JPS5957479A - Manufacturing method of MOS type semiconductor nonvolatile memory device - Google Patents

Manufacturing method of MOS type semiconductor nonvolatile memory device

Info

Publication number
JPS5957479A
JPS5957479A JP57170060A JP17006082A JPS5957479A JP S5957479 A JPS5957479 A JP S5957479A JP 57170060 A JP57170060 A JP 57170060A JP 17006082 A JP17006082 A JP 17006082A JP S5957479 A JPS5957479 A JP S5957479A
Authority
JP
Japan
Prior art keywords
film
oxide film
gate electrode
forming
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57170060A
Other languages
Japanese (ja)
Inventor
Tatsuro Okamoto
岡本 龍郎
Akira Nishimoto
西本 章
Moriyoshi Nakajima
盛義 中島
Masaharu Tokuda
徳田 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57170060A priority Critical patent/JPS5957479A/en
Publication of JPS5957479A publication Critical patent/JPS5957479A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/681Floating-gate IGFETs having only two programming levels

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent the concentration of electric field at the edge part of the crossing angle of a control gate electrode as well as to contrive improvement in memory holding characteristics of a logic signal by a method wherein the crossing angle of the bottom face and side face located on the side of the floating gate electrode of a control gate electrode is obtusely formed. CONSTITUTION:Silicon oxide films 2, 3 and 5 and polycrystalline silicon films 4 and 6 are formed on a P type silicon substrate 1. Then, a control gate electrode 6a and the second gate oxide film 5a are successively left below a phtoresist film 7 by performing an etching. At this time, the crossing angle of the bottom face and the side face located on the side of the second gate oxide film 5a on the control gate electrode 6a is to be obtusely formed. Then, a floating gate electrode 4a and the first gate oxide film 3a are successively left by performing an isotropic etching and, at the same time, the main surface of the P type silicon substrate 1 is partially exposed. At this stage, as the side etching performed on the side face of the control gate electrode 6a does not make progress as approaching the upper part of the side face by the help of the hang- down part of the photoresist film 7, the crossing angle theta of the bottom face and the side face on the side of the floating gate electrode 4a on the control gate electrode 6a is formed making obtuse angle.

Description

【発明の詳細な説明】 この発明は紫外線消去方式のMO6形半導体不揮発性メ
モリ装置〔以下1’−FAMO8J (Flaa、ti
ng gateavalanche 1njectio
n MOS)と呼ぶ〕の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultraviolet erasing MO6 type semiconductor nonvolatile memory device [hereinafter 1'-FAMO8J (Flaa, ti
ng gateavalanche 1njectio
n MOS)].

jii 1図(A)〜(田)は従来のFAMOSのメモ
リセルの製造方法の一例の主要段階の状態を示す断面図
である。
jii Figures 1 (A) to 1 (D) are cross-sectional views showing the main stages of an example of a conventional FAMOS memory cell manufacturing method.

まず、第、1図(70にボすように、p形シリコン基板
filのU:、1lfi部に素子形成部分を取り囲んで
分離する素子分91F用の酸化シリコン膜+21 k 
irJ択的に形成し、次いでp形シリコン基板fi+の
主面の酸化シリコン膜(2)Kよって分離された部分上
に比較的膜厚の)1.りい第1のゲート酸化)良形成用
の酸化シリコン膜(3)を形成する。次に、T81図C
B)に示すように、酸化シリコン+fi+2+ 、 (
3)の各表面上にわたって浮遊ゲート’l’i!極形成
用の多結晶シリコン膜(4)を成膜し、続いてこの多結
晶シリコン)IQ 14+の比抵抗を所望の値にするた
めのリンなどの不純物の注入または熱拡散を行う。次い
で、多結晶シリコン膜(4)の表面部を酸化して第2の
ゲート酸化膜形成用の酸化シリコン膜(5)を形成し、
この酸化シリコン膜(5)の表面上に制御ゲートシ11
極形成用の多結晶シリコン11か(6)を成膜し、続い
てこの多結晶シリコンIP=! (s)の比抵抗をIす
T望の値にするためのリンなどの不純物の注入または熱
拡散全行う。しかるのち、多結晶シリコン膜t131の
制御ゲートfit極となるべ残部分上にエツチングマス
ク用の7オトレジストJli +71 %−選択的に形
成する。次に、第1図(C)に示すように、レジスト膜
(7)全マスクにしたエツチング金「1己整合的に多結
晶シリコン膜L61 、 酸化シリコン膜(fit、多
結晶シリコン膜(4)および酸化シリコン膜(3)に施
してフォトレジスト膜(71の下に順次制御ゲート71
t I餉(6a) 、 +42のゲート酸化膜(5a、
) 、浮遊ゲート?1を極(4a)および第1のゲート
酸化膜(h) fK:残すとともにp形シリコンノ人板
【1)の主面の一部を露出させる。
First, as shown in FIG. 1 (70), a silicon oxide film +21k for the element portion 91F that surrounds and isolates the element formation portion is placed in the U:, 1lfi portion of the p-type silicon substrate fil.
irJ is selectively formed, and then a relatively thick film 1. First gate oxidation) A silicon oxide film (3) for good formation is formed. Next, T81 diagram C
As shown in B), silicon oxide+fi+2+, (
3) Floating gates 'l'i!' over each surface of the 'l'i! A polycrystalline silicon film (4) for forming a pole is formed, and then impurities such as phosphorus are implanted or thermally diffused in order to set the resistivity of the polycrystalline silicon (IQ 14+) to a desired value. Next, the surface portion of the polycrystalline silicon film (4) is oxidized to form a silicon oxide film (5) for forming a second gate oxide film,
A control gate 11 is placed on the surface of this silicon oxide film (5).
A film of polycrystalline silicon 11 or (6) for forming the pole is formed, and then this polycrystalline silicon IP=! Impurities such as phosphorus are implanted or thermally diffused to bring the specific resistance of (s) to the desired value. Thereafter, a 7-photoresist Jli +71%- for an etching mask is selectively formed on the remaining portion of the polycrystalline silicon film t131 which will become the control gate fit pole. Next, as shown in FIG. 1(C), the resist film (7) is entirely masked with etching gold (1) in a self-aligned manner to form a polycrystalline silicon film (L61), a silicon oxide film (fit), and a polycrystalline silicon film (4). Then, a photoresist film (71) is applied to the silicon oxide film (3) and a control gate 71 is sequentially formed under the photoresist film (71).
tI (6a), +42 gate oxide film (5a,
), floating gate? 1 is left as the pole (4a) and the first gate oxide film (h) fK: and a part of the main surface of the p-type silicon plate [1] is exposed.

次いで、第1図(1))に示すように、フォトレジスト
膜(71を除去し、しかるのち、p形シリコンノ、(板
11.1の露出主面部に、n形不純物を選択的にイオン
注入または熱拡散してn形のソース・ドレイン領域(8
a)、 (8b)を形成する。次に、第1図(K)に示
すように、気相成長法などによって、ソース・ドレイン
1lll 1m (”)、(εlb)、41のゲート酸
化膜(aa) +浮遊ゲート11シ極(4a) +第2
のゲートI俊化膜(反)および制御グー11℃極(6a
)の各表面上((わたって膜厚の薄い酸化シリコン膜1
9)を形成し、更に、気相成長法などに、しって、1′
1々化シリコン膜(0)および酸化シリコン膜(2〉の
各表面上にわたってリンを含んだ酸化シリコン膜(11
を形成する。しかるのち、酸化シリコン膜+IT1の表
面上にアルミニウム配線膜1ll) ffi形成し、最
後に、酸化シリコン膜l11)の表面」;にアルミニウ
ム配P4膜Hf 覆うようにパッシベーション膜(12
1f:形成すると、この従来例の方法になるハMOBの
メモリセルが得られる。
Next, as shown in FIG. 1 (1), the photoresist film (71) is removed, and then n-type impurities are selectively ionized onto the exposed main surface of the p-type silicon (plate 11.1). N-type source/drain regions (8
a), (8b) are formed. Next, as shown in FIG. 1(K), the source/drain 1llll 1m (''), (εlb), gate oxide film (aa) of 41 + floating gate 11 shield (4a ) + 2nd
Gate I agility film (anti) and control goo 11℃ pole (6a
) on each surface ((with a thin silicon oxide film 1
9), and further, using vapor phase growth method etc., 1'
A silicon oxide film (11) containing phosphorus is formed over each surface of the silicon oxide film (0) and the silicon oxide film (2)
form. After that, an aluminum wiring film (1ll) ffi is formed on the surface of the silicon oxide film + IT1, and finally, a passivation film (12
1f: When formed, a MOB memory cell is obtained using this conventional method.

次に、この従来例の方法になるFAMOFIのメモリセ
ル〔第11図(勅に図示〕の動作について説明する。
Next, the operation of the FAMOFI memory cell [shown in FIG. 11] according to this conventional method will be described.

例えば、n形のソース・ドレイン領域(8a)と制御ゲ
ート電極(68)とに同時に比較的高い電圧を印加して
、ソース・ドレイン領域(8a)の近傍のチャネル部分
にアバランシェ破11撓fc起し、ホットエレクトrJ
ン(熱い電子)(以下「電子」と略称する)を発生させ
る。このとき発生したtI末子は、制御ゲート電極(6
a)に印加された高電圧によるトンネル現象によって、
浮遊ゲーh tIj極(4Q、)内に注入さハフ蓄村i
されろ。このように、汀、lfcゲート電極(4a) 
内に電子が注入され蓄積されることによって、論理信号
がtut’き込まれる。一般に、制4a(I f  l
・Yl;、極(6a)は他のメモリセルの制御ゲート電
極と共、ITI VC接続さノア、ていZ)ので、他の
メモリセルに論理信号を、lj与込む際VXは、同時に
制御ゲート1旬極(60)にも高?!、、:圧が印加さ
れる。従って、すでにI+)き込れて浮遊ゲート電極(
鈍)内に蓄石゛員NfしていZ)?It子が、制御ゲー
ト電極(6a)に印加される1l−1i電圧によって引
き抜かれろことがないようにするためにtよ、制御ゲー
ト電極(6a、) )1浮遊々“−ト電極(4a)との
間の制圧は十分【団いことが必妾で、ちる。
For example, by simultaneously applying a relatively high voltage to the n-type source/drain region (8a) and the control gate electrode (68), avalanche failure 11 occurs in the channel portion near the source/drain region (8a). Hot elect rJ
(hot electrons) (hereinafter abbreviated as "electrons"). The terminal child of tI generated at this time is the control gate electrode (6
a) Due to the tunneling phenomenon caused by the high voltage applied to
Floating game h tIj pole (4Q,) injected into huff storage village i
Be it. In this way, the LFC gate electrode (4a)
A logic signal is written by injecting and accumulating electrons in tut'. In general, system 4a (I f l
・The pole (6a) is connected to the ITI VC along with the control gate electrode of other memory cells, so when applying a logic signal to another memory cell, VX is connected to the control gate at the same time. Is it high even in the first season (60)? ! ,,: Pressure is applied. Therefore, I+) has already been applied to the floating gate electrode (
Is there a stone storage member Nf inside Z)? In order to prevent it from being pulled out by the 1l-1i voltage applied to the control gate electrode (6a), the control gate electrode (6a, ) 1 floating electrode (4a) The control between them is sufficient [it is necessary to be together, and it is chiru].

ところで、この従来例の方法では、ぎす1図(c) V
c示[7た段階において等方性エツチングを用いた。1
b合には制御ゲート電極(6a)の浮遊ゲート電極(4
8)側の底面と側面とが交る角〔第11Ta (C・)
に図示θ〕が鋭角になり、異方性エツチングを用いた場
合でも角θがほぼ直円になる程度である。従って、制御
ゲート1)1極(6a)に正の晶゛屯圧が印加されたと
きに、Ill <δ11ゲート11(極(68)の角θ
のエツジ部分に重罪が111中し、この重罪の弔中によ
って両′fは極(6a1゜(48)間の耐圧が低下する
ので、この耐圧の低下を抑1ttllするために、第1
図(r2)に示した段階において形成さtl、る酸化シ
リコン膜(9)の膜厚を+V くするこ吉によって酸化
シリコン膜(9)の制御ゲート電極(6F+、)の角O
のエツジ部分(て対応する部分音その1ばさを叩り1−
ることによって丸くしてこのエツジ部分に、ωる゛市h
′−の集中を緩和していた。しかし酸化シリコン膜(9
)の膜厚を厚くすると、酸化シリコン膜(9)の両電極
(fia)、 (傾)間の部分の膜厚も厚く々す、制御
ゲート’/li極(6a)の周縁部に歪が生ずるので、
酸化シリコン膜(9)の膜厚を十分1りくすることがで
きなかった。従って、浮遊ゲート71’極(4a) K
すでに蓄積されている電子が、制御ゲート慮極(68)
(に印加される亮電圧によって引き抜かhないようにす
ることがむずかしく、論理信号の記憶保持特性の向上を
図ることは容易ではなかった。
By the way, in this conventional method, Gisu 1 (c) V
Isotropic etching was used in step 7 as shown in c. 1
In case b, the floating gate electrode (4) of the control gate electrode (6a)
8) Angle where the bottom and side surfaces intersect [11th Ta (C)
θ] is an acute angle, and even when anisotropic etching is used, the angle θ is approximately a right circle. Therefore, when a positive crystal force is applied to the control gate 1) 1 pole (6a), Ill < δ11 the angle θ of the gate 11 (pole 68)
There is a serious crime in the edge part of 111, and the withstand voltage between both 'f' poles (6a1° (48)) decreases due to this serious crime, so in order to suppress this decrease in withstand voltage, the first
At the stage shown in FIG.
(by hitting the corresponding partial 1 bass, 1-
By rounding this edge part,
′- concentration was alleviated. However, the silicon oxide film (9
) becomes thicker, the thickness of the silicon oxide film (9) in the area between the two electrodes (fia) and (tilt) also becomes thicker, causing strain at the periphery of the control gate'/li electrode (6a). Because it occurs,
The thickness of the silicon oxide film (9) could not be made sufficiently thicker. Therefore, the floating gate 71' pole (4a) K
Electrons that have already been accumulated are used as control gate electrodes (68)
It has been difficult to prevent the signal from being pulled out due to the high voltage applied to it, and it has not been easy to improve the memory retention characteristics of the logic signal.

この発明は、上述の点に舗グてなされたもので、111
1 n11ゲートl(、極の浮1片ゲート(lj電極)
111の底面と仙j面との交円′fK:鈍角((するこ
とによって、論理信号の記憶保持特性全向上さぜた障M
O8の製偕方法を1.′A供することケ目的とする。
This invention is based on the above-mentioned points, and is based on 111
1 n11 gate l (, pole floating one piece gate (lj electrode)
111 and the sacral j plane 'fK: Obtuse angle
The manufacturing method of O8 is 1. 'A The purpose is to provide.

第21ツ1(A) 〜(F)はこの発明の−’! Mu
例のFAMosのメモリセルの製造方法の主要段階の状
f1,13を示ず1すi面図である。
The 21st part 1 (A) to (F) is -'! of this invention! Mu
FIG. 2 is a 1-plane view, not showing the states f1 and f13, of the main steps of the example FAMos memory cell manufacturing method.

図において、第11菌に示したfe欣例の仔号、!: 
ll11i1?tけ同等部分をポす。
In the figure, the child number of the fe sample shown in the 11th bacterium,! :
ll11i1? Post the equivalent part.

まず、L4) 21゛′Il (A) K示すように、
941 +・、<t (A) F;よび(B)に示し之
従暇例の段階と同様((、■)形シリコン成板(11に
)・;子分子准用酸化シリフン膜(2’ + ’n 1
のゲート・・碗化膜形成用酸化シリコンflu (3)
 、浮遊ゲート電極形!戊用多結晶シリコン11侍(4
I、柳2のゲート1″l化膜形成用rye化シリ” 7
11K (5+および711IJnillゲート11極
形成多結晶シリコン1蒔(6)を形成したのち、多結晶
シリコン膜(6)の制御ゲート電極と斥るべき部分上に
、百改七度COの温度でベーキングを行う七1吹化する
、例えばポジ形フォトレジストからなるエツチングマス
ク用フォトレジストB* f71 ’i影形成る。
First, L4) 21゛'Il (A) As shown in K,
941 +・, <t (A) F; Similar to the steps shown in (B), ((,■) shaped silicon plate (11)・; silicon oxide film for child molecules (2' + 'n 1
Gate...Silicon oxide flu for forming a bowl film (3)
, floating gate electrode type! Polycrystalline silicon 11 Samurai (4
I, Yanagi 2 gate 1" rye silica for forming 1" 7
11K (5+ and 711IJnill) After forming a polycrystalline silicon layer (6) for forming 11 gates, bake it at a temperature of 100°C and 7°C on the portion of the polycrystalline silicon film (6) that is to be replaced with the control gate electrode. A photoresist for an etching mask made of, for example, a positive photoresist is formed by blowing.

次に、第2図(F3) K示すように、フォトレジスト
膜(71をマスクにしたエツチングを多結晶シリコン膜
(6)および酸化シリコン膜(5)に施してフォトレジ
スト膜(7)の下に制御ゲート電極(6a)および第2
のゲート酸化膜(5a)を順次残す。このときの制御ゲ
ーl−’lX4WIλ(68)の第2のゲート酸化膜(
5亀)側の底面と側面りが父る角θrat鋭角になる。
Next, as shown in FIG. 2 (F3) K, etching is performed on the polycrystalline silicon film (6) and the silicon oxide film (5) using the photoresist film (71) as a mask to remove the area under the photoresist film (7). a control gate electrode (6a) and a second
gate oxide films (5a) are left in sequence. At this time, the second gate oxide film (
5) The bottom and side edges of the tortoise side form an acute angle θrat.

次圧、第21図(0)に示すように、フ第1・レジスト
膜(71に百数十度Cc3のr+、を度のベーキングを
施すと、フォトレジスト膜(7)が軟化してその両端部
が垂れ下がる。このフォトレジスト膜(7)の両端部の
垂れ下がりが制御ゲート電極(6a)の第2のゲート酸
化膜(隙)側の底面に達しないようにフォトレジストl
lKmのベーキング時間を設定する。次に、第2図(D
)に示すように、両端部が垂れ下がったフォトレジスト
膜(7:、制呻ゲート’ilt極(6a)および第2の
ゲート酸化膜(馳)をマスクにした等方性エツチングを
多結晶シリコン膜(41および酸化シリコン膜(3)に
施して第2のゲート酸化膜(5a)の下に浮遊ゲート電
極(4a)右よび第1のゲート酸化膜(3a)を順次残
すときもにp形シリコン基板(11の主面の一部を露出
さする。この段階において、制御ゲート電極(6a)の
側面へのサイドエツチングが、側面の上部程フォトレジ
スト膜(7)の垂れドがりの部分によって保護されて進
灯しないので、1tilJ御ゲート電極(6a)の浮遊
ゲート重積(4日)側の底面々側面とが交る角θけ鈍角
になる。
Next, as shown in Figure 21 (0), when the first resist film (71) is baked at a temperature of more than 100 degrees Cc3, the photoresist film (7) softens and Both ends of the photoresist film (7) sag.The photoresist film (7) is placed in such a way that the sagging of both ends of the photoresist film (7) does not reach the bottom surface of the control gate electrode (6a) on the second gate oxide film (gap) side.
Set a baking time of 1Km. Next, Figure 2 (D
), the polycrystalline silicon film is etched by isotropic etching using the photoresist film (7:) with both ends hanging down, and the suppressing gate'ilt pole (6a) and the second gate oxide film (edge) as masks. (41 and the silicon oxide film (3) to leave the floating gate electrode (4a) right and the first gate oxide film (3a) under the second gate oxide film (5a) in sequence, also using p-type silicon. A part of the main surface of the substrate (11) is exposed. At this stage, the side etching to the side surface of the control gate electrode (6a) is protected by the sagging portion of the photoresist film (7) toward the upper part of the side surface. Since the 1tilJ control gate electrode (6a) intersects the bottom and side surfaces of the floating gate stack (4th) side, the angle θ is an obtuse angle.

次Vこ、$ 2 (、<H(g)に示すように、フォト
レジスト膜(71を除去したのらに、p形シリコン基&
 fit )i+4 出土面部に、n形不純物を選択的
に導入してII形のソース・ドレイン領域(8!1.)
、 (sb)を形成1−る。次に、第1I叉1(F)に
示すように、2a1図(K)に51:、シた従来例の段
階と同様に、ソース・ドI/イン頭域(Bal、 (8
b) 。
Next, after removing the photoresist film (71), the p-type silicon base &
fit ) i+4 N-type impurities are selectively introduced into the excavated surface to create type II source/drain regions (8!1.)
, (sb) is formed. Next, as shown in the first I/in part (F), the source do I/in head area (Bal, (8
b).

第1のゲート酸化膜C”) +浮遊ゲート小極(4A)
 。
First gate oxide film C”) + floating gate small pole (4A)
.

第2のゲート酸化膜(5a)および制御ゲート電極(6
a)の各表向上にわたって酸化シリコン膜+91を形成
し、更に酸化シリコンIN+91 、 (21の表面上
Vこわたってリンを含んだ酸化シリコン膜(u) fz
影形成る。
Second gate oxide film (5a) and control gate electrode (6
A silicon oxide film +91 is formed over each surface of a), and a silicon oxide film (u) containing phosphorus is formed over the surface of silicon oxide IN+91 (21).
Form a shadow.

しかるのち、酸化シリコン脱明の表面上シでアルミニウ
ム配線膜(II)を形成し、最後に、アルミニウム配線
膜(11)をネJJうように酸化シリコン膜fil)の
表面」二にパッシベーション膜(121’i形成すると
、この実施例の方法になるFAMOSのメモリセルが得
られる。
After that, an aluminum wiring film (II) is formed on the surface of the silicon oxide film (II), and finally, a passivation film (II) is formed on the surface of the silicon oxide film (FIG. When 121'i is formed, a FAMOS memory cell according to the method of this embodiment is obtained.

この人倫例の方法では、副1胛ゲート゛屯極(6a)の
浮遊ゲート小極(5a)側の底面とイし10而とが交る
角θを鈍角にするので、凍化シリコン膜(9)の膜’+
’l−”Frそれ・、Lど厚くしなくとも、ffII 
’#llIケb ’il!極(”) CD MO・/−
)エツジ部分に電界が集中すイ)のを防止−することが
できる。従って、両車、極(6a)、 (4a、)間の
耐圧は、第、1図IC′/バし/ζ従−二16例の方法
の場合6′こ比べて高くな、もので、制御ゲート’11
を極(6a)に高電圧が印加されても、この捕魂圧によ
って、浮遊ゲート°11ζ極(鎚) rt−J〜で(l
こ蓄積式(1,ている電子/゛バ引抜かJtないよう(
lこす、・3ことができ、論ill信号の記憶保持特性
の同上を廓することかでへる。
In the method of this example, the angle θ where the bottom surface of the sub-1 gate pole (6a) on the floating gate small pole (5a) side intersects with I10 is made obtuse, so the frozen silicon film (9 ) membrane'+
'l-'Fr that... L doesn't have to be too thick, it's ffII
'#llIkeb 'il! Pole (”) CD MO・/-
) It is possible to prevent the electric field from concentrating on the edge portion. Therefore, the withstand voltage between both wheels and the poles (6a) and (4a,) is higher than 6' in the case of the method shown in Figure 1, IC'/B/Z-216. control gate '11
Even if a high voltage is applied to the pole (6a), the floating gate °11ζ pole (hammer) rt-J ~ (l
This accumulation type (1, so that there is no electron/bar pullout or Jt (
This can be done by understanding the memory retention characteristics of the ill signal.

なJiJ % この実7・・亀例で(lよ、p形シリコ
ンへ板(11を用いたが、この発明Id n形シリコン
基板を用いる場合((も;瓜用−1−’Sことができる
JiJ % In this example, P-type silicon substrate (11) was used, but when using an n-type silicon substrate ((also; Melon use-1-'S). can.

以上、説明し7ζように、この発明のFAMOSの製造
方法では、制御ゲート電極の浮、遊ゲート電極側の底面
と側面との交角を鈍角にするので、この制御ゲート電極
の交角のエツジ部分に電界が1!(1中するのを防止す
ることができ、イ)。従って、上記制御ゲート電極と上
記浮遊ゲート市極吉の間の耐圧t」ニ、従来例の方法の
:1句合に比べて旨くなるので、−[3己Wil制御ゲ
ート11を極Gて印IJ1.Iされる+l16 ’l−
イf圧によって、tでに−1−記浮遊ゲート電極に蓄積
さJ]5ている“tIL子が引き抜かノ1.ないように
することかで@、端理信号の記憶保持特性の向上を図る
ことができる。
As explained above, in the FAMOS manufacturing method of the present invention, the intersection angle between the bottom surface and the side surface on the floating and floating gate electrode side of the control gate electrode is made obtuse, so that the edge part of the intersection angle of the control gate electrode The electric field is 1! (It is possible to prevent this from happening during the first part, b). Therefore, the withstand voltage t'' between the control gate electrode and the floating gate electrode is better than that of the conventional method. IJ1. I will be +l16 'l-
By preventing the tIL element accumulated in the floating gate electrode at t from being pulled out due to the IF pressure, the memory retention characteristics of the marginal signal can be improved. can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

g J 図(A)〜(lc) kj従米(7) FAM
OS ツメモリセルの15IJ造方法の一例の主要段階
の状態7il=承す断面図、第2図(A)〜(F)はこ
の発明の一長施例のFl、4O8のメモリセルの製造方
法の主要4g階の状態を示す1fli (++i図であ
る。 +′;!JKおイテ、fil it p形シIJ コy
基板(第1伝導形のンリコン基板)、(21は素子分離
用酸化シリコン膜、(刃は棺lのゲート酸化膜形成用酸
化シリコン膜、(3a)は第〕、のゲート酸化膜、(4
)は浮遊グー11tt極形成用多結晶シリコン膜、(4
a) id’、浮遊ゲート電極、(5)は第2のゲート
酸化膜形成用酸化シリコン膜、(5a)は第2のゲート
酸化膜、((+)は制御ゲート電極形成用多結晶シリコ
ン膜、(6a)は制御ゲート電極、+71)よエツチン
グマスク用フォトし/シスト膜、(8a)および(81
)) 1−1n形のソース・ドレイン領域(用2伝々:
表形6)ソース・ドレイン領域)である。 l?お、図中同一1′1号はそれぞれ同−士たけ相当部
分を示す。 代理人 葛野信−(外」名) −讃侶 第1図 第1図 第2図 第2図
g J Figure (A) ~ (lc) kj Jumei (7) FAM
FIGS. 2A to 2F are cross-sectional views of the main stages of an example of the 15IJ manufacturing method for an OS memory cell, and FIGS. 1fli (++i diagram showing the state of the 4g floor.
substrate (first conductivity type silicon substrate), (21 is a silicon oxide film for element isolation, (the blade is a silicon oxide film for forming the gate oxide film of coffin l, (3a) is the gate oxide film), (4)
) is a polycrystalline silicon film for forming a floating goo 11tt electrode, (4
a) id' is a floating gate electrode, (5) is a silicon oxide film for forming a second gate oxide film, (5a) is a second gate oxide film, ((+) is a polycrystalline silicon film for forming a control gate electrode) , (6a) is the control gate electrode, +71) is the etching mask photo/cyst film, (8a) and (81)
)) 1-1n type source/drain region (U2 transmission:
Table 6) Source/drain region). l? In the drawings, the same numbers 1' and 1 indicate the same parts. Agent Makoto Kuzuno - (foreign name) - Praise figure 1 figure 1 figure 2 figure 2

Claims (1)

【特許請求の範囲】[Claims] Ill  FA 1伝導形のシリコン基板の主面部に素
子形成11≦分を取り囲む素子分離用酸化シリコンj摸
をノ穴択的に形成する第1の工程、上記シリコン基板の
主面の上記素子分子1tcm を俊化シリコン膜によっ
て分離された部分上に第1のゲート酸化膜形成用酸化シ
リコン膜、浮遊ゲート電極形成用多結晶シリコン膜、第
2のゲート酸化膜形成用酸化シリコン膜および1iil
J #ゲート m It形形成用多結晶シリコ模膜71
11次形成する第2の工程、上記制御ゲー) ’rli
極形成用多結晶シリコン膜の制御ゲート電極上なるべき
部分上に所定温度のベーキングによって軟化するエツチ
ングマスク用フォトレジスト膜を形成する?43の工程
、上記フォトレジスト膜をマスクにしたエツチングを上
記制御ゲート電楡形成用多結晶シリコン膜および上記第
2のゲート酸化膜形成用酸化シリコン膜に施して上記フ
ォトレジスト膜の下に1IflJ呻ゲート電極および第
2のゲート酸化膜を残す@4の工程、上記フォトレジス
ト膜に上記所定?= +tyのベーキングを施し上記フ
ォトレジスト膜を軟化させて上記フォトレジスト膜の両
端部を上記制御ゲート電極の上記第2のゲート1フ化膜
四の底面に11シないように垂れ下がらせる第5の工程
、両端部が垂れ下がった上記フ第1・レジスト膜、上記
制御ゲート電極および上記p¥S2のゲート1フ化JI
Kをマスクにした等方性エツチングを上記浮遊ゲート「
1χ極形成用多結晶シリコン膜および上記第17)ゲー
ト酸化膜形成用酸化シリコン11!! K施して上記第
2のゲート酸化膜の下に浮遊ゲート電極および第1のゲ
ート酸化膜を順次残すとともに上記シリコン基板の主面
の一部全露出させる第6の工程、並びに上記シリコン基
板の露出主面部に第2伝導形の不純物を選択的に導入し
て第2伝導形のソース・ドレイン領域を形成する第7の
工程を備えfi MO8形半導体不揮発性メモリ装ri
Hの製造方法。
A first step of selectively forming a silicon oxide pattern for element isolation surrounding the element formation 11≦ on the main surface of a silicon substrate of Ill FA 1 conduction type, the element molecules 1tcm on the main surface of the silicon substrate A silicon oxide film for forming a first gate oxide film, a polycrystalline silicon film for forming a floating gate electrode, a silicon oxide film for forming a second gate oxide film, and a silicon oxide film for forming a second gate oxide film are formed on the portion separated by the atomized silicon film.
J #Gate m Polycrystalline silicon pattern film 71 for forming It type
The second step of forming 11th order, the above control game) 'rli
Is a photoresist film for an etching mask, which is softened by baking at a predetermined temperature, formed on the portion of the polycrystalline silicon film for electrode formation that should be on the control gate electrode? Step 43, using the photoresist film as a mask, etching is performed on the polycrystalline silicon film for forming the control gate electrode layer and the silicon oxide film for forming the second gate oxide film to form an 1IflJ layer under the photoresist film. In step @4, which leaves the gate electrode and the second gate oxide film, the photoresist film is coated with the above predetermined amount. = +ty baking to soften the photoresist film so that both ends of the photoresist film hang down so as not to touch the bottom surface of the second gate 1 fluoride film 4 of the control gate electrode. step, the first resist film with both ends hanging down, the control gate electrode and the gate 1 of the p\S2 JI
Isotropic etching using K as a mask is applied to the above floating gate.
The polycrystalline silicon film for forming the 1χ pole and the 17th) silicon oxide film for forming the gate oxide film 11! ! a sixth step of sequentially leaving a floating gate electrode and a first gate oxide film under the second gate oxide film and exposing a part of the main surface of the silicon substrate; and exposing the silicon substrate. A seventh step of selectively introducing impurities of the second conductivity type into the main surface portion to form source/drain regions of the second conductivity type.
Method for manufacturing H.
JP57170060A 1982-09-27 1982-09-27 Manufacturing method of MOS type semiconductor nonvolatile memory device Pending JPS5957479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57170060A JPS5957479A (en) 1982-09-27 1982-09-27 Manufacturing method of MOS type semiconductor nonvolatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57170060A JPS5957479A (en) 1982-09-27 1982-09-27 Manufacturing method of MOS type semiconductor nonvolatile memory device

Publications (1)

Publication Number Publication Date
JPS5957479A true JPS5957479A (en) 1984-04-03

Family

ID=15897878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57170060A Pending JPS5957479A (en) 1982-09-27 1982-09-27 Manufacturing method of MOS type semiconductor nonvolatile memory device

Country Status (1)

Country Link
JP (1) JPS5957479A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286665A (en) * 1990-01-12 1994-02-15 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing MDS memory device having a LDD structure and a visor-like insulating layer
US5354697A (en) * 1991-09-23 1994-10-11 U.S. Philips Corporation Implantation method having improved material purity
EP1041642A1 (en) * 1999-03-29 2000-10-04 Chartered Semiconductor Manufacturing Pte Ltd. A method to fabricate a floating gate with a sloping sidewall for a flash memory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286665A (en) * 1990-01-12 1994-02-15 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing MDS memory device having a LDD structure and a visor-like insulating layer
US5354697A (en) * 1991-09-23 1994-10-11 U.S. Philips Corporation Implantation method having improved material purity
EP1041642A1 (en) * 1999-03-29 2000-10-04 Chartered Semiconductor Manufacturing Pte Ltd. A method to fabricate a floating gate with a sloping sidewall for a flash memory

Similar Documents

Publication Publication Date Title
JPS5957479A (en) Manufacturing method of MOS type semiconductor nonvolatile memory device
US6248629B1 (en) Process for fabricating a flash memory device
JPS59121976A (en) semiconductor equipment
JPH06163572A (en) Manufacture of mos field effect transistor
JPH11297853A (en) Manufacturing triple wells of semiconductor memory
JP3054530B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP3054515B2 (en) Method for manufacturing semiconductor device
JPS5980969A (en) Method of manufacturing field effect transistor
JPS61270859A (en) Manufacture of cmos semiconductor device
JPS62293776A (en) Manufacture of semiconductor device
JPH06216155A (en) Manufacture for thin-film transistor
JPH07202042A (en) Manufacture of nonvolatile semiconductor storage device
JPS60110167A (en) Manufacturing method of semiconductor device
JP3042004B2 (en) Method for manufacturing semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
JPH08250725A (en) Semiconductor device
JPH05198814A (en) Semiconductor device and manufacturing method thereof
JPH04313274A (en) Thin-film memory cell and its manufacture
JPH05343643A (en) Semiconductor memory device and manufacturing method thereof
JPH09181325A (en) Manufacture of thin film semiconductor device
JPH0567634A (en) Manufacture of mis type semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPH06132302A (en) Method of manufacture thin film transistor
JPS63184365A (en) Manufacture of mos type semiconductor device
JPH08124872A (en) Manufacture of thin film semiconductor device