JPH0917623A - Nano crystal alloy magnetic core and its manufacture - Google Patents

Nano crystal alloy magnetic core and its manufacture

Info

Publication number
JPH0917623A
JPH0917623A JP7165077A JP16507795A JPH0917623A JP H0917623 A JPH0917623 A JP H0917623A JP 7165077 A JP7165077 A JP 7165077A JP 16507795 A JP16507795 A JP 16507795A JP H0917623 A JPH0917623 A JP H0917623A
Authority
JP
Japan
Prior art keywords
element selected
magnetic core
temperature
heat treatment
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7165077A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Haruyuki Mori
春幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7165077A priority Critical patent/JPH0917623A/en
Publication of JPH0917623A publication Critical patent/JPH0917623A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE: To obtain a magnetic core having a small diameter which exhibits a high permeability, by performing heat treatment at a comparatively low temperature after heat treatment to raise the temperature higher than or equal to crystallization temperature. CONSTITUTION: A nano crystal alloy strip has composition containing the following as inevitable elements; at least one kind of element selected out of Cu and Au, at least one king of element selected out of Nb, Mo, Ta, Ti, Zr, Hf, V and W, at least one kind of element selected out of Si and B, and Fe. This mano crystal alloy magnetic core consists of the nano crystal alloy strip. The inner diameter is less than 10mm, and the permeability at 20kHz is at least 50000, or the rectangularity ratio is at most 30. This manufacturing method is as follows; after the temperature of a magnetic core composed of amorphous alloy of the same composition as the nano crystal alloy strip is raised higher than or equal to the crystallization temperature, and the core is maintained for at least 0 minutes and at most 24 hours for microcrystallization, heat treatment to maintain the core at a temperature of at least 60 deg.C and at most 300 deg.C for 5 minutes or longer. Thereby a nano crystal alloy magnetic core exhibiting remarkably high permeability and its manufacturing method can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種トランス、ノイズ
フィルタ用チョ−クコイル等の各種磁性部品に用いられ
る特に高い透磁率を示すナノ結晶合金磁心およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nanocrystalline alloy magnetic core having a particularly high magnetic permeability, which is used for various magnetic parts such as various transformers and choke coils for noise filters, and a method for producing the same.

【0002】[0002]

【従来の技術】ナノ結晶合金は優れた軟磁気特性を示す
ため、コモンモ−ドチョ−クコイル、高周波トランス、
漏電警報器、パルストランス等の磁心に使用されてい
る。代表的組成系は特公平4-4393号や特開平1ー242755号
に記載の合金系等が知られている。これらのナノ結晶合
金は、通常液相や気相から急冷し非晶質合金とした後、
これを熱処理により微結晶化することにより作製されて
いる。液相から急冷する方法としては単ロ−ル法、双ロ
−ル法、遠心急冷法、回転液中紡糸法、アトマイズ法や
キャビテーション法等が知られている。また、気相から
急冷する方法としては、スパッタ法、蒸着法、イオンプ
レ−ティング法等が知られている。ナノ結晶合金はこれ
らの方法により作製した非晶質合金を微結晶化したもの
で、非晶質合金にみられるような熱的不安定性がほとん
どなく、高飽和磁束密度、低磁歪で優れた軟磁気特性を
示すことが知られている。更にナノ結晶合金は経時変化
が小さく、温度特性にも優れていることが知られてい
る。
2. Description of the Related Art Since nanocrystalline alloys have excellent soft magnetic properties, common mode choke coils, high frequency transformers,
It is used for magnetic cores such as earth leakage alarms and pulse transformers. As typical composition systems, the alloy systems described in Japanese Patent Publication No. 4393/1992 and JP-A-1-242755 are known. These nanocrystalline alloys are usually rapidly cooled from liquid phase or vapor phase to form amorphous alloys,
It is produced by microcrystallizing this by heat treatment. As a method of quenching from a liquid phase, a single roll method, a twin roll method, a centrifugal quenching method, a spinning method in a rotating liquid, an atomizing method, a cavitation method and the like are known. Further, as a method of rapidly cooling from a gas phase, a sputtering method, a vapor deposition method, an ion plating method, and the like are known. Nanocrystalline alloy is a microcrystal of amorphous alloy produced by these methods, and it has almost no thermal instability as seen in amorphous alloy, high saturation magnetic flux density, low magnetostriction and excellent softness. It is known to exhibit magnetic properties. Furthermore, it is known that the nanocrystalline alloy has a small change over time and is excellent in temperature characteristics.

【0003】ところで、ノイズフィルタやパルストラン
ス等に用いられる磁心材料としては、フェライトやアモ
ルファス合金等の高周波特性に優れた高透磁率材料が使
用される。さらに上記したように特公平4ー4393に記載さ
れているようなFe基の微結晶合金(ナノ結晶合金)が高
透磁率低磁心損失特性を示し、これらの用途に適してい
ることが開示されている。
By the way, as magnetic core materials used for noise filters, pulse transformers and the like, high magnetic permeability materials having excellent high frequency characteristics such as ferrite and amorphous alloy are used. Further, as described above, it is disclosed that the Fe-based microcrystalline alloy (nanocrystalline alloy) as described in JP-B-4-4393 exhibits high permeability and low core loss characteristics, and is suitable for these applications. ing.

【0004】また、近年開発が進み使用が拡大してきて
いるISDN(統合サービス・ディジタル網[Integrated Ser
vices Digital Network])インタ−フェイス用パルスト
ランスに使用される磁心材料としては高透磁率で温度特
性に優れていることが要求される。ISDN用の用途では特
に20kHz付近の透磁率が高いことが重要である。また、
使用目的によっては、角形比が低くフラットなB-Hル−
プを示すものが必要とされる。しかし、ISDNインタ−フ
ェイスに用いられるパルストランスは近年カード型イン
タ−フェイスへの使用が検討され、小型化薄型化が要求
されるようになってきており、20kHzで20mH以上のイン
ダクタンスが必要なこの規格を小型薄型の形状で満足す
るためには更に透磁率の高い材料が必要になってきてい
る。またパソコン等に用いられるPCカ−ドに代表され
るインタ−フェース用カ−ドは薄型化、小型化される傾
向にあり、これらに用いられる磁心も高さが低く小径の
ものが要求されるようになっている。
In addition, ISDN (Integrated Service Digital Network [Integrated Ser
vices Digital Network]) The magnetic core material used for the interface pulse transformer is required to have high magnetic permeability and excellent temperature characteristics. In applications for ISDN, it is important that the magnetic permeability around 20kHz is high. Also,
Depending on the purpose of use, a flat BH rule with a low squareness ratio
What is needed is an index. However, in recent years, pulse transformers used for ISDN interfaces have been considered for use in card-type interfaces, and there is a growing demand for miniaturization and thinning, which requires an inductance of 20 mH or more at 20 kHz. In order to satisfy the standard with a small and thin shape, a material having higher magnetic permeability is required. In addition, interface cards typified by PC cards used in personal computers and the like tend to be thinned and downsized, and magnetic cores used for them are required to have a low height and a small diameter. It is like this.

【0005】しかし、フェライトやFe基アモルファス合
金では透磁率が低くこのような薄型化、小型化の要求に
答えるのは困難である。また、フェライトは温度特性が
劣っており、特に室温以下で透磁率が急激に低下すると
いう問題もある。Co基のアモルファス合金は透磁率が高
いものが得られ易いが、周囲温度が高い場合には経時変
化が大きく、しかも価格が高いという問題があり、汎用
の部品に用いるのには限界がある。また、漏電警報器を
はじめとする電流センサ、磁気センサ等においても小型
高感度の観点から透磁率の更に高い材料が要求されてい
る。また、線形な出力を実現する観点からは低角形比で
B−Hル−プがフラットな形状で恒透磁率性に優れかつ
透磁率が高い材料も要求されている。これに対して前述
のナノ結晶合金はCo基アモルファス合金に匹敵する高透
磁率を有しておりこれらの用途に有望であると考えられ
ている。
However, ferrite and Fe-based amorphous alloys have low magnetic permeability, and it is difficult to meet the demand for such thinning and miniaturization. Further, ferrite has inferior temperature characteristics, and there is also a problem that the magnetic permeability sharply decreases especially at room temperature or lower. It is easy to obtain a Co-based amorphous alloy having a high magnetic permeability, but there is a problem in that when the ambient temperature is high, there is a problem that the change over time is large and the cost is high, and therefore there is a limit in using it for general-purpose parts. Further, in current sensors such as leakage alarms, magnetic sensors, etc., materials having higher magnetic permeability are required from the viewpoint of small size and high sensitivity. Further, from the viewpoint of realizing a linear output, a material having a low squareness ratio, a flat BH loop shape, an excellent constant magnetic permeability, and a high magnetic permeability is also required. On the other hand, the above-mentioned nanocrystalline alloy has a high magnetic permeability comparable to that of a Co-based amorphous alloy, and is considered to be promising for these applications.

【0006】[0006]

【発明が解決しようとする課題】しかし、本発明者らが
鋭意検討を行った結果、従来の方法で製造した小径のナ
ノ結晶合金からなる磁心は径が大きい磁心に比べて透磁
率が低下しやすいことが分った。この小型化による透磁
率の低下の程度はCo基アモルファス磁心等に比べて大き
く、内径が10mmをきるような小径の磁心で、従来の方法
で熱処理して製造した場合、20kHzで50000を越えるよう
な高い透磁率の実現は困難であることが分った。本発明
の目的は特に高透磁率を示す小径の磁心および小径の磁
心において効果が大きい高透磁率ナノ結晶合金磁心の製
造方法を提供することである。
However, as a result of earnest studies by the present inventors, the magnetic core made of a small diameter nanocrystalline alloy produced by the conventional method has a lower magnetic permeability than the magnetic core having a large diameter. I found it easy. The degree of decrease in magnetic permeability due to this size reduction is larger than that of Co-based amorphous magnetic cores, etc. It has been found that it is difficult to achieve such a high magnetic permeability. An object of the present invention is to provide a small-diameter magnetic core having a high magnetic permeability and a method for producing a high-permeability nanocrystalline alloy magnetic core, which is highly effective for a small-diameter magnetic core.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに本発明者らは、Cu、Auから選ばれる少なくとも一種
の元素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ば
れた少なくとも1種の元素、Si,Bからなる群から選ばれ
た少なくとも1種の元素とFeを必須元素として含む組成
のナノ結晶合金薄帯からなる磁心に比較的低い温度で熱
処理する工程を行なうことにより、内径が10mm未満の磁
心でも、20kHzにおける比透磁率が50000以上を示すよう
になるものが得られることを見いだし本発明に想到し
た。すなわち、本発明は、Cu、Auから選ばれる少なくと
も一種の元素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群か
ら選ばれた少なくとも1種の元素、Si,Bからなる群から
選ばれた少なくとも1種の元素とFeを必須元素として含
む組成のナノ結晶合金薄帯からなり、内径が10mm未満、
20kHzにおける比透磁率が50000以上であることを特徴と
するナノ結晶合金磁心である。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors of the present invention selected from at least one element selected from Cu and Au, Nb, Mo, Ta, Ti, Zr, Hf, V and W. At least one element selected from the group consisting of Si, at least one element selected from the group consisting of B and a magnetic core consisting of a nanocrystalline alloy ribbon of a composition containing Fe as an essential element at a relatively low temperature The present invention was found by carrying out the heat treatment step, and found that even a magnetic core having an inner diameter of less than 10 mm could have a relative magnetic permeability at 20 kHz of 50,000 or more. That is, the present invention, Cu, at least one element selected from Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, Si, consisting of At least one element selected from the group and consisting of a nanocrystalline alloy ribbon of the composition containing Fe as an essential element, the inner diameter is less than 10 mm,
A nanocrystalline alloy magnetic core having a relative magnetic permeability at 20 kHz of 50,000 or more.

【0008】特に、磁心の磁路と垂直方向に磁場を印加
し磁場中熱処理を行った角形比が30%以下であるナノ結
晶合金磁心は磁化状態による比透磁率の変化が小さいた
めに消磁が十分行われていなくとも特性が安定してお
り、より好ましい結果が得られる。特に好ましい角形比
は20%以下である。磁路と垂直方向とは巻磁心の場合は
使用している薄帯の幅方向に相当する。熱処理条件を最
適化すると20kHzにおける比透磁率が70000以上である非
常に高い透磁率を内径10mm未満の磁心でも実現可能であ
る。
In particular, a nanocrystalline alloy magnetic core having a squareness ratio of 30% or less obtained by applying a magnetic field in a direction perpendicular to the magnetic path of the magnetic core and performing heat treatment in the magnetic field has a small change in relative permeability depending on the magnetized state, and is therefore demagnetized. Even if not sufficiently performed, the characteristics are stable, and more preferable results can be obtained. A particularly preferable squareness ratio is 20% or less. In the case of a wound magnetic core, the direction perpendicular to the magnetic path corresponds to the width direction of the ribbon used. By optimizing the heat treatment conditions, it is possible to achieve a very high magnetic permeability with a relative magnetic permeability of 70,000 or more at 20 kHz even with a core having an inner diameter of less than 10 mm.

【0009】もう一つの本発明は、Cu、Auから選ばれる
少なくとも一種の元素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWから
なる群から選ばれた少なくとも1種の元素、Si,Bからな
る群から選ばれた少なくとも1種の元素とFeを必須元素
として含む組成のアモルファス合金からなる磁心を、結
晶化温度以上に昇温し0分以上24時間以下保持する微結
晶化のための熱処理工程の後に、60゜C以上300゜C未満の
温度に5分以上の時間保持する第2の熱処理を行なうこと
を特徴とするナノ結晶合金磁心の製造方法である。この
第2の熱処理の保持温度が60℃未満では十分な透磁率改
善の効果が得られず、300℃以上では酸化や誘導磁気異
方性が生ずるため透磁率がむしろ低下する。特に望まし
い第2の熱処理温度範囲は80゜Cから200゜Cである。第2の
熱処理の保持時間を5分以上に限定した理由は5分未満で
は本発明の効果が顕著でないためである。
According to another aspect of the present invention, at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, Si. , A magnetic core made of an amorphous alloy having a composition containing at least one element selected from the group consisting of B and Fe as an essential element, a microcrystallized material that is heated to a crystallization temperature or higher and held for 0 minutes or more and 24 hours or less. The method for producing a nanocrystalline alloy magnetic core is characterized in that after the heat treatment step for performing the second heat treatment, a second heat treatment is carried out at a temperature of 60 ° C. or higher and lower than 300 ° C. for 5 minutes or longer. If the holding temperature of the second heat treatment is less than 60 ° C, the effect of sufficiently improving the magnetic permeability cannot be obtained, and if it is 300 ° C or higher, the magnetic permeability is rather lowered due to oxidation or induced magnetic anisotropy. A particularly desirable second heat treatment temperature range is 80 ° C to 200 ° C. The reason why the holding time of the second heat treatment is limited to 5 minutes or more is that the effect of the present invention is not remarkable when the holding time is less than 5 minutes.

【0010】具体的な熱処理の方法としては、結晶化温
度より低い温度から結晶化温度以上に昇温し0分以上24
時間以下一定温度に保持後室温まで冷却する微結晶化の
ための熱処理工程の後に、60゜C以上300゜C未満の温度に
室温から昇温し5分以上保持する第2の熱処理を行なう方
法や、結晶化温度より低い温度から結晶化温度以上に昇
温して0分以上24時間以下一定温度に保持後冷却し60゜C
以上300゜C未満の温度に5分以上保持後室温まで冷却する
方法がある。結晶化のための熱処理は、多段で行った
り、複数回行っても、本発明の効果を得ることができ
る。
As a specific heat treatment method, the temperature is raised from a temperature lower than the crystallization temperature to a temperature higher than the crystallization temperature, and 0 minutes or more 24
A method of performing a second heat treatment in which the temperature is maintained at a temperature of 60 ° C or higher and lower than 300 ° C for 5 minutes or more after the heat treatment step for microcrystallization in which the temperature is kept constant for a time or less and then cooled to room temperature Alternatively, the temperature is raised from the temperature lower than the crystallization temperature to the temperature above the crystallization temperature and maintained at a constant temperature for 0 minutes to 24 hours and then cooled to 60 ° C.
There is a method in which the temperature is kept above 300 ° C for 5 minutes or more and then cooled to room temperature. The effect of the present invention can be obtained even if the heat treatment for crystallization is performed in multiple stages or a plurality of times.

【0011】熱処理工程の少なくとも一部の期間に磁場
を印加することによりB−Hループの形状を変えること
が可能である。特に、磁場を印加する方向が磁心の磁路
と垂直方向である場合には角形比が低く透磁率の高周波
特性を改善した磁心を実現可能となる。この場合は完全
な消磁状態になくとも透磁率の変化が小さく特性を安定
化することができる。磁路と垂直方向とは巻磁心の場合
は使用している薄帯の幅方向に相当する。
It is possible to change the shape of the BH loop by applying a magnetic field during at least part of the heat treatment process. In particular, when the direction in which the magnetic field is applied is perpendicular to the magnetic path of the magnetic core, it is possible to realize a magnetic core having a low squareness ratio and improved high frequency characteristics of permeability. In this case, the change in magnetic permeability is small and the characteristics can be stabilized even if the magnetic field is not completely demagnetized. In the case of a wound magnetic core, the direction perpendicular to the magnetic path corresponds to the width direction of the ribbon used.

【0012】本願発明に係わる合金は、 一般式:(Fe1-aMa100-x-y-z-bAxM'yM''zXbSicBd(原
子%) 式中MはCo,Niから選ばれた少なくとも1種の元素を、Aは
Cu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,
Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元
素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,Ca,Sr,Y,
希土類元素,N,OおよびSから選ばれた少なくとも1種の元
素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種
の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.
1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c
≦17、3≦d≦10を満足する数で表される組成の合金が挙
げられる。
[0012] according to the present invention the alloy has the general formula: (Fe 1-a M a ) 100-xyzb A x M 'y M''z X b Si c B d ( atomic%) wherein M is Co, Ni At least one element selected from
At least one element selected from Cu, Au, M'is Ti, V, Zr,
Nb, Mo, Hf, at least one element selected from Ta and W, M '' is Cr, Mn, Sn, Zn, Ag, In, white metal element, Mg, Ca, Sr, Y,
Rare earth element, at least one element selected from N, O and S, X represents at least one element selected from C, Ge, Ga, Al and P, a, x, y, z, b , c and d are 0 ≦ a ≦ 0.
1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦ c
An alloy having a composition represented by numbers satisfying ≦ 17 and 3 ≦ d ≦ 10 can be mentioned.

【0013】本願発明に係わる合金においてCu,Au
から選ばれた少なくとも1種の元素の含有量xは0.1〜3
原子%の範囲である。0.1原子%より少ないと透磁率改善
の効果がなく、一方3原子%より多いと飽和磁束密度、透
磁率の低下をもたらし好ましくない。より好ましい範囲
は0.5〜2原子%であり、この範囲では特に高い透磁率が
得られる。
In the alloy according to the present invention, Cu, Au
The content x of at least one element selected from is 0.1 to 3
It is in the atomic% range. If it is less than 0.1 atom%, there is no effect of improving the magnetic permeability, whereas if it is more than 3 atom%, the saturation magnetic flux density and the magnetic permeability are lowered, which is not preferable. A more preferable range is 0.5 to 2 atomic%, and a particularly high magnetic permeability is obtained in this range.

【0014】また、M'はTi,V,Zr,Nb,Mo,Hf,Ta及びWから
なる群から選ばれた少なくとも1種の元素でありCu,Au
等との複合添加により結晶粒を微細化し、軟磁気特性を
改善する効果を有する。M'の含有量yは1〜10原子%であ
り、1原子%未満だと結晶粒微細化の効果が不十分であ
り、10原子%を越えると飽和磁束密度の著しい低下を招
く。好ましいM'の含有量yは2〜8原子%である。Ti,Zr,N
b,Mo,Hf,Ta及びW等が存在しない場合は結晶粒はあまり
微細化されず軟磁気特性は悪い。Nb,Mo,Taは特に効果が
大きいが、これらの元素の中でNbを添加した場合特に結
晶粒が細かくなりやすく、軟磁気特性も優れたものが得
られる。Cu,AuとTi,Zr,Nb,Mo,Hf,Ta及びW等との複合添
加により透磁率が上昇する理由は明らかではないが次の
ように考えられる。
M'is at least one element selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta and W, and is Cu, Au.
And the like have the effect of making crystal grains finer and improving soft magnetic properties. The content y of M ′ is 1 to 10 atom%, and if it is less than 1 atom%, the effect of grain refinement is insufficient, and if it exceeds 10 atom%, the saturation magnetic flux density is remarkably reduced. The preferable content y of M'is 2 to 8 atom%. Ti, Zr, N
When b, Mo, Hf, Ta and W are not present, the crystal grains are not refined so much and the soft magnetic properties are poor. Nb, Mo, and Ta are particularly effective, but when Nb is added among these elements, the crystal grains tend to become finer and soft magnetic characteristics are excellent. The reason why the permeability increases due to the combined addition of Cu, Au and Ti, Zr, Nb, Mo, Hf, Ta and W is not clear, but it is considered as follows.

【0015】Cu,AuとFeの相互作用パラメータは正であ
り、分離する傾向があるため、非晶質状態の合金(膜)
を加熱するとFe原子同志またはCu,Au原子同志が寄り集
まり、クラスターを形成するため組成ゆらぎが生ずる。
このため部分的に結晶化しやすい領域が多数でき、そこ
を核として多数の微細結晶粒が形成される。この結晶粒
はFeを主成分とするものであり、FeとCu、Auの固溶度は
ほとんどないため、結晶粒周辺のCu、Au濃度が高くな
る。また、この結晶粒の周辺はSi等が多くTi,Zr,Nb,Mo,
Hf,Ta及びW等が存在する場合結晶化しにくいため結晶粒
は成長しにくいと考えられる。このため結晶粒は微細化
されると考えられる。このように結晶粒が微細化される
ことにより、結晶磁気異方性がみかけ上相殺されるこ
と、結晶相がbcc構造のFe固溶体が主体であり磁歪が小
さく、内部応力−歪による磁気異方性が小さくなること
等により、軟磁気特性が改善され、高透磁率が得られる
と考えられる。
Since the interaction parameters of Cu, Au and Fe are positive and tend to separate, the alloy (film) in an amorphous state
When Fe is heated, Fe atoms or Cu, Au atoms gather together to form clusters, resulting in composition fluctuations.
For this reason, a large number of regions that are likely to be partially crystallized are formed, and a large number of fine crystal grains are formed with these regions as nuclei. This crystal grain contains Fe as a main component, and since there is almost no solid solubility of Fe, Cu, and Au, the Cu and Au concentrations around the crystal grain become high. In addition, there are many Si etc. around this crystal grain, and Ti, Zr, Nb, Mo,
When Hf, Ta, W, etc. are present, it is difficult to crystallize, and it is considered that crystal grains are difficult to grow. Therefore, it is considered that the crystal grains are made finer. As the crystal grains are made finer in this way, the magnetocrystalline anisotropy apparently cancels each other out, and the crystal phase is mainly Fe solid solution of bcc structure and the magnetostriction is small. It is considered that the soft magnetic properties are improved and the high magnetic permeability is obtained due to the reduced magnetic properties.

【0016】M"で表される添加元素であるCr,Mn,Sn,Zn,
Ag,In,白金属元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびS
からなる群から選ばれた少なくとも1種の元素は耐食性
を改善したり、磁気特性を改善する、又は磁歪を調整す
る等の効果を有するものであるが、その含有量はせいぜ
い10原子%以下である。
Cr, Mn, Sn, Zn, which are additional elements represented by M ",
Ag, In, white metal element, Mg, Ca, Sr, Y, rare earth element, N, O and S
At least one element selected from the group consisting of has the effect of improving corrosion resistance, improving magnetic properties, adjusting magnetostriction, etc., but its content is at most 10 atomic% or less. is there.

【0017】本発明に係わる合金において、Xで表され
るC,Ge,Ga,AlおよびPからなる群から選ばれた少なくと
も1種の元素を10原子%以下含み得る。これらの元素は非
晶質化に有効な元素であり、Si,Bと共に添加することに
より合金の非晶質化を助けると共に、磁歪やキュリー温
度調整に効果がある。
The alloy according to the present invention may contain 10 atomic% or less of at least one element selected from the group consisting of C, Ge, Ga, Al and P represented by X. These elements are effective for amorphization, and when added together with Si and B, they help amorphization of the alloy and are effective in adjusting magnetostriction and Curie temperature.

【0018】Si及びBは、合金の微細化に特に有用な元
素である。本発明のFe基軟磁性合金膜は好ましくは、一
旦Si,Bの添加効果により非晶質合金膜とした後で熱処理
により微細結晶粒を形成させることにより得られる。Si
及びBの含有量c及びdの限定理由は、Siの含有量cが17原
子%より多いと飽和磁束密度の著しい減少および軟磁気
特性の劣化がおこるためである。また、Bの含有量dが3
原子%より少ないと結晶粒微細化の効果がなく、10原子%
より多いと飽和磁束密度の減少と軟磁気特性の劣化が起
こるためである。
Si and B are elements particularly useful for refining the alloy. The Fe-based soft magnetic alloy film of the present invention is preferably obtained by once forming an amorphous alloy film by the effect of adding Si and B and then forming fine crystal grains by heat treatment. Si
The reason for limiting the contents c and d of B and B is that when the content c of Si is more than 17 atomic%, the saturation magnetic flux density is remarkably reduced and the soft magnetic characteristics are deteriorated. Further, the content d of B is 3
If it is less than atomic%, there is no effect of grain refinement, and it is 10 atomic%.
This is because if the amount is larger, the saturation magnetic flux density decreases and the soft magnetic characteristics deteriorate.

【0019】残部は不純物を除いて実質的にFeが主体
であるが、Feの一部は成分M(Co及び/又はNi)により置
換されていても良い。Mの含有量aは0≦a≦0.1である。a
が0.1を越えると、透磁率が低下する場合があるためで
ある。Co置換はまた飽和磁束密度を上昇させる効果があ
り、高保磁力記録媒体に使用する平滑チョークコイル、
低周波用トランス材としてより有利である。
The balance is essentially Fe mainly except impurities, but a part of Fe may be replaced by the component M (Co and / or Ni). The content a of M is 0 ≦ a ≦ 0.1. a
This is because if the value exceeds 0.1, the magnetic permeability may decrease. Co substitution also has the effect of increasing the saturation magnetic flux density, and a smooth choke coil used for high coercive force recording media,
It is more advantageous as a low frequency transformer material.

【0020】本発明に係わる合金薄帯は通常次のように
製造される。まず、単ロ−ル法や双ロ−ル法等の液体急
冷法により板厚3〜100μm程度のアモルファス合金薄帯
を大気中、アルゴンやヘリウム等の不活性ガス雰囲気中
あるいはヘリウム等の減圧雰囲気中で作製する。必要に
応じて薄帯はスリット加工等を行なう。薄帯の厚さは20
μm以下がより望ましく、特に望ましいのは15μm以下で
あり、小径の磁心でより高い透磁率が実現可能である。
次に、この合金薄帯を巻回しトロイダル状にした後、ア
ルゴンガスや窒素ガス等の不活性ガス雰囲気中あるいは
真空中等で熱処理し、上記微細結晶粒からなる合金薄帯
からなる磁心を作製する。
The alloy ribbon according to the present invention is usually manufactured as follows. First, an amorphous alloy ribbon having a plate thickness of about 3 to 100 μm is formed in the atmosphere, an inert gas atmosphere such as argon or helium, or a decompressed atmosphere such as helium by a liquid quenching method such as a single roll method or a twin roll method. Made in. If necessary, the ribbon is slit. The thickness of the ribbon is 20
It is more preferable that the thickness be less than or equal to μm, and particularly preferable that the thickness be less than or equal to 15 μm, and a higher magnetic permeability can be realized with a small diameter magnetic core.
Next, the alloy ribbon is wound into a toroidal shape, and then heat-treated in an atmosphere of an inert gas such as argon gas or nitrogen gas or in a vacuum to produce a magnetic core made of the alloy ribbon made of the fine crystal grains. .

【0021】この際、合金薄帯表面をSiO2やAl2O3等の
酸化物で被覆し層間絶縁を行うと、特に広幅材において
より好ましい結果が得られる。層間絶縁の方法として
は、電気泳動法によりMgO等の酸化物を付着させる方
法、金属アルコキシド溶液を表面につけこれを熱処理し
SiO2、Li2O、MgO等の酸化物の膜を形成させる方法、リ
ン酸塩やクロム酸塩処理を行い表面に酸化物の被覆を行
う方法、セラミックスの微粉末を流動させ、その中に薄
帯を通過させて付着する方法等がある。巻磁心作製の際
の張力は通常は50MPa以下が高透磁率を実現するうえ
で望ましい。これにより、本発明の製造方法の特性改善
の効果がより顕著となる。また、磁心は必要に応じてコ
アケ−スに入れたり、周囲をコ−トして使用される。エ
ポキシ系、ポリイミド系、アクリル系、シリコン系の樹
脂で含浸する場合もある。
At this time, if the surface of the alloy ribbon is covered with an oxide such as SiO 2 or Al 2 O 3 to perform interlayer insulation, more preferable results can be obtained especially in a wide material. As the method of interlayer insulation, a method of depositing an oxide such as MgO by an electrophoretic method, or applying a metal alkoxide solution on the surface and subjecting it to heat treatment
SiO 2 , Li 2 O, a method of forming a film of oxide such as MgO, a method of performing phosphate or chromate treatment to coat the surface with an oxide, and flowing fine ceramic powder into There is a method of passing the ribbon and attaching it. A tension of 50 MPa or less at the time of manufacturing the wound magnetic core is usually desirable for achieving high magnetic permeability. As a result, the effect of improving the characteristics of the manufacturing method of the present invention becomes more remarkable. Further, the magnetic core is used by putting it in a core case or coating the periphery thereof as needed. It may be impregnated with an epoxy resin, a polyimide resin, an acrylic resin, or a silicon resin.

【0022】[0022]

【作用】小径の磁心の場合は薄帯同士に力が加わり磁気
特性が劣下しやすく、巻磁心を作製する際の張力を調整
しても小径の磁心の場合には完全に影響をなくすことは
困難である。本発明は、結晶化温度以上に昇温する熱処
理の後に60゜Cから300゜Cの熱処理を行うことにより、小
径の磁心において薄帯に働く応力の影響を低減し、非常
に高い透磁率を実現できるという効果がある。
[Operation] In the case of a small-diameter magnetic core, a force is applied between the ribbons, and the magnetic characteristics are likely to deteriorate. Even if the tension is adjusted when manufacturing a wound magnetic core, the effect is completely eliminated in the case of a small-diameter magnetic core. It is difficult. The present invention reduces the effect of stress acting on the ribbon in a small-diameter magnetic core by performing a heat treatment of 60 ° C to 300 ° C after the heat treatment of raising the temperature above the crystallization temperature, resulting in a very high magnetic permeability. There is an effect that it can be realized.

【0023】[0023]

【実施例】以下本発明を実施例にしたがって説明する
が、本発明はこれらに限定されるものではない。 (実施例1)原子%でCu 1%, Nb 3.1%, Si 15.6%, B 6.6
%残部実質的にFeからなる合金溶湯を単ロ−ル法により
急冷し、幅25mm厚さ18μmのアモルファス合金薄帯を得
た。次にこの薄帯を幅3mmにスリット加工した。このス
リット加工したアモルファス合金薄帯を外径7.5mm、内
径4.5mmに巻回し、トロイダル磁心を作製した。この合
金の結晶化温度Txを測定したところ508゜Cであった。作
製した磁心をアルゴン雰囲気、450゜Cに保った熱処理炉
に挿入し、図1(a)(b)に示す熱処理パタ−ンで熱処理を
行いナノ結晶合金磁心を作製した。比較のために(c)に
示す従来の熱処理パタ−ンでも熱処理を行った。結晶化
温度以上での熱処理時には磁路と垂直方向にH=360K
A・m-1の磁場を印加した。得られた磁気特性を表1に
示す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) Cu 1%, Nb 3.1%, Si 15.6%, B 6.6 in atomic%
The remaining alloy melt consisting essentially of Fe was quenched by the single roll method to obtain an amorphous alloy ribbon with a width of 25 mm and a thickness of 18 μm. Next, this thin strip was slit into a width of 3 mm. This slit-processed amorphous alloy ribbon was wound around an outer diameter of 7.5 mm and an inner diameter of 4.5 mm to produce a toroidal magnetic core. The crystallization temperature T x of this alloy was measured and found to be 508 ° C. The prepared magnetic core was inserted into a heat treatment furnace kept at 450 ° C. in an argon atmosphere, and heat-treated in a heat treatment pattern shown in FIGS. 1 (a) and 1 (b) to produce a nanocrystalline alloy magnetic core. For comparison, the conventional heat treatment pattern shown in (c) was also used. H = 360K in the direction perpendicular to the magnetic path during heat treatment above the crystallization temperature
A magnetic field of A · m −1 was applied. Table 1 shows the obtained magnetic characteristics.

【0024】[0024]

【表1】 [Table 1]

【0025】表から分るように本発明熱処理を行った磁
心では20kHzにおける比初透磁率μ20kが50000以上の
特性が得られる。一方、従来の熱処理方法ではこのよう
な小径の磁心では50000未満のμ20kの値しか得られな
い。
As can be seen from the table, the magnetic core subjected to the heat treatment of the present invention has characteristics that the specific initial permeability μ 20k at 20 kHz is 50,000 or more. On the other hand, the conventional heat treatment method can obtain only a value of μ 20k of less than 50,000 with such a small-diameter magnetic core.

【0026】(実施例2)原子%でCu 1%, Nb 3%, Si 1
4.8%, B 7.5%残部実質的にFeからなる合金溶湯を減圧雰
囲気のヘリウムガス中で単ロ−ル法により急冷し、幅1.
3mmで厚さ8μmのアモルファス合金薄帯を作製した。次
にこのアモルファス合金薄帯表面をSiO2により被覆し
た。このアモルファス合金薄帯を外径8mm、内径4mmに巻
回し、トロイダル磁心を作製した。この合金の結晶化温
度Txを測定したところ520゜Cであった。次にこの合金を
図2に示す熱処理パタ−ンで熱処理し磁気特性を測定し
た。結晶化温度以上での熱処理時には磁路と垂直方向に
H=360KA・m-1の磁場を印加した。得られた結果を
表2に示す。第2の熱処理温度が60℃〜300℃において5
0000以上のμ20kが得られることが分かる。
(Example 2) Cu 1%, Nb 3%, Si 1 in atomic%
4.8%, B 7.5% balance The alloy melt consisting essentially of Fe is rapidly cooled by the single roll method in helium gas under a reduced pressure, and the width is 1.
An amorphous alloy ribbon having a thickness of 3 mm and a thickness of 8 μm was produced. Next, the surface of this amorphous alloy ribbon was covered with SiO 2 . This amorphous alloy ribbon was wound around an outer diameter of 8 mm and an inner diameter of 4 mm to produce a toroidal magnetic core. The crystallization temperature T x of this alloy was measured and found to be 520 ° C. Next, this alloy was heat-treated by the heat treatment pattern shown in FIG. 2 to measure the magnetic characteristics. During the heat treatment at the crystallization temperature or higher, a magnetic field of H = 360 KA · m −1 was applied in the direction perpendicular to the magnetic path. Table 2 shows the obtained results. 5 when the second heat treatment temperature is 60 ℃ -300 ℃
It can be seen that μ 20k of 0000 or more is obtained.

【0027】[0027]

【表2】 [Table 2]

【0028】(実施例3)表3に示す組成の合金溶湯を
単ロ−ル法により急冷し、幅50mm厚さ15μmのアモルフ
ァス合金薄帯を得た。次にこの薄帯を幅2mmにスリット
した後、この合金薄帯を外径9mm内径5mmに巻回し、トロ
イダル磁心を作製した。次に図3に示す熱処理パタ−ン
で熱処理を行った。比較のため第2の熱処理を行わない
従来の熱処理パタ−ンで熱処理した試料も作製した。結
晶化温度以上での熱処理時には磁路と垂直方向にH=36
0KA・m-1の磁場を印加した。磁気特性を測定した結
果を表3に示す。
Example 3 A molten alloy having the composition shown in Table 3 was rapidly cooled by a single roll method to obtain an amorphous alloy ribbon having a width of 50 mm and a thickness of 15 μm. Next, after slitting this ribbon to a width of 2 mm, this alloy ribbon was wound around an outer diameter of 9 mm and an inner diameter of 5 mm to produce a toroidal magnetic core. Next, heat treatment was performed using the heat treatment pattern shown in FIG. For comparison, a sample heat-treated by a conventional heat-treatment pattern without the second heat treatment was also prepared. During heat treatment above the crystallization temperature, H = 36 in the direction perpendicular to the magnetic path.
A magnetic field of 0 KA · m −1 was applied. The results of measuring the magnetic properties are shown in Table 3.

【0029】[0029]

【表3】 [Table 3]

【0030】本発明磁心は小径でありながら、高い透磁
率を示している。これに対して、従来の熱処理パタ−ン
では小径の磁心の透磁率は本発明磁心より低い。
The magnetic core of the present invention has a small diameter but a high magnetic permeability. On the other hand, in the conventional heat treatment pattern, the magnetic permeability of the small diameter magnetic core is lower than that of the magnetic core of the present invention.

【0031】(実施例4)原子%でCu 1%, Nb 2.5%, Cr
0.2%, Si 15.8%, B 7.2%, Sn 0.07%残部実質的にFeから
なる合金溶湯を単ロ−ル法により急冷し、幅1.5mm厚さ1
2μmのアモルファス合金薄帯を得た。この合金の結晶化
温度は495゜Cであった。このアモルファス合金薄帯を内
径、外径を変え巻回し、表4に示す形状のトロイダル磁
心を作製した。次に図4(a)に示す熱処理パタ−ンで
熱処理を行った。表4に20kHzにおける比透磁率を示
す。比較のため図4(b)に示す従来の熱処理を行った
場合の特性も示す。結晶化温度以上での熱処理時には磁
路と垂直方向にH=360KA・m-1の磁場を印加した。
(Example 4) Cu 1%, Nb 2.5%, Cr in atomic%
0.2%, Si 15.8%, B 7.2%, Sn 0.07% Remaining alloy melt consisting essentially of Fe was quenched by the single roll method, and width 1.5 mm thickness 1
A 2 μm amorphous alloy ribbon was obtained. The crystallization temperature of this alloy was 495 ° C. The amorphous alloy ribbon was wound by changing the inner diameter and the outer diameter, to produce a toroidal magnetic core having the shape shown in Table 4. Next, heat treatment was performed using the heat treatment pattern shown in FIG. Table 4 shows the relative magnetic permeability at 20 kHz. For comparison, the characteristics when the conventional heat treatment shown in FIG. 4B is also shown. During the heat treatment at the crystallization temperature or higher, a magnetic field of H = 360 KA · m −1 was applied in the direction perpendicular to the magnetic path.

【0032】[0032]

【表4】 [Table 4]

【0033】本発明の熱処理を行った場合は10mm以下の
内径の場合でも50000以上の高いμ20kが実現されるが、
従来の熱処理を行った場合は特に10mm以下の内径の場合
の透磁率の低下が大きい。以上のように本発明の熱処理
方法を適用することにより小径の磁心でも高い透磁率が
実現可能である。
When the heat treatment of the present invention is performed, even if the inner diameter is 10 mm or less, a high μ 20k of 50,000 or more can be realized.
When the conventional heat treatment is performed, the decrease in magnetic permeability is large especially when the inner diameter is 10 mm or less. As described above, by applying the heat treatment method of the present invention, high magnetic permeability can be realized even with a small-diameter magnetic core.

【0034】[0034]

【発明の効果】本発明によれば、著しく高い透磁率を示
すナノ結晶合金磁心およびその製造方法を提供すること
ができるためその効果は著しいものがある。
According to the present invention, it is possible to provide a nanocrystalline alloy magnetic core exhibiting a remarkably high magnetic permeability and a method for producing the same, and the effect is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる熱処理パタ−ンと従来の熱処理
パタ−ンを示した図である。
FIG. 1 is a diagram showing a heat treatment pattern according to the present invention and a conventional heat treatment pattern.

【図2】本発明に係わる熱処理パタ−ンを示した図であ
る。
FIG. 2 is a view showing a heat treatment pattern according to the present invention.

【図3】本発明に係わる熱処理パタ−ンを示した図であ
る。
FIG. 3 is a view showing a heat treatment pattern according to the present invention.

【図4】本発明に係わる熱処理パタ−ンと従来の熱処理
パタ−ンを示した図である。
FIG. 4 is a diagram showing a heat treatment pattern according to the present invention and a conventional heat treatment pattern.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 Cu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含む組成のナ
ノ結晶合金薄帯からなり、内径が10mm未満、20kHzにお
ける比透磁率が50000以上であることを特徴とするナノ
結晶合金磁心。
1. A group consisting of at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, and Si and B. Consisting of a nanocrystalline alloy ribbon having a composition containing at least one element selected from Fe and Fe as an essential element, an inner diameter of less than 10 mm, and a relative magnetic permeability at 20 kHz of 50,000 or more. .
【請求項2】 角形比が30%以下であることを特徴とす
る請求項1に記載のナノ結晶合金磁心。
2. The nanocrystalline alloy magnetic core according to claim 1, wherein the squareness ratio is 30% or less.
【請求項3】 20kHzにおける比透磁率が70000以上であ
ることを特徴とする請求項1又は請求項2に記載のナノ
結晶合金磁心。
3. The nanocrystalline alloy magnetic core according to claim 1, wherein the relative magnetic permeability at 20 kHz is 70,000 or more.
【請求項4】一般式:(Fe1-aMa100-x-y-z-bAxM'yM''
zXbSicBd(原子%) 式中MはCo,Niから選ばれた少なくとも1種の元素を、Aは
Cu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,
Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元
素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,Ca,Sr,Y,
希土類元素,N,OおよびSから選ばれた少なくとも1種の元
素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種
の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.
1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c
≦17、3≦d≦10を満足する数で表される組成のナノ結晶
合金薄帯からなることを特徴とする請求項1乃至請求項
3のいずれかに記載のナノ結晶合金磁心。
Wherein the general formula: (Fe 1-a M a ) 100-xyzb A x M 'y M''
z X b Si c B d (atomic%) In the formula, M is at least one element selected from Co and Ni, and A is
At least one element selected from Cu, Au, M'is Ti, V, Zr,
Nb, Mo, Hf, at least one element selected from Ta and W, M '' is Cr, Mn, Sn, Zn, Ag, In, white metal element, Mg, Ca, Sr, Y,
Rare earth element, at least one element selected from N, O and S, X represents at least one element selected from C, Ge, Ga, Al and P, a, x, y, z, b , c and d are 0 ≦ a ≦ 0.
1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦ c
The nanocrystalline alloy magnetic core according to any one of claims 1 to 3, comprising a nanocrystalline alloy ribbon having a composition represented by a number satisfying ≤17 and 3≤d≤10.
【請求項5】 Cu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含む組成のア
モルファス合金からなる磁心を、結晶化温度以上に昇温
し0分以上24時間以下保持する微結晶化のための熱処理
工程の後に、60゜C以上300゜C未満の温度に5分以上保持す
る第2の熱処理を行なうことを特徴とするナノ結晶合金
磁心の製造方法。
5. A group consisting of at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, and Si and B. A magnetic core made of an amorphous alloy having a composition containing at least one element selected from Fe and Fe as an essential element, a heat treatment step for microcrystallization for raising the temperature to a crystallization temperature or higher and holding it for 0 minute to 24 hours. A method for producing a nanocrystalline alloy magnetic core, which is characterized in that after that, a second heat treatment is carried out at a temperature of 60 ° C. or higher and lower than 300 ° C. for 5 minutes or longer.
【請求項6】 Cu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含む組成のア
モルファス合金からなる磁心を、結晶化温度より低い温
度から結晶化温度以上に昇温し0分以上24時間以下一定
温度に保持後室温まで冷却する微結晶化のための熱処理
工程の後に、60゜C以上300゜C未満の温度に室温から昇温
し5分以上保持する第2の熱処理を行なうことを特徴とす
る請求項5に記載のナノ結晶合金磁心の製造方法。
6. A group consisting of at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, and Si and B. The core made of an amorphous alloy with a composition containing at least one element selected from Fe and Fe as an essential element is heated from a temperature lower than the crystallization temperature to the crystallization temperature or higher and maintained at a constant temperature for 0 minutes or more and 24 hours or less. After the heat treatment step for microcrystallization for further cooling to room temperature, a second heat treatment is performed in which the temperature is raised from room temperature to a temperature of 60 ° C or higher and lower than 300 ° C and held for 5 minutes or longer. 5. The method for producing the nanocrystalline alloy magnetic core according to 5.
【請求項7】 Cu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含む組成のア
モルファス合金からなる磁心を、結晶化温度より低い温
度から結晶化温度以上に昇温して0分以上24時間以下一
定温度に保持後冷却し60゜C以上300゜C未満の温度に5分以
上保持後室温まで冷却することを特徴とする請求項5に
記載のナノ結晶合金磁心の製造方法。
7. A group consisting of at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, and Si and B. A magnetic core made of an amorphous alloy having a composition containing at least one element selected from Fe and Fe as an essential element, and the temperature is raised from a temperature lower than the crystallization temperature to the crystallization temperature or more to a constant temperature of 0 minutes or more and 24 hours or less. The method for producing a nanocrystalline alloy magnetic core according to claim 5, characterized in that the nanocrystalline alloy magnetic core is cooled after being held, and after being held at a temperature of 60 ° C or higher and lower than 300 ° C for 5 minutes or more, then cooled to room temperature.
【請求項8】 熱処理工程の少なくとも一部の期間に磁
場を印加することを特徴とする請求項5乃至請求項7の
いずれかに記載のナノ結晶合金磁心の製造方法。
8. The method for producing a nanocrystalline alloy magnetic core according to claim 5, wherein a magnetic field is applied during at least a part of the heat treatment step.
【請求項9】 磁場を印加する方向が磁心の磁路と垂直
方向であることを特徴とする請求項8に記載のナノ結晶
合金磁心の製造方法。
9. The method for producing a nanocrystalline alloy magnetic core according to claim 8, wherein the direction in which the magnetic field is applied is perpendicular to the magnetic path of the magnetic core.
【請求項10】一般式:(Fe1-aMa100-x-y-z-bAxM'
yM''zXbSicBd(原子%) 式中MはCo,Niから選ばれた少なくとも1種の元素を、Aは
Cu,Auから選ばれた少なくとも1種の元素、M'はTi,V,Zr,
Nb,Mo,Hf,TaおよびWから選ばれた少なくとも1種の元
素、M''はCr,Mn,Sn,Zn,Ag,In,白金属元素,Mg,Ca,Sr,Y,
希土類元素,N,OおよびSから選ばれた少なくとも1種の元
素、XはC,Ge,Ga,AlおよびPから選ばれた少なくとも1種
の元素を示し、a,x,y,z,b,cおよびdはそれぞれ0≦a≦0.
1、0.1≦x≦3、1≦y≦10、0≦z≦10、0≦b≦10、11≦c
≦17、3≦d≦10を満足する数で表される組成のアモルフ
ァス合金からなることを特徴とする請求項5乃至請求項
9のいずれかに記載のナノ結晶合金磁心の製造方法。
10. A general formula: (Fe 1-a M a ) 100-xyzb A x M '
y M '' z X b Si c B d (atomic%) In the formula, M is at least one element selected from Co and Ni, and A is
At least one element selected from Cu, Au, M'is Ti, V, Zr,
Nb, Mo, Hf, at least one element selected from Ta and W, M '' is Cr, Mn, Sn, Zn, Ag, In, white metal element, Mg, Ca, Sr, Y,
Rare earth element, at least one element selected from N, O and S, X represents at least one element selected from C, Ge, Ga, Al and P, a, x, y, z, b , c and d are 0 ≦ a ≦ 0.
1, 0.1 ≦ x ≦ 3, 1 ≦ y ≦ 10, 0 ≦ z ≦ 10, 0 ≦ b ≦ 10, 11 ≦ c
The method for producing a nanocrystalline alloy magnetic core according to any one of claims 5 to 9, comprising an amorphous alloy having a composition represented by a number satisfying ≤17 and 3≤d≤10.
JP7165077A 1995-06-30 1995-06-30 Nano crystal alloy magnetic core and its manufacture Pending JPH0917623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7165077A JPH0917623A (en) 1995-06-30 1995-06-30 Nano crystal alloy magnetic core and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7165077A JPH0917623A (en) 1995-06-30 1995-06-30 Nano crystal alloy magnetic core and its manufacture

Publications (1)

Publication Number Publication Date
JPH0917623A true JPH0917623A (en) 1997-01-17

Family

ID=15805439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7165077A Pending JPH0917623A (en) 1995-06-30 1995-06-30 Nano crystal alloy magnetic core and its manufacture

Country Status (1)

Country Link
JP (1) JPH0917623A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103404A (en) * 2005-09-30 2007-04-19 Hitachi Metals Ltd Core for common mode choke coil and its manufacturing method
JP2007221145A (en) * 2006-02-16 2007-08-30 Samsung Electronics Co Ltd Micro inductor and manufacturing method thereof
WO2017022594A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Soft magnetic material and method for producing same
JPWO2016002945A1 (en) * 2014-07-03 2017-06-01 国立大学法人東北大学 Magnetic core manufacturing method
EP3157021A4 (en) * 2014-06-10 2018-05-23 Hitachi Metals, Ltd. Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE
CN110788328A (en) * 2019-11-08 2020-02-14 上海置信电气非晶有限公司 Heat treatment method for preparing amorphous magnetic powder core by utilizing recycled amorphous material
US20200224286A1 (en) * 2019-01-10 2020-07-16 Toyota Jidosha Kabushiki Kaisha Method for producing alloy ribbon
WO2020162480A1 (en) * 2019-02-05 2020-08-13 日立金属株式会社 Wound magnetic core, alloy core, and method for manufacturing wound magnetic core

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103404A (en) * 2005-09-30 2007-04-19 Hitachi Metals Ltd Core for common mode choke coil and its manufacturing method
JP4688029B2 (en) * 2005-09-30 2011-05-25 日立金属株式会社 Core for common mode choke coil and manufacturing method thereof
JP2007221145A (en) * 2006-02-16 2007-08-30 Samsung Electronics Co Ltd Micro inductor and manufacturing method thereof
EP3157021A4 (en) * 2014-06-10 2018-05-23 Hitachi Metals, Ltd. Fe-BASED NANOCRYSTALLINE ALLOY CORE AND METHOD FOR PRODUCING Fe-BASED NANOCRYSTALLINE ALLOY CORE
EP3693980A1 (en) * 2014-06-10 2020-08-12 Hitachi Metals, Ltd. Fe-based nanocrystalline alloy core
JPWO2016002945A1 (en) * 2014-07-03 2017-06-01 国立大学法人東北大学 Magnetic core manufacturing method
WO2017022594A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Soft magnetic material and method for producing same
US11851738B2 (en) 2015-07-31 2023-12-26 Murata Manufacturing Co., Ltd. Soft magnetic material and method for manufacturing the same
US20200224286A1 (en) * 2019-01-10 2020-07-16 Toyota Jidosha Kabushiki Kaisha Method for producing alloy ribbon
WO2020162480A1 (en) * 2019-02-05 2020-08-13 日立金属株式会社 Wound magnetic core, alloy core, and method for manufacturing wound magnetic core
JPWO2020162480A1 (en) * 2019-02-05 2021-12-02 日立金属株式会社 Manufacturing method of wound core, alloy core and wound core
US11749430B2 (en) 2019-02-05 2023-09-05 Proterial, Ltd. Wound magnetic core, alloy core, and method for manufacturing wound magnetic core
CN110788328A (en) * 2019-11-08 2020-02-14 上海置信电气非晶有限公司 Heat treatment method for preparing amorphous magnetic powder core by utilizing recycled amorphous material

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
KR102131220B1 (en) Soft magnetic alloy and magnetic device
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
EP0430085B1 (en) Magnetic alloy with ultrafine crystal grains and method of producing same
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
US5611871A (en) Method of producing nanocrystalline alloy having high permeability
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JPH044393B2 (en)
US5474624A (en) Method of manufacturing Fe-base soft magnetic alloy
EP1001437A1 (en) Fe-based soft magnetic alloy , magnetic core using the same, and method for making the same
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JP2848667B2 (en) Method for manufacturing ultra-thin soft magnetic alloy ribbon
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH08153614A (en) Magnetic core
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JPH0570901A (en) Fe base soft magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH03271346A (en) Soft magnetic alloy