JPS60220805A - Device for forming solid shape - Google Patents
Device for forming solid shapeInfo
- Publication number
- JPS60220805A JPS60220805A JP59077213A JP7721384A JPS60220805A JP S60220805 A JPS60220805 A JP S60220805A JP 59077213 A JP59077213 A JP 59077213A JP 7721384 A JP7721384 A JP 7721384A JP S60220805 A JPS60220805 A JP S60220805A
- Authority
- JP
- Japan
- Prior art keywords
- slit light
- shape
- target object
- plane
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007787 solid Substances 0.000 title abstract 3
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 230000003287 optical effect Effects 0.000 claims description 20
- 238000003384 imaging method Methods 0.000 claims description 12
- 238000003698 laser cutting Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 102100027340 Slit homolog 2 protein Human genes 0.000 description 1
- 101710133576 Slit homolog 2 protein Proteins 0.000 description 1
- 238000001467 acupuncture Methods 0.000 description 1
- 210000000979 axoneme Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003958 fumigation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/42—Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
- G05B19/4202—Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
- G05B19/4207—Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37048—Split beam, stripe projection on object, lines detected with cameras
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49011—Machine 2-D slices, build 3-D model, laminated object manufacturing LOM
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、人物等の立体形状を有する物から立体鐵等の
立体形状を形成する装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for forming a three-dimensional shape, such as a three-dimensional iron, from an object having a three-dimensional shape, such as a person.
(従来技術)
従来、立体形状を有する物体から、これを同等の立体形
状を形成するために、倣い工作機械鋳型、反転型等を用
いていた。(Prior Art) Conventionally, a copying machine tool mold, an inverted mold, etc. have been used to form an object having a three-dimensional shape into an equivalent three-dimensional shape.
しかしながら、工作#&械、鋳敵等の寸法的制限により
、立体形状を成形できる対象物に制約され、複雑な形状
で凹凸の顕著な対象物体から立体形状を複製するのは内
鑵であるという問題点を有していた。また、対象物体が
軟質である場合に、その物体を複製するためには高度な
熟裸が要求されるとともに芸術的なセンスも要求される
という問題点があった。However, due to dimensional limitations such as the number of workpieces, machines, and molding elements, it is difficult to reproduce a three-dimensional shape from a target object with a complex shape and noticeable unevenness. It had some problems. Furthermore, when the target object is soft, there is a problem in that in order to reproduce the object, a high level of nakedness is required as well as an artistic sense.
(発明の目的)
本発明は上述の従来技術の有する問題点ヲ解決するため
になされたもので、対象物体の形状の複雑さの如何を問
わす、また対象物体の硬度の如何を問わずに、対象物体
となる立体形状と同等もしくは一定比率の立体形状を形
成する装置を提供することを目的とする。(Objective of the Invention) The present invention has been made to solve the problems of the above-mentioned prior art. , an object of the present invention is to provide a device that forms a three-dimensional shape that is equivalent to or has a constant ratio of a three-dimensional shape that is a target object.
(発明の構成)
本発明によれば上述の目的を達成するために、(1)
立体形状を有する対象物から立体形状を作成する装置で
あって、
前記対象物体の水平方向に一定角度の広がり角を有する
スリット光を照射するスリット光照射手段と、
前記スリット光照射手段により形成されるスリット光平
面を、前記対象物体の水平方向における同一水平面上の
全周をスリット光で照射させる全周照射手段と、
前記全周照射手段の対象物体への垂直位置を町動させる
垂直位置可動手段と、
前記スリット光平面とスリット光平面に直交する平面と
の交線上の1点を中心点とし、前記直交する平面から一
定半径で撮1象位置を町動させ、かつ熾家の光軸を前記
中心点に一致させる撮像位置可変手段と、
前記全周照射手段及び垂直位1toT動手段により対象
物体に照射されたスリット光による同一水平面上におけ
る対象物体の表面の光gI!を連続的に点像する二次元
撮像手段と、
前記二次元撮像手段により得られる光像の軌跡形状と前
記スリット光照射手段及び前記二次元撮像手段との幾町
学的関係から、前記水平面に関する前記対象物体表面の
断面形状を計則する断面計測手段と、
前記計測された対象物体表面の断面形状に基づいて、前
記スリット光の直径に一定比率の肉厚を有する薄板で、
5前記断面形状に同一もしくは相思の形状の型板を作成
する型板形成手段と、を備え、前記型板を重ね合せるこ
とによシ立体形状を成形することを特徴とする立体形状
成形装置とした。(Structure of the Invention) According to the present invention, in order to achieve the above object, (1)
An apparatus for creating a three-dimensional shape from an object having a three-dimensional shape, comprising: a slit light irradiation means for irradiating the target object with a slit light having a spread angle of a certain angle in the horizontal direction; an all-around irradiation means for irradiating a slit light plane on the same horizontal plane of the target object with slit light; and a vertical position movable unit for moving the vertical position of the all-around irradiation means to the target object. means, a point on the intersection line of the slit light plane and a plane orthogonal to the slit light plane is set as the center point, and the position of the image is moved at a constant radius from the orthogonal plane; imaging position variable means for aligning the center point with the center point; and light gI! on the surface of the target object on the same horizontal plane caused by the slit light irradiated onto the target object by the all-round irradiation means and the vertical 1toT moving means. a two-dimensional imaging means that continuously points-images the image, and a geometrical relationship between the locus shape of the light image obtained by the two-dimensional imaging means, the slit light irradiation means, and the two-dimensional imaging means, a cross-sectional measuring means for measuring the cross-sectional shape of the surface of the target object; a thin plate having a wall thickness that is a constant ratio to the diameter of the slit light based on the measured cross-sectional shape of the surface of the target object;
5. A three-dimensional shape forming device, comprising: a template forming means for creating a template having the same or a similar shape to the cross-sectional shape, and forming a three-dimensional shape by overlapping the templates. did.
(発明の効果)
本発明によれば、対象物体の形状の複雑さの如何を問わ
ず、また対象物体の硬度の如何を問わず、対象物体と同
一もしくは一定比率(拡大、縮小)した立体形状を容易
に作ることができる。(Effects of the Invention) According to the present invention, regardless of the complexity of the shape of the target object and regardless of the hardness of the target object, the three-dimensional shape is the same as the target object or has a fixed ratio (enlarged or reduced). can be easily made.
(実施例) 以下、本発明の一実施例を添付図面により説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.
第1a図及び第1b図は実施例の構成の一部を示す図で
、説明を容易にするために人物の顔を簡略化したモデル
1′Jk対象物体とした。そして、モデル1に対する座
標軸を設定して、以後に説明するスリット光の照射位置
及び光鐵の燻蒸装置の位置の基準とする。fIA標軸は
モデル1の底面中心を原点Gとし、第1a図の立面図に
おいて原点Gから水平の方向をX軸、原点から垂直の方
向をY軸、第1b図の正面図において、対象物体である
モデル1の垂直中心線を2軸としている。Figures 1a and 1b are diagrams showing a part of the configuration of the embodiment, and for ease of explanation, a model 1'Jk target object is a simplified human face. Then, coordinate axes for the model 1 are set and used as a reference for the irradiation position of the slit light and the position of the light iron fumigation device, which will be described later. The fIA reference axis has the origin G at the center of the bottom of model 1, the X axis is the horizontal direction from the origin G in the elevation view in Figure 1a, the Y axis is the vertical direction from the origin, and the object in the front view in Figure 1b. The vertical center line of model 1, which is an object, is the two axes.
スリット光照射装置2は、発光源4例えばレーデから対
象物体たるモデルIK厚み△h(例えば0.5關)のス
リット光2′を照射する。スリッド2′はZ軸下した垂
線を中心線とし、絞り、凹面鏡乃至光学的レンズ系によ
シ拡がシ角度(θ)の厚ろΔhのスリット光2′ヲ対象
物体に照射する。このスリット光平面をx −y@糸平
面とし、2軸の原点Zoを対象物体の最下端K11l<
。The slit light irradiation device 2 irradiates a model IK, which is a target object, with a slit light 2' having a thickness Δh (for example, 0.5 mm) from a light emitting source 4, for example, Rede. The slit 2' has a perpendicular line below the Z-axis as its center line, and is expanded by a diaphragm, a concave mirror, or an optical lens system to irradiate the target object with a slit light 2' having a thickness Δh and an angle (θ). This slit light plane is defined as x-y@thread plane, and the origin Zo of the two axes is the lowest end of the target object K11l<
.
二次元撮像手段であるITVカメラ3は、スリット光平
面に対して直交し、かつ、前記スリット光照射装置2と
干渉しないような平面内に、該平面と前記X−Y軸系平
面との交線上の1点Gから、一定の半径Rとなるように
設けた円弧状の案内装#t、8aK配置され、案内装置
に沿゛つてI菅カメラは可動でき光軸が交線上の1点G
と一致する。The ITV camera 3, which is a two-dimensional imaging means, is arranged within a plane that is orthogonal to the slit light plane and does not interfere with the slit light irradiation device 2, and the intersection of the plane and the X-Y axis system plane. An arc-shaped guide device #t, 8aK is arranged so that it has a constant radius R from a point G on the line, and the I-tube camera can move along the guide device, and the optical axis can move from a point G on the intersection line.
matches.
そして、スリット光照射装置2のビーム元2′とITV
カメラ3の光軸とはzlllを通るX−Y軸系平面に対
して角度βを有し、この角度βは案内装置8aにより対
象物体であるモデル1の凹凸に対応させてol変できる
。Then, the beam source 2' of the slit light irradiation device 2 and the ITV
The optical axis of the camera 3 has an angle β with respect to the X-Y axis plane passing through zllll, and this angle β can be changed by the guide device 8a to correspond to the irregularities of the model 1, which is the target object.
また、■TVカメラ3の視野角はαである。スリット光
照射装置2及びITVカメラ3が配された案内装に8a
は案内柱7内を摺動案内される架台8に固定され、該架
台8はボールネジ軸5に螺合するボールナツト6に固定
されている。ボールネジ軸5にはステップモータ(図示
しない)が接続され、該ステップモータはスリット光の
厚みΔhの尚さだけボールナツト6、即ち架台1を段階
的に上下に駆動する。Also, ■The viewing angle of the TV camera 3 is α. 8a in the guide equipment where the slit light irradiation device 2 and ITV camera 3 are arranged.
is fixed to a pedestal 8 that is slidably guided within the guide column 7, and the pedestal 8 is fixed to a ball nut 6 that is screwed into the ball screw shaft 5. A step motor (not shown) is connected to the ball screw shaft 5, and the step motor drives the ball nut 6, that is, the pedestal 1, up and down in steps by the thickness Δh of the slit light.
対象物体であるモデル1の外周全周をスリット光2′で
照射しく全周照射手段)、且つ2次元撮像装置であるI
TVカメラ3をこれに対応してその外周全周を撮像する
。この実施例では、それぞれ複数個のスリット光照射装
置2と2次元撮像装置3とを対象物体を囲んで配置して
いる。この場合、対象物体であるモデル1のZ軸に対す
るI’I’Vカメラ3との距離を等距離に配置し、■T
Vカメラ3の光学的倍率を等しくすると、それぞれのI
TVカメラ30対象物体であるモデル1のスリット光2
′による光像を直接比較し、光像の計測データーの処理
をする。A slit light 2' is used to irradiate the entire outer circumference of the model 1, which is a target object.
Correspondingly, the TV camera 3 images the entire outer circumference. In this embodiment, a plurality of slit light irradiation devices 2 and two-dimensional imaging devices 3 are arranged surrounding the target object. In this case, the model 1, which is the target object, is placed at the same distance from the I'I'V camera 3 to the Z axis, and ■T
If the optical magnification of the V camera 3 is made equal, each I
TV camera 30 Slit light 2 of model 1 which is the target object
Directly compare the optical images obtained by ′ and process the optical image measurement data.
次に第2a図及び第2b図により対象物体であるモデル
1に対するスリット光照射装置2とI’ffカメラ3と
の幾何学的な位置関係を説明する。Next, the geometrical positional relationship between the slit light irradiation device 2 and the I'ff camera 3 with respect to the model 1, which is a target object, will be explained with reference to FIGS. 2a and 2b.
第2a図において、スリット光照射装置2の元2の広が
り角度はθであJ)、Y軸に対する視野限界SLMが0
から+Ymとなυ、対象物体であるモデル1の原点Gで
のY軸位置はYm/2となる。1台のスリット光照射装
置2がモデル1の全周を照射するために必要な照射範囲
は原点Gを中心として90°の範囲であり、Y軸のYL
よとYL2との範囲忙なる。スリット光照射装置2から
対象物体4に照射されるスリット光2′はZ軸上で2次
元d&像装置3の光軸3′と一定の角度βで交差し1こ
の位置’&Ziとする。このとぎ、スリット光照射装置
2から対象物体4に照射されたスリット光を2次元撮画
装置、即ちTV用左カメラ3撮像すると、対象物体4の
この断面における光像は第3図に示した蟻状の画像とな
る。この光像平面において、線分10は前述のZi Y
通りY軸と平行な直線の像である。又第6図に示した点
P1は第2図に示すスリット光の光像の点P1の11j
!であシ、これは対象物体40表面上に照射されたスリ
ット光の任意の一点である。In Fig. 2a, the original spread angle of the slit light irradiation device 2 is θ (J), and the field of view limit SLM with respect to the Y axis is 0.
, +Ym, υ, and the Y-axis position of the target object, model 1, at the origin G is Ym/2. The irradiation range required for one slit light irradiation device 2 to irradiate the entire circumference of the model 1 is a range of 90° centered on the origin G, and
I'm very busy with Yoto and YL2. The slit light 2' irradiated from the slit light irradiation device 2 to the target object 4 intersects the optical axis 3' of the two-dimensional d&image device 3 at a constant angle β on the Z-axis, and is at a position '&Zi. At this point, when the slit light irradiated from the slit light irradiation device 2 onto the target object 4 is imaged by the two-dimensional imaging device, that is, the left TV camera 3, the light image at this cross section of the target object 4 is shown in FIG. The image becomes an ant-like image. In this optical image plane, the line segment 10 is the above-mentioned Zi Y
This is an image of a straight line parallel to the Y-axis. Moreover, the point P1 shown in FIG. 6 is 11j of the point P1 of the optical image of the slit light shown in FIG.
! Yes, this is an arbitrary point of the slit light irradiated onto the surface of the target object 40.
第2図において、TVVカメラ30光軸を含みY軸に平
行な平面に対して点P1から下した垂線の長さをelと
し、又第6図において点P1′から線分10に下した垂
線の長さをYlとするとき、線分PL’ Yi’の長さ
、をΔz1とすれば、Δ11= −xΔz1
n : ITVカメラの光学的倍率
となる。In FIG. 2, the length of the perpendicular drawn from point P1 to the plane that includes the optical axis of the TVV camera 30 and parallel to the Y axis is el, and in FIG. When the length of is Yl, and the length of the line segment PL'Yi' is Δz1, then Δ11=−xΔz1 n : Optical magnification of the ITV camera.
この場合Δziは次の様にめる。In this case, Δzi is calculated as follows.
第6図に示すようにTV用左カメラ一画面は1本(一般
に240〜500本程度)の走査線で構成されていて、
これを上部から順にsl、 S2+・・・8n・・・S
rとする。第4図に示すようにITVカメラ3からは画
面の開始信号′v、BLが出力され、次に第1回目の水
平走査信号HBLが出力されたのちに隊の明晰信号に厄
じた映画信号が一足時間taでSl上を走fする。次い
でSl上の走査が終了すると再びHBL信号が出力され
映像信号はS2からJ幀次走査する。As shown in Figure 6, one screen of the left TV camera consists of one scanning line (generally about 240 to 500 lines).
From the top, sl, S2+...8n...S
Let it be r. As shown in FIG. 4, the ITV camera 3 outputs the screen start signal 'v, BL, and then the first horizontal scanning signal HBL, and then the movie signal that is affected by the clear signal of the group. runs f on Sl in one step time ta. Then, when the scanning on Sl is completed, the HBL signal is outputted again, and the video signal is scanned J-order from S2.
ここで、sn上の走査においてスリット光2′の光像が
あるとスリット光映1象信号BI(8として映像信号H
8中に囲者に境われる。そして、Srの走査迄l験次裸
返兄されて1画面の走査が終了する。Here, when there is an optical image of the slit light 2' in scanning on sn, the slit light image 1 image signal BI (8 is the video signal H
During the 8th, he was surrounded by people. Then, the scanning of one screen is completed until the scanning of Sr is repeated.
次いでこの8rの走査が終了するとモーターによりスリ
ット光をΔhだけZ軸方向の1!#接位置に移動した後
、次の1画面の開始信号vBLが出力されてることによ
り、前述と同様に水平走査開始信号が順次出力されて新
らたな1画面が走査される。Then, when this 8r scan is completed, the motor moves the slit light by Δh to 1! in the Z-axis direction. # After moving to the contact position, since the start signal vBL for the next one screen is output, horizontal scanning start signals are sequentially output as described above and one new screen is scanned.
第5図はこの工Tvカメラを用いて請求めるための制御
回路を示すブロック線゛図であり、3はITVカメラで
あり、31は分離回路で、■TVカメラ3で撮影したス
リット光2′の光像の映像信号H8と水平走査開始信号
HBLと画面開始信号■BLというとを分離回路31に
入力し、分離回路31で映像信号とHBL ”BLとを
分離する。FIG. 5 is a block diagram showing a control circuit for billing using this industrial TV camera. 3 is an ITV camera, 31 is a separation circuit, The video signal H8 of the optical image, the horizontal scanning start signal HBL, and the screen start signal BL are input to the separation circuit 31, and the separation circuit 31 separates the video signal from HBL and BL.
20はカウンターで、水平走査開始信号HBLの数を百
1数するための計数器であり、画面開始信号■BLが発
信したときにOKリセットする。従ってカウンター20
は画面開始信号■8Lが発信された後、次のvBLが発
1gされる迄の水平走査開始信号HBLの数を計数する
。この様にして、カウンター20で計数された内容に応
じて走査線番号S1が検出する。この走査線番号S1を
検出すると、この走査線番号8iに乗算器21により走
査線間隔Δqを乗じ、S】からSi迄の長さを変換する
。次いで減算器22内でr×Δq/2の碩(画面の中央
線、即ち第6図の線分10の位置)から減算され、線分
10に対する走査点の垂直方向の長さを算出する。20 is a counter which increments the number of horizontal scanning start signals HBL to one hundred and one, and is reset to OK when the screen start signal BL is transmitted. Therefore counter 20
counts the number of horizontal scanning start signals HBL after the screen start signal 8L is issued until the next vBL is issued 1g. In this way, the scanning line number S1 is detected according to the content counted by the counter 20. When this scanning line number S1 is detected, this scanning line number 8i is multiplied by the scanning line interval Δq by a multiplier 21 to convert the length from S] to Si. Next, in the subtractor 22, it is subtracted from the square of r×Δq/2 (the center line of the screen, that is, the position of line segment 10 in FIG. 6) to calculate the vertical length of the scanning point with respect to line segment 10.
他方1本の走査−の走査時間taをm等分した間隔パル
スを出力する発振器23が設けられ、この間隔パルスは
カウンタ24で計数され、また間隔パルスは水平走査開
始信号HBLで0にリセットする。この場合それぞれの
走査線に対する水平走査開始信号HBLが出力される迄
この前の走査−上での発振器23からのパルスをカウン
タ24が計数し、次いでこの計数内容を乗算器26で、
走査縁の長さをm等分した長さΔye Y乗する。この
様にしてITVカメラの映1象面上の走査点の水平位置
が乗算器26の出力信号から算出される。On the other hand, an oscillator 23 is provided which outputs interval pulses obtained by dividing the scanning time ta of one scan into m equal parts, and this interval pulse is counted by a counter 24, and the interval pulse is reset to 0 by the horizontal scanning start signal HBL. . In this case, the counter 24 counts the pulses from the oscillator 23 during the previous scan until the horizontal scanning start signal HBL for each scanning line is output, and then the multiplier 26 uses the counted contents as
Divide the length of the scanning edge into m equal parts and multiply by Δye to the power of Y. In this manner, the horizontal position of the scanning point on the image plane of the ITV camera is calculated from the output signal of the multiplier 26.
また、映緘信号Heを明“1“、暗”0“という論理的
な211に変換するために211[化回路25を分離回
路31の後方に接続し、映像信号H8のみヲ21置体回
路25で対象物体であるモデル1の外周に照射されたス
リット元家部分を”11及びこれ以外の部分を“0“と
じて出力する。In addition, in order to convert the video signal He into logical 211 signals such as bright "1" and dark "0", a 211 conversion circuit 25 is connected behind the separation circuit 31, and only the video signal H8 is connected to the 21 installation circuit. At step 25, the slit Motoie portion irradiated on the outer periphery of the model 1, which is the target object, is outputted as "11" and the other portions as "0".
光像の垂直位置は2値化回路25の出力が”1“の瞬間
減算器22の出力をr−)回路27を介して記録回路2
8に記憶させる。The vertical position of the optical image is determined by inputting the output of the subtracter 22 at the moment when the output of the binarization circuit 25 is "1" to the recording circuit 2 via the r-) circuit 27.
8 to be memorized.
光像の水平位置は、2置体回路25の出力が“1゛のと
き乗算器26の出力を記憶回路30に記憶させる。Regarding the horizontal position of the optical image, when the output of the two-position circuit 25 is "1", the output of the multiplier 26 is stored in the storage circuit 30.
この様にして、第5図に示したブロック線図に従い、1
画面の光像についての第3図に示したひとつの走Z巌S
tに対する垂直位置Δz1と水平位置△y1とが決定さ
れる。な81本の走査線について△zi、△yiが複数
検出される場合があるがこれを△Z11〜Δzip、Δ
y11〜△y1pとしてそのすべてを決定する。In this way, according to the block diagram shown in FIG.
One running Z Iwao S shown in Figure 3 regarding the light image on the screen
A vertical position Δz1 and a horizontal position Δy1 with respect to t are determined. There are cases where multiple △zi and △yi are detected for 81 scanning lines.
All of them are determined as y11 to Δy1p.
このITVカメラの1画曲からスリット光平面に2ける
2次元平向、即ちX−Y軸系平面に変換するためは次式
の演算式を用いて算出する。In order to convert from one stroke of the ITV camera to a two-dimensional plane on the slit light plane, that is, an X-Y axis system plane, calculation is performed using the following arithmetic expression.
n : ITVカメラの光学的倍率
上記の演算は汎用のマイクロコンピュータ等により行な
う。この際、βは対象物体であるモデル1の凹凸の応じ
てITVカメラの傾斜を変化させることで変るので、こ
のX−Y軸系平面に変換するのでβも対応させて演算す
る。n: Optical magnification of ITV camera The above calculation is performed by a general-purpose microcomputer or the like. At this time, since β changes by changing the inclination of the ITV camera according to the unevenness of the model 1, which is the target object, β is also calculated in correspondence with the conversion to this X-Y axis system plane.
そして、スリット光2′ヲモデル1のすべてに照射する
ためにスリット光2′を段階的に上下に駆動する。即ち
、光照射装置2は架台8に固定されボールネジ軸5に螺
合するポールナツトに固定されているので、ボールネジ
軸5をモータ(図示しない)で回転させることにより、
スリット光の厚さΔhの高さだけ架台8を段階的にZ軸
に対して上下に駆動する。Then, the slit light 2' is driven up and down stepwise in order to irradiate the entire model 1 with the slit light 2'. That is, since the light irradiation device 2 is fixed to the pedestal 8 and fixed to a pole nut screwed onto the ball screw shaft 5, by rotating the ball screw shaft 5 with a motor (not shown),
The pedestal 8 is driven up and down with respect to the Z axis stepwise by a height corresponding to the thickness Δh of the slit light.
そして、スリット光により形成される平面、即らX−Y
軸糸平面における対象物体であるモデル1の最下端zO
から最上端Zmまでスリット光2′の直径Δhごとに、
スリット光2′により光像軌跡をめ、スリット光の直径
Δhの変化ごとのX−Y軸子1kJKおける形状データ
Xi、 Yi 請求める。Then, the plane formed by the slit light, that is, X-Y
The lowest end zO of model 1, which is the target object in the axoneme plane
For each diameter Δh of the slit light 2' from to the top end Zm,
The optical image locus is determined by the slit light 2', and the shape data Xi, Yi on the X-Y axis 1kJK can be obtained for each change in the diameter Δh of the slit light.
このようにスリット光2′の直径Δhごとにめられた形
状データXi、Yiに基づいてこれらのデータをNCレ
ーデ切断機に入力して、薄板の厚さΔhから形状データ
と同一の型板を作り出す(型板形成手段)。これらの型
板を順次塩ね合せることにより苅lll1.物体と同一
形状の立体形状を作成する。Based on the shape data Xi and Yi obtained for each diameter Δh of the slit light 2', these data are input to the NC radar cutting machine, and a template identical to the shape data is cut from the thickness Δh of the thin plate. create (template forming means). By sequentially kneading these templates together, 1. Create a 3D shape that has the same shape as the object.
この実施例によれは、人の顧慮等を対象物体した形状が
複雑でI’fvカメラの撮像角度を変えて対象物体を容
易に把握でき、表面が柔かい場合であっても容易に同一
または拡大、縮尺した立体lJlを形成できる。According to this embodiment, even if the shape of the target object is complex for human consideration, the target object can be easily grasped by changing the imaging angle of the I'fv camera, and even if the surface is soft, it can be easily identified or enlarged. , a scaled volume lJl can be formed.
この実施例において、型板形成の際にスリット光の厚さ
と同じ肉厚の薄板を用いて、対象物体と同一形状とした
が、薄板の肉厚をスリット光の厚さΔhと一定比率にし
て、形状データXi、 !I’iも一定比率にすること
によシ容易の拡大、縮小した立体1!l!を形成できる
。また、この実施例では4台のスリット光照射装置とI
TVカメラとは使用したが、第2b図に示す台座9を設
けて、台座9を90゜づつ回転させて1台のスリット光
照射装置でスリット光を照射させてITVカメラで撮像
させてもよ0゜In this example, when forming the template, a thin plate with the same thickness as the slit light was used to form the same shape as the target object, but the thickness of the thin plate was set at a constant ratio to the thickness Δh of the slit light. , shape data Xi, ! I'i can also be easily enlarged or reduced by making it a fixed ratio. l! can be formed. In addition, in this embodiment, four slit light irradiation devices and an I
Although a TV camera is used, it is also possible to provide a pedestal 9 as shown in Fig. 2b, rotate the pedestal 9 in 90° increments, irradiate slit light with one slit light irradiation device, and take an image with an ITV camera. 0°
第1a図及び第1b図は本発明の第1実施例の平面及び
立面の概略図である。
第2a図及び第2b図は同実施例の対象物体の光像な計
測するための説明図である。
第3図は同実施例のITVカメラ(二次元撮鍼装置)の
画面を示す図である。
第4図は、第6図に示す画面の走査状!lJ4を示す図
である。
第5図は、同実施例の断面形状演算のためのデータ処理
を示すブロック線図である。
(符号の説明)
1・・・モデル(対象物体)
2・・・スリット光照射装置
2′・・・スリット光
3・・・ITVカメラ(二次元m鐵装置)5・・・ポー
ルネジ
6・・・ポールナツト
ト・・案内柱
8.18・・・架台
代理人 浅 村 皓
手続補正書(方式)
昭和59年I月jO日
特許庁長官殿
1、事件の表示
昭和59年特許願第 77213 号
2、発明の名称
立体形状成形装置
3、補正をする者
11件との関係 特許出願人
住 所
氏名 川崎重工業株式会社
(名 称)
4、代理人
5、補正命令の日付
昭和59年7月31日
6、補正により増加する発明の数
1、 明細書第8頁第12行の「第2a図及び第2b図
」を「第2図」に訂正する。
λ、 同第16頁第7行の「第2a図及び第2b図」を
「第2図」忙訂正する。
。 ゛Figures 1a and 1b are schematic plan and elevation views of a first embodiment of the invention. FIGS. 2a and 2b are explanatory diagrams for measuring the optical image of a target object in the same embodiment. FIG. 3 is a diagram showing the screen of the ITV camera (two-dimensional acupuncture device) of the same embodiment. Figure 4 is a scan of the screen shown in Figure 6! It is a figure showing lJ4. FIG. 5 is a block diagram showing data processing for calculating the cross-sectional shape of the same embodiment. (Explanation of symbols) 1...Model (target object) 2...Slit light irradiation device 2'...Slit light 3...ITV camera (two-dimensional m-iron device) 5...Pole screw 6...・Pole Natstoto・Guiding Pillar 8.18... Frame Agent Akira Asamura Procedural Amendment (Method) Date of I/JO, 1980 Mr. Commissioner of the Patent Office 1, Indication of Case Patent Application No. 77213 of 1988 2, Name of the invention Three-dimensional shape forming device 3 Relationship with the 11 amendments Patent applicant address Name Kawasaki Heavy Industries, Ltd. (name) 4 Agent 5 Date of amendment order July 31, 1980 6 , the number of inventions increases by 1 due to the amendment, "Figures 2a and 2b" on page 8, line 12 of the specification is corrected to "Figure 2." λ, "Figures 2a and 2b" on page 16, line 7 is corrected to "Figure 2". .゛
Claims (1)
であって、 前ml対象物体の水平方向に一定角度の広が9角を有す
るスリット光を照射するスリット光照射手段と、 前記スリット光照射手段によシ形成されるスリット光平
面を、前記対象物体の水平方向における同一水平面上の
全周をスリット光で照射させる全周照射手段と、 前記全周照射手段の対象物体への垂直位置を可動させる
垂直位置可動手段と、 前記スリット光子(3)とスリット光平面に直交する平
面との交巌上の1点を中心点とし、前記直交する平面か
ら一定半径でJ’lIA L1位[を可動させ、かつ−
鐵の元1lIIを前記中心点に一致させるfll歇位置
oJ変手段と、 前記全周照射手段及び垂直位置可動手段により対象物体
に照射されたスリット光による同一水平面上における対
象物体の表面の光像を連続的に撮像する二次元撮像手段
と、 前記二次元撮像手段により得られる光像の軌跡形状と前
記スリット光照射手段及び前記二次元撮像手段との幾町
学的関係から、前記水平面に関する前記対象物体表面の
断面形状を計測する断面計測手段と、 前記計測された対象物体表面の断面形状に基づいて、前
記スリット光の直径に一定比率の肉厚を有する薄板で、
前記断面形状に同一もしくは相思の形状の型板を作成す
る型板形成手段と、を備え、前記型板を重ね合せること
により立体形状を成形することを特徴とする立体形状成
形装置。[Scope of Claims] An apparatus for creating a three-dimensional shape from a target object that has a three-dimensional shape, comprising: a slit light irradiation means for irradiating a slit light beam having a fixed angle spread of 9 angles in the horizontal direction of the target object; and an all-round irradiation means for irradiating a slit light plane formed by the slit light irradiation means all around the same horizontal plane in the horizontal direction of the target object with slit light; and an object of the all-around irradiation means. a vertical position moving means for moving the vertical position to the object; and a point on the intersection of the slit photon (3) and a plane orthogonal to the slit optical plane as a center point, and a point J at a constant radius from the orthogonal plane. 'lIA L1 position [and-
An optical image of the surface of the target object on the same horizontal plane by the slit light irradiated onto the target object by the full-circle irradiation means and the vertical position moving means; a two-dimensional imaging means that continuously images the two-dimensional imaging means; and a geometrical relationship between the locus shape of the light image obtained by the two-dimensional imaging means, the slit light irradiation means, and the two-dimensional imaging means, a cross-sectional measuring means for measuring the cross-sectional shape of the surface of the target object; a thin plate having a wall thickness that is a certain ratio to the diameter of the slit light based on the measured cross-sectional shape of the surface of the target object;
A three-dimensional shape forming apparatus comprising: a template forming means for creating a template having the same or a similar shape to the cross-sectional shape, and forming a three-dimensional shape by overlapping the templates.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59077213A JPS60220805A (en) | 1984-04-17 | 1984-04-17 | Device for forming solid shape |
DE8585104269T DE3584642D1 (en) | 1984-04-17 | 1985-04-09 | DEVICE FOR GENERATING A THREE-DIMENSIONAL COPY OF AN OBJECT. |
EP85104269A EP0163076B1 (en) | 1984-04-17 | 1985-04-09 | Apparatus for producing a three-dimensional copy of an object |
US06/721,451 US4752964A (en) | 1984-04-17 | 1985-04-09 | Method and apparatus for producing three-dimensional shape |
AT85104269T ATE69400T1 (en) | 1984-04-17 | 1985-04-09 | DEVICE FOR CREATING A THREE-DIMENSIONAL COPY OF AN OBJECT. |
CA000478699A CA1257682A (en) | 1984-04-17 | 1985-04-10 | Method and apparatus for producing three-dimensional shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59077213A JPS60220805A (en) | 1984-04-17 | 1984-04-17 | Device for forming solid shape |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60220805A true JPS60220805A (en) | 1985-11-05 |
JPH0550681B2 JPH0550681B2 (en) | 1993-07-29 |
Family
ID=13627551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59077213A Granted JPS60220805A (en) | 1984-04-17 | 1984-04-17 | Device for forming solid shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60220805A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62274204A (en) * | 1986-05-23 | 1987-11-28 | Hamamatsu Photonics Kk | Microscope system for obtaining three-dimensional data |
JPS63289406A (en) * | 1987-05-21 | 1988-11-25 | Kinkashiya:Kk | Three-dimensional configuration measuring instrument |
JPS63298007A (en) * | 1987-05-29 | 1988-12-05 | Mitsui Constr Co Ltd | Shape measuring instrument for body |
JPS6454208A (en) * | 1987-08-25 | 1989-03-01 | O G Joho Syst Kk | Shape detecting method |
JPH02303900A (en) * | 1989-05-19 | 1990-12-17 | Gojigen Kikaku:Kk | Automatic carving apparatus |
JPH041511A (en) * | 1990-04-17 | 1992-01-07 | Nippon Koshuha Kk | Noncontact shape measuring instrument |
CN102735182A (en) * | 2011-04-15 | 2012-10-17 | 顾建达 | Method and device for scanning inner contour of buildings by using handheld rangefinder |
CN104960365A (en) * | 2015-08-03 | 2015-10-07 | 温岭市创嘉信息科技有限公司 | Ball head carving machine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS532580A (en) * | 1976-06-29 | 1978-01-11 | Mitsui Petrochem Ind Ltd | Preparation of polyolefin |
JPS5781283A (en) * | 1980-11-10 | 1982-05-21 | Aoki Tei | Making of cubic model |
JPS58201006A (en) * | 1982-05-20 | 1983-11-22 | Hitachi Ltd | Detector of three-dimensional shape |
-
1984
- 1984-04-17 JP JP59077213A patent/JPS60220805A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS532580A (en) * | 1976-06-29 | 1978-01-11 | Mitsui Petrochem Ind Ltd | Preparation of polyolefin |
JPS5781283A (en) * | 1980-11-10 | 1982-05-21 | Aoki Tei | Making of cubic model |
JPS58201006A (en) * | 1982-05-20 | 1983-11-22 | Hitachi Ltd | Detector of three-dimensional shape |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62274204A (en) * | 1986-05-23 | 1987-11-28 | Hamamatsu Photonics Kk | Microscope system for obtaining three-dimensional data |
JPS63289406A (en) * | 1987-05-21 | 1988-11-25 | Kinkashiya:Kk | Three-dimensional configuration measuring instrument |
JPS63298007A (en) * | 1987-05-29 | 1988-12-05 | Mitsui Constr Co Ltd | Shape measuring instrument for body |
JPS6454208A (en) * | 1987-08-25 | 1989-03-01 | O G Joho Syst Kk | Shape detecting method |
JPH02303900A (en) * | 1989-05-19 | 1990-12-17 | Gojigen Kikaku:Kk | Automatic carving apparatus |
JPH041511A (en) * | 1990-04-17 | 1992-01-07 | Nippon Koshuha Kk | Noncontact shape measuring instrument |
CN102735182A (en) * | 2011-04-15 | 2012-10-17 | 顾建达 | Method and device for scanning inner contour of buildings by using handheld rangefinder |
CN104960365A (en) * | 2015-08-03 | 2015-10-07 | 温岭市创嘉信息科技有限公司 | Ball head carving machine |
Also Published As
Publication number | Publication date |
---|---|
JPH0550681B2 (en) | 1993-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5747822A (en) | Method and apparatus for optically digitizing a three-dimensional object | |
WO1994027756A1 (en) | Angle of bend detector and straight line extractor used therefor, and angle of bend detecting position setting apparatus | |
WO1991013318A1 (en) | Method and apparatus for measuring the angle of work | |
CN110433989A (en) | A kind of method of workpiece surface spraying | |
JPS60220805A (en) | Device for forming solid shape | |
CN115855955A (en) | Mold surface structure defect detection device and method based on multi-beam laser | |
JP2000131032A (en) | Method and device for measuring three-dimensional profile | |
CN108789412A (en) | A kind of robot motion's Trajectory Planning System, method and device | |
CN106292197B (en) | A kind of focusing leveling device and method based on image processing techniques | |
JPS6093424A (en) | Method and device for forming material body having the same shape as objective material body from objective thing | |
JPH0538714A (en) | Automatic stone working machine | |
CN113146027B (en) | Method and system for laser machining of inner wall of revolving body | |
CN1020503C (en) | Optical method for surveying three dimensional figure without reference plane | |
JPH0195889A (en) | Laser beam machine and laser beam machining method | |
JPH0612252B2 (en) | Automatic three-dimensional shape measurement method | |
KR102080506B1 (en) | 3D optical scanner | |
JPH03259705A (en) | Angle measuring instrument for bending machine | |
JP2001304827A (en) | Sectional shape measuring apparatus and sectional shape measuring method | |
JP2612794B2 (en) | Method for following a measuring head in an article surface shape measuring apparatus | |
JPS60220804A (en) | Three-dimensional shape production device | |
JPH0654228B2 (en) | Three-dimensional shape manufacturing method and manufacturing apparatus | |
JP2017100309A (en) | Three-dimensional molding method | |
JPS60118399A (en) | Method and apparatus for forming an object of the same shape from a target object | |
CN117346695B (en) | Surface profile detection calibration method, system, automatic detection equipment and medium | |
JPH02268207A (en) | Shape recognizing apparatus |