水系電解液二次電池につ
いて述べる。 〔実施例〕正極として、予めリチウムを含有させた正極
活物質であるマンガン酸化物と、導電剤としてのアセチ
レンブラックと、結着剤としてのフッ素樹脂とを85:
10:5の重量比で混合したものを用いると共に、下記
表3に示す電解液を用いる他は、前記第1実施例の実施
例と同様にして電池を作製した。
(Third Embodiment) A third embodiment of the present invention will be described below with reference to FIG. In the third embodiment and the fourth embodiment below, a non-aqueous electrolyte secondary battery will be described. [Example] As a positive electrode, manganese oxide, which is a positive electrode active material containing lithium in advance, acetylene black as a conductive agent, and a fluororesin as a binder were mixed with 85:
A battery was produced in the same manner as in the above-described Example 1 except that the mixture having a weight ratio of 10: 5 was used and the electrolytic solution shown in Table 3 below was used.

【0023】このようにして作製した電池を、以下
(C)電池と称する。 〔比較例〕下記表3に示す電解液を用いる他は、上記実
施例と同様にして電池を作製した。このようにして作製
した電池を、以下(Y)電池と称する。
The battery thus manufactured is hereinafter referred to as (C) battery. [Comparative Example] A battery was produced in the same manner as in the above-described example except that the electrolytic solution shown in Table 3 below was used. The battery thus manufactured is hereinafter referred to as (Y) battery.

【0024】[0024]

【表3】 [Table 3]

【0025】〔実験1〕上記本発明の(C)電池と比較
例の(Y)電池とのサイクル特性を調べたので、その結
果を図4に示す。尚、実験条件は、充電電流2mAで4
時間充電した後、放電電流2mAで4時間放電するとい
う条件であり、放電時間内に電池電圧が2Vとなった時
点で電池寿命とした。また、図4においては5つの電池
の平均値を示している。
[Experiment 1] The cycle characteristics of the battery (C) of the present invention and the battery (Y) of the comparative example were examined. The results are shown in FIG. The experimental conditions were 4 at a charging current of 2 mA.
After the battery was charged for an hour, the battery was discharged at a discharge current of 2 mA for 4 hours, and the battery life was defined as the time when the battery voltage reached 2 V within the discharging time. Moreover, in FIG. 4, the average value of five batteries is shown.

【0026】図4から明らかなように、本発明の(C)
電池は比較例の(Y)電池と比べて、サイクル特性が飛
躍的に向上していることが認められる。 〔実験2〕上記VCのECに対する添加量(体積比)を
変化させて、添加量とサイクル特性との関係を調べたの
でその結果を図5に示す。尚、実験条件は上記実験1と
同様の条件である。但し、溶質としてはヘキサフルオロ
リン酸リチウム(LiPF 6 、溶媒に対して1モル/リ
ットルの割合で添加)を用いている。
As is apparent from FIG. 4, (C) of the present invention.
The battery has better cycle characteristics than the (Y) battery of the comparative example.
It is recognized that it has improved dramatically. [Experiment 2] Addition amount (volume ratio) of VC to EC
By changing it, we investigated the relationship between the amount added and cycle characteristics.
The results are shown in FIG. The experimental conditions are the same as those in Experiment 1 above.
The conditions are similar. However, hexafluoro is used as the solute.
Lithium phosphate (LiPF 6, 1 mol / l of solvent
(Added in the proportion of the bottle).

【0027】図5から明らかなように、VCを0.01
wt%以上添加すればサイクル特性が向上していることが
認められる。但し、10%を超えるとサイクル特性が低
下する。したがって、VCの添加量は0.01〜10%
の範囲であることが望ましく、特に1〜3%の範囲であ
ることが望ましい。上記の範囲が好ましいのは、0.0
1%以下では添加効果が余り発揮されない一方、10%
以上であればリチウム負極に生成される被膜の厚みが大
きくなり過ぎるため電池の内部インピーダンスが上昇す
るという理由によるものと考えられる。
As is clear from FIG. 5, VC is 0.01
It is recognized that the cycle characteristics are improved by adding more than wt%. However, if it exceeds 10%, the cycle characteristics deteriorate. Therefore, the addition amount of VC is 0.01 to 10%.
It is desirable to be in the range of, and it is particularly desirable to be in the range of 1 to 3%. The above range is preferably 0.0
If it is less than 1%, the effect of addition is not so good, while it is 10%.
It is considered that the reason is that the thickness of the coating film formed on the lithium negative electrode becomes too large and the internal impedance of the battery rises if the above is satisfied.

【0028】(第4実施例) 〔実施例〕電解液として、γ−ブチロラクトン(以下、
γ−BLと略す)とDMEとの等体積混合溶媒に、添加
剤として2(5H)−フラノン(以下、FNと略す)を
上記γ−BLに対する体積比で10%添加し、更にヘキ
サフルオロリン酸リチウムを上記溶媒に対して1モル/
リットルの割合で溶解させたものを用いる他は、前記第
3実施例の実施例と同様にして電池を作製した。
(Fourth Embodiment) [Example] As an electrolytic solution, γ-butyrolactone (hereinafter, referred to as
2 (5H) -furanone (hereinafter abbreviated as FN) as an additive is added to an equal volume mixed solvent of γ-BL) and DME in an amount of 10% in terms of volume ratio to γ-BL, and hexafluoroline is further added. Lithium acid is 1 mol / based on the above solvent
A battery was produced in the same manner as in the above-mentioned third example except that the one dissolved at a rate of 1 liter was used.

【0029】このようにして作製した電池を、以下
(D)電池と称する。 〔比較例〕電解液としてFNを添加しない他は、上記実
施例と同様にして電池を作製した。このようにして作製
した電池を、以下(Z)電池と称する。 〔実験〕上記本発明の(D)電池と比較例の(Z)電池
とのサイクル特性を調べたので、その結果を図6に示
す。尚、実験条件は、前記第3実施例の実験1と同様の
条件であり、且つ図6においては5つの電池の平均値を
示している。
The battery thus manufactured is hereinafter referred to as (D) battery. [Comparative Example] A battery was produced in the same manner as in the above-described example except that FN was not added as an electrolytic solution. The battery thus manufactured is hereinafter referred to as (Z) battery. [Experiment] The cycle characteristics of the battery (D) of the present invention and the battery (Z) of the comparative example were examined, and the results are shown in FIG. The experimental conditions are the same as those of Experiment 1 of the third embodiment, and in FIG. 6, the average value of five batteries is shown.

【0030】図6から明らかなように、本発明の(D)
電池は比較例の(Z)電池と比べて、サイクル特性が飛
躍的に向上していることが認められる。 〔その他の事項〕電解液の主溶媒としては、上記P
C,EC等に限定するものではなく、例えば、2−メチ
ルテトラヒドロフラン(2−MeTHF)、1,3−ジ
オキソラン(DOL)、4−メチル−1,3−ジオキソ
ラン(4−MeDOL)等であっても良い。電解液の
溶質としては、上記トリフルオロメタンスルホン酸リチ
ウム等に限定するものではなく、例えば、テトラフルオ
ロホウ酸リチウム(LiBF4 )、テトラフルオロヒ酸
リチウム(LiAsF6 )、ヘキサフルオロアンチモン
酸リチウム(LiSbF6 )等から成る群から選択され
るフッ素系ルイス酸リチウム塩であってもよい。正極
としては、Mn酸化物に限定するものではなく、Co、
Ni、V、Cr等の酸化物であっても良い。主溶媒の
割合は上記実施例の割合に限定するものではなく、10
%以上含有していれば良い。
As is apparent from FIG. 6, (D) of the present invention.
It is recognized that the battery has dramatically improved cycle characteristics as compared with the battery (Z) of the comparative example. [Other matters] As the main solvent of the electrolytic solution, P
It is not limited to C, EC and the like, and examples thereof include 2-methyltetrahydrofuran (2-MeTHF), 1,3-dioxolane (DOL), 4-methyl-1,3-dioxolane (4-MeDOL) and the like. Is also good. The solute of the electrolytic solution is not limited to the above-mentioned lithium trifluoromethanesulfonate and the like, and examples thereof include lithium tetrafluoroborate (LiBF 4 ), lithium tetrafluoroarsenate (LiAsF 6 ), lithium hexafluoroantimonate (LiSbF). It may be a fluorine-based Lewis acid lithium salt selected from the group consisting of 6 ) and the like. The positive electrode is not limited to Mn oxide, but Co,
It may be an oxide such as Ni, V, or Cr. The proportion of the main solvent is not limited to the proportion in the above-mentioned example, and is 10
It suffices if the content is at least%.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、主
溶媒の少なくとも一部を不飽和化した溶媒を添加してい
るので、分子レベルにおいて主溶媒との混合性が優れる
ことになる。したがって負極表面に生成される被膜が薄
く、且つ緻密で均質となる。これらのことから、保存特
性や放電特性及びサイクル特性を飛躍的に向上すること
ができるといった効果を奏する。
As described above, according to the present invention, since the solvent in which at least a part of the main solvent is unsaturated is added, the mixing property with the main solvent is excellent at the molecular level. Therefore, the coating film formed on the surface of the negative electrode is thin, dense and uniform. As a result, storage characteristics, discharge characteristics, and cycle characteristics can be dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る偏平型非水系電解液
一次電池の断面図である。
FIG. 1 is a cross-sectional view of a flat type non-aqueous electrolyte primary battery according to a first embodiment of the present invention.

【図2】本発明の(A)電池と比較例の(W)電池とに
おける保存前の放電特性を示すグラフである。
FIG. 2 is a graph showing discharge characteristics of a battery of the present invention (A) and a battery of a comparative example (W) before storage.

【図3】本発明の(A)電池と比較例の(W)電池とに
おける保存後の放電特性を示すグラフである。
FIG. 3 is a graph showing discharge characteristics after storage in the battery (A) of the present invention and the battery (W) of the comparative example.

【図4】本発明の(C)電池と比較例の(Y)電池とに
おけるサイクル特性を示すグラフである。
FIG. 4 is a graph showing cycle characteristics of a battery (C) of the present invention and a battery (Y) of a comparative example.

【図5】VC添加量とサイクル数との関係を示すグラフ
である。
FIG. 5 is a graph showing the relationship between the amount of VC added and the number of cycles.

【図6】本発明の(D)電池と比較例の(Z)電池とに
おけるサイクル特性を示すグラフである。
FIG. 6 is a graph showing cycle characteristics of the battery (D) of the present invention and the battery (Z) of the comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大下 竜司 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 古川 修弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Ryuji Oshita 2-18 Keihan Hondori, Moriguchi City Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Furukawa 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. In the company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウムを活物質とする負極
と、溶媒及び溶質から成る非水系電解液とを備えた非水
系電解液電池において、 前記非水系電解液の溶媒は、主溶媒と、この主溶媒の少
なくとも一部が不飽和結合された溶媒とが含有されてい
ることを特徴とする非水系電解液電池。
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode using lithium as an active material, and a non-aqueous electrolyte solution comprising a solvent and a solute, wherein the solvent of the non-aqueous electrolyte solution is a main solvent, A non-aqueous electrolyte battery comprising a solvent in which at least a part of the main solvent is unsaturatedly bonded.
JP3230090A 1991-09-10 1991-09-10 Non-aqueous electrolyte battery Expired - Lifetime JP3066126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3230090A JP3066126B2 (en) 1991-09-10 1991-09-10 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3230090A JP3066126B2 (en) 1991-09-10 1991-09-10 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0574486A true JPH0574486A (en) 1993-03-26
JP3066126B2 JP3066126B2 (en) 2000-07-17

Family

ID=16902393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3230090A Expired - Lifetime JP3066126B2 (en) 1991-09-10 1991-09-10 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3066126B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315918B1 (en) 1997-09-11 2001-11-13 Mitsui Chemicals Inc. Non-aqueous electrolytic solution for capacitor and capacitor containing non-aqueous electrolytic solution
JP2006318761A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2010027628A (en) * 1994-04-22 2010-02-04 Mitsubishi Chemicals Corp Lithium storage battery with carbon anode
US8053108B2 (en) 2002-08-31 2011-11-08 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery employing the same
WO2012066879A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012066878A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012120597A1 (en) 2011-03-04 2012-09-13 株式会社デンソー Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
WO2013069529A1 (en) 2011-11-10 2013-05-16 株式会社Adeka Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
WO2014017321A1 (en) 2012-07-26 2014-01-30 株式会社Adeka Electricity storage device
US9337511B2 (en) 2011-11-01 2016-05-10 Adeka Corporation Nonaqueous secondary battery
KR20160133410A (en) 2014-03-14 2016-11-22 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20170031093A (en) 2014-07-07 2017-03-20 가부시키가이샤 아데카 Nonaqueous electronic capacitor, and capacitor
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
KR20180054565A (en) 2015-09-17 2018-05-24 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR20180077262A (en) 2015-11-06 2018-07-06 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
WO2018164124A1 (en) 2017-03-07 2018-09-13 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
WO2018164138A1 (en) 2017-03-08 2018-09-13 住友精化株式会社 Additive for non-aqueous electrolytic solutions, non-aqueous electrolytic solution, and electrical storage device
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2019031452A1 (en) 2017-08-08 2019-02-14 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2019088127A1 (en) 2017-10-31 2019-05-09 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
US10388989B2 (en) 2015-03-17 2019-08-20 Adeka Corporation Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
WO2019187545A1 (en) 2018-03-30 2019-10-03 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US11114693B2 (en) 2015-08-12 2021-09-07 Central Glass Company, Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
WO2022025002A1 (en) 2020-07-31 2022-02-03 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2022054696A1 (en) 2020-09-14 2022-03-17 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2023026852A1 (en) 2021-08-24 2023-03-02 信越化学工業株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR20230127681A (en) 2022-02-25 2023-09-01 가부시키가이샤 아데카 Nonaqueous electrolyte additive, nonaqueous electrolyte for nonaqueous electrolyte secondary battery that contain the same, and nonaqueous electrolyte secondary battery
WO2024034522A1 (en) 2022-08-08 2024-02-15 住友精化株式会社 Additive for non-aqueous electrolytic solution, non-aqueous electrolytic solution, and power storage device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449850C (en) 2004-02-27 2009-01-07 三洋电机株式会社 lithium secondary battery
JP6069745B2 (en) * 2012-07-13 2017-02-01 美和ロック株式会社 Power converter for lock

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156142A (en) * 1994-04-22 2012-08-16 Mitsubishi Chemicals Corp Lithium storage battery having carbon anode
JP2010027628A (en) * 1994-04-22 2010-02-04 Mitsubishi Chemicals Corp Lithium storage battery with carbon anode
US6315918B1 (en) 1997-09-11 2001-11-13 Mitsui Chemicals Inc. Non-aqueous electrolytic solution for capacitor and capacitor containing non-aqueous electrolytic solution
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
US8053108B2 (en) 2002-08-31 2011-11-08 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery employing the same
JP2006318761A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US8455142B2 (en) 2008-04-07 2013-06-04 Nec Energy Devices, Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
WO2012066878A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
WO2012066879A1 (en) 2010-11-16 2012-05-24 株式会社Adeka Non-aqueous electrolyte secondary battery
KR20130143557A (en) 2010-11-16 2013-12-31 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
US9023536B2 (en) 2010-11-16 2015-05-05 Adeka Corporation Non-aqueous electrolyte secondary battery
US9017866B2 (en) 2010-11-16 2015-04-28 Adeka Corporation Non-aqueous electrolyte secondary battery
KR20130143559A (en) 2010-11-16 2013-12-31 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
WO2012120597A1 (en) 2011-03-04 2012-09-13 株式会社デンソー Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
US10186732B2 (en) 2011-03-04 2019-01-22 Denso Corporation Nonaqueous electrolyte solution for batteries, and nonaqueous electrolyte secondary battery using same
WO2013005828A1 (en) 2011-07-07 2013-01-10 住友精化株式会社 Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
US10050304B2 (en) 2011-07-07 2018-08-14 Sumitomo Seika & Chemicals Co., Ltd. Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
US9337511B2 (en) 2011-11-01 2016-05-10 Adeka Corporation Nonaqueous secondary battery
US9419306B2 (en) 2011-11-10 2016-08-16 Adeka Corporation Nonaqueous electrolyte and nonaqueous secondary battery using same
WO2013069529A1 (en) 2011-11-10 2013-05-16 株式会社Adeka Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
KR20140096263A (en) 2011-11-10 2014-08-05 가부시키가이샤 아데카 Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery using said electrolyte solution
KR20150039745A (en) 2012-07-26 2015-04-13 가부시키가이샤 아데카 Electricity storage device
US9583280B2 (en) 2012-07-26 2017-02-28 Adeka Corporation Electricity storage device
WO2014017321A1 (en) 2012-07-26 2014-01-30 株式会社Adeka Electricity storage device
KR20160133410A (en) 2014-03-14 2016-11-22 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US10096858B2 (en) 2014-03-14 2018-10-09 Adeka Corporation Nonaqueous electrolyte and nonaqueous secondary battery
KR20160138402A (en) 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20170031093A (en) 2014-07-07 2017-03-20 가부시키가이샤 아데카 Nonaqueous electronic capacitor, and capacitor
US10454139B2 (en) 2015-01-23 2019-10-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10186733B2 (en) 2015-01-23 2019-01-22 Central Glass Co., Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
US10388989B2 (en) 2015-03-17 2019-08-20 Adeka Corporation Non-aqueous electrolyte, and non-aqueous electrolyte secondary cell
US11114693B2 (en) 2015-08-12 2021-09-07 Central Glass Company, Ltd. Electrolytic solution for nonaqueous electrolytic solution secondary batteries and nonaqueous electrolytic solution secondary battery
KR20180050373A (en) 2015-09-09 2018-05-14 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
KR20180054565A (en) 2015-09-17 2018-05-24 가부시키가이샤 아데카 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
US10734684B2 (en) 2015-09-17 2020-08-04 Adeka Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20180077262A (en) 2015-11-06 2018-07-06 스미토모 세이카 가부시키가이샤 An additive for a non-aqueous electrolyte, a non-aqueous electrolyte,
US10615456B2 (en) 2015-11-06 2020-04-07 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
WO2018164124A1 (en) 2017-03-07 2018-09-13 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
KR20190125345A (en) 2017-03-07 2019-11-06 스미토모 세이카 가부시키가이샤 Additives for nonaqueous electrolytes, nonaqueous electrolytes, and power storage devices
US11387490B2 (en) 2017-03-07 2022-07-12 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
WO2018164138A1 (en) 2017-03-08 2018-09-13 住友精化株式会社 Additive for non-aqueous electrolytic solutions, non-aqueous electrolytic solution, and electrical storage device
KR20190119615A (en) 2017-03-08 2019-10-22 스미토모 세이카 가부시키가이샤 Additives for nonaqueous electrolytes, nonaqueous electrolytes and power storage devices
US11342587B2 (en) 2017-03-08 2022-05-24 Sumitomo Seika Chemicals Co., Ltd. Additive for non-aqueous electrolytic solutions, non-aqueous electrolytic solution, and electrical storage device
KR20200039691A (en) 2017-08-08 2020-04-16 스미토모 세이카 가부시키가이샤 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2019031452A1 (en) 2017-08-08 2019-02-14 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
WO2019088127A1 (en) 2017-10-31 2019-05-09 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
KR20200080233A (en) 2017-10-31 2020-07-06 스미토모 세이카 가부시키가이샤 Additives for non-aqueous electrolytes, non-aqueous electrolytes and power storage devices
US12021191B2 (en) 2017-10-31 2024-06-25 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
KR20200135381A (en) 2018-03-30 2020-12-02 스미토모 세이카 가부시키가이샤 Additives for nonaqueous electrolytes, nonaqueous electrolytes and power storage devices
WO2019187545A1 (en) 2018-03-30 2019-10-03 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
US12074286B2 (en) 2018-03-30 2024-08-27 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
WO2022025002A1 (en) 2020-07-31 2022-02-03 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20230044180A (en) 2020-07-31 2023-04-03 스미토모 세이카 가부시키가이샤 Additives for non-aqueous electrolytes, non-aqueous electrolytes and electrical storage devices
WO2022054696A1 (en) 2020-09-14 2022-03-17 住友精化株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device
KR20230067597A (en) 2020-09-14 2023-05-16 스미토모 세이카 가부시키가이샤 Additives for non-aqueous electrolytes, non-aqueous electrolytes and electrical storage devices
KR20240045236A (en) 2021-08-24 2024-04-05 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2023026852A1 (en) 2021-08-24 2023-03-02 信越化学工業株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR20230127681A (en) 2022-02-25 2023-09-01 가부시키가이샤 아데카 Nonaqueous electrolyte additive, nonaqueous electrolyte for nonaqueous electrolyte secondary battery that contain the same, and nonaqueous electrolyte secondary battery
WO2024034522A1 (en) 2022-08-08 2024-02-15 住友精化株式会社 Additive for non-aqueous electrolytic solution, non-aqueous electrolytic solution, and power storage device

Also Published As

Publication number Publication date
JP3066126B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
JP3066126B2 (en) Non-aqueous electrolyte battery
JPH1167270A (en) Nonaqueous electrolyte secondary battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH0574487A (en) Nonaqueous electrolyte secondary battery
JPH09213348A (en) Non-aqueous electrolyte battery
JP4901089B2 (en) Nonaqueous electrolyte secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP3512114B2 (en) Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same
JPH0582168A (en) Nonaqueous electrolyte battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP3157152B2 (en) Non-aqueous electrolyte battery
JP3032339B2 (en) Non-aqueous electrolyte secondary battery
JPH0778632A (en) Lithium secondary battery
JPH1069915A (en) Non-aqueous electrolyte battery
JP3363585B2 (en) Non-aqueous electrolyte battery
JP3123780B2 (en) Non-aqueous electrolyte battery
JPH0574490A (en) Nonaqueous electrolyte secondary battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JPH11317242A (en) Manufacture of nonaqueous electrolyte battery
JPH0778634A (en) Lithium secondary battery
JPH06338346A (en) Lithium secondary battery
JPH07192756A (en) Nonaqueous system electrolyte battery
JP3244372B2 (en) Non-aqueous electrolyte battery
JP2766018B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 12