JPS61239248A - Composite electrophotographic photoreceptor - Google Patents

Composite electrophotographic photoreceptor

Info

Publication number
JPS61239248A
JPS61239248A JP7924085A JP7924085A JPS61239248A JP S61239248 A JPS61239248 A JP S61239248A JP 7924085 A JP7924085 A JP 7924085A JP 7924085 A JP7924085 A JP 7924085A JP S61239248 A JPS61239248 A JP S61239248A
Authority
JP
Japan
Prior art keywords
electrophotographic photoreceptor
titanyl phthalocyanine
compounds
photoreceptor
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7924085A
Other languages
Japanese (ja)
Other versions
JPH0629975B2 (en
Inventor
Kenichi Oaku
大阿久 憲一
Hiroshi Nakano
中野 弘
Masao Aizawa
相沢 政男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP60079240A priority Critical patent/JPH0629975B2/en
Publication of JPS61239248A publication Critical patent/JPS61239248A/en
Publication of JPH0629975B2 publication Critical patent/JPH0629975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 体レザーを用いたレーザービームプリンタ等に使用され
る複合型電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite electrophotographic photoreceptor used in a laser beam printer using a body laser.

〔従来の技術〕[Conventional technology]

7タロシアニン化合物が光導電性を示すことが1968
年に発見されて以来、光電変換材料として非常に多くの
研究が成されてさた。近年、ノンインパクトプリンティ
ングテクノロジーの発展に伴って半導体レーザを書き込
み用ヘッドとするレーザビームプリンターの開発研究が
盛んに行なわれている。電子写真方式で用いるレーザビ
ームプリンターでは先ず、一様にコロナ帯電された感光
体にインプット信号に基づく変調されたレーザビームを
照射しトナー現像によシ画像形成か行なわれる。このよ
うなレーザ記録方式により画質の向上が計られ、特に半
導体レーザを用いることよシ装置の単純化、小型化、ま
た低価格化が可能となるなどの利点が住するものと考え
られる。
In 1968, it was discovered that 7 talocyanine compounds exhibited photoconductivity.
Since its discovery in 1997, a great deal of research has been conducted on it as a photoelectric conversion material. 2. Description of the Related Art In recent years, with the development of non-impact printing technology, research and development efforts have been actively conducted to develop laser beam printers that use semiconductor lasers as writing heads. In a laser beam printer used in electrophotography, first, a uniformly corona-charged photoreceptor is irradiated with a laser beam modulated based on an input signal, and an image is formed by toner development. It is believed that such a laser recording method improves the image quality and has the advantage that the use of a semiconductor laser in particular makes it possible to simplify, downsize, and reduce the cost of the device.

現在、安定に動作する半導体レーザの発振波長にはとん
どが近赤外領域(λ>780nm)にある。すなわちそ
れに用いる記録用感光体は780nm〜850nmの波
長領域において高感度を有する必要がある。この場合実
用感度として要求される単色赤外光照射の半tfL露光
量ETは10 erg/iゼ以下である。このエフな長
波長域で高感度を示す光導電性物質の中で7タロシアニ
ン化合物は特に注目さfしている。
Currently, most of the oscillation wavelengths of semiconductor lasers that operate stably are in the near-infrared region (λ>780 nm). That is, the recording photoreceptor used therein needs to have high sensitivity in the wavelength range of 780 nm to 850 nm. In this case, the half-tfL exposure amount ET of monochromatic infrared light irradiation required as practical sensitivity is 10 erg/ise or less. Among photoconductive substances that exhibit high sensitivity in this long wavelength range, 7-thalocyanine compounds have attracted particular attention.

従来、電子写真用感光体にはセレン、テルル、脆化カド
ミウム、酸化亜鉛のような無機化合物、あるいはポリ’
1sl−ビニルカルバゾール、ビスアゾ顔料のような有
機化合物が用いられている。しかしこれらは780 n
m〜900 nmの長波長域において十分な光感度を有
するとはいえす、また近年、セレン、テルル、ヒ素の合
金を用いる感光体または色素増感された硫化カドミウム
を用いる感光体が800 nm近辺の長波長領域におい
て高感度全頁することが報告されているが、それらはい
ずれも強い毒性を有し社会問題としての環境安全性が再
検討されている。iたアモルファスシリコンを用いる感
光体は特定のドーピング法および作成法にLり七の感光
領域を長波長域にのはす可能性があると考えられるが、
現段階ではM、膜速度か遅く量産性に問題がめシ低価格
の感光体とはいい難い。これ萱で検討か行なわれたフタ
ロシアニン化合物の中で780nmJ&上の長波長域に
おいて高感度を示す化合物としては、χ型無金輛7タロ
シアニン、ε型銅フタロシアニン、バナジルフタロシア
ニン等を挙けることが出来る。
Conventionally, electrophotographic photoreceptors have been made of inorganic compounds such as selenium, tellurium, brittle cadmium, zinc oxide, or polyamide.
Organic compounds such as 1sl-vinylcarbazole and bisazo pigments are used. But these are 780 n
Although it has sufficient photosensitivity in the long wavelength range of m to 900 nm, in recent years, photoreceptors using alloys of selenium, tellurium, and arsenic or photoreceptors using dye-sensitized cadmium sulfide have been developed to It has been reported that they have high sensitivity in the long wavelength region, but all of them are highly toxic and their environmental safety is being reconsidered as a social issue. It is thought that photoreceptors using amorphous silicon may have the potential to extend the photosensitive region to long wavelength regions depending on specific doping and manufacturing methods.
At present, it is difficult to say that M is a low-cost photoreceptor because the film speed is slow and there are problems with mass production. Among the phthalocyanine compounds that have been investigated, compounds that exhibit high sensitivity in the long wavelength range of 780 nmJ and above include χ-type metal-free 7-thalocyanine, ε-type copper phthalocyanine, and vanadyl phthalocyanine. .

一方、高感度化のために、7タロシアニンの蒸着膜を電
荷発生層とする積層型感光体が検討され、周期律表II
a族及び■族の金1j4’を中心金属とするフタロシア
ニンのなかで。
On the other hand, in order to increase the sensitivity, a laminated photoreceptor using a vapor-deposited film of 7-talocyanine as a charge generation layer was studied, and
Among the phthalocyanines whose central metal is gold 1j4' of Group A and Group II.

比較的高い感度を有するものが幾つか得られている。こ
の工うな金属7タロシアニンに関する文献として1例え
ば特願昭56−96040.同56−33977、同5
7−146538、同57−153.9′g2!、同5
7−141581、同57−142458、同57−1
46538、同58−40798などがめる。しかしな
がら、蒸着膜の作成には高真空排気装置を必要とし、設
備費が高くなることから上記の如き有機感光体は高価格
のものとならざるを得ない。
Some have been obtained with relatively high sensitivity. Documents related to this talocyanine include 1, for example, Japanese Patent Application No. 56-96040. 56-33977, 5
7-146538, 57-153.9'g2! , same 5
7-141581, 57-142458, 57-1
46538, 58-40798, etc. However, the formation of the vapor deposited film requires a high vacuum evacuation device, which increases the equipment cost, so the organic photoreceptor described above inevitably becomes expensive.

これに対し、フタロシアニンを族N膜としてでeよなく
、樹脂分散層とし、こn’に電荷発生層として用いて、
その上に電荷移動Mを塗布して成る複合型感光体も検討
され、このような複合型感光体としてL熱金属フタロシ
アニン(特願昭57−66963号)やインジウムフタ
ロシアニン(特願昭58−220493号)を用いるも
のがあシこれらは比較的高感度な感光体であるが、前者
は800 nm以上の長波長領域において急激に感度が
低下する等の欠点を有し、又、後者は電荷発生層を樹脂
分散系で作成する場合には実用化に対して感度が不充分
である等の欠点全頁している。
On the other hand, instead of using phthalocyanine as a group N film, it is used as a resin dispersion layer, and this is used as a charge generation layer.
Composite type photoreceptors made by coating charge transfer M thereon have also been considered, and as such composite type photoreceptors, L-thermal metal phthalocyanine (Japanese Patent Application No. 57-66963) and indium phthalocyanine (Japanese Patent Application No. 58-220493) have been studied. These are relatively highly sensitive photoreceptors, but the former has drawbacks such as a sharp drop in sensitivity in the long wavelength region of 800 nm or more, and the latter has the disadvantage of charge generation. When the layer is made of a resin dispersion system, there are many drawbacks such as insufficient sensitivity for practical use.

〔発明が解決しょうとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、500〜900nmの波長範囲内で高
い光感度を示す電子写真用感光体の提供にある。
An object of the present invention is to provide an electrophotographic photoreceptor that exhibits high photosensitivity within the wavelength range of 500 to 900 nm.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はα形チタニルフタロシアニンを結着剤中に分散
させて成る感光層を有することを%徴とする複合型電子
写真用感光体によシ前記目的を達成した。
The present invention has achieved the above object by providing a composite electrophotographic photoreceptor having a photosensitive layer comprising α-type titanyl phthalocyanine dispersed in a binder.

本発明で用いられるチタニルフタロシアニンは、(式中
、Xl、X、、 、X、、X4は各々独立的にCj又は
Brを表わし、n、m、l、には各々独立的に0〜4の
数字を表わす。)で表わされる化合物でめる。
The titanyl phthalocyanine used in the present invention is (formula, Xl, X, , represents a number).

本発明に用いられるチタニルフタロシアニンのうチ、特
に好適なものは、チタニルフタロシアニン(TtOPc
)、チタニルクロロ7タロシアニン(TI OPc C
1)及びそれらの混合物である。
A particularly preferred titanyl phthalocyanine pack used in the present invention is titanyl phthalocyanine (TtOPc).
), titanylchloro7-thalocyanine (TI OPc C
1) and mixtures thereof.

本発明で使用するα形のチタニルフタロシアニンハ、例
えば四塩化チタンと7タロジニトリルをα−クロロナフ
タレン溶媒中で反応石せて得られるジクロロチタニウム
7タロシアニン(TiC12Pa)t’アンモニア水等
で加水分解することによシ製造でき、引き続いて、2−
エトキシエタノール、ジグライム、ジオキサン、テトラ
ヒドロフラン、h。
The α-form titanyl phthalocyanine used in the present invention, for example, dichlorotitanium 7-thalocyanine (TiC12Pa) obtained by reacting titanium tetrachloride and 7-talodinitrile in an α-chloronaphthalene solvent, is hydrolyzed with t' aqueous ammonia or the like. 2-
Ethoxyethanol, diglyme, dioxane, tetrahydrofuran, h.

N−ジメチルホルムアミド、N−メチルピロリドン、ピ
リジン、モルホリン等の電子供与性の溶媒で処理するこ
とがさらに好ましい。
More preferably, the treatment is performed with an electron-donating solvent such as N-dimethylformamide, N-methylpyrrolidone, pyridine, or morpholine.

このようにして得られた本発明で使用式れるα形チタニ
ルフタロシアニンのCu −K α線を用いたX線回折
図を第1図の(b)に示す。このチタニウムフタロシア
ニンは%XX線回折図おいて7.5°、12.30s 
1i3’、 25.3°、及び28.7°の各ブラッグ
角2θ(但し、±0.2の誤差範囲を含むものとする。
An X-ray diffraction pattern using Cu-K α rays of the α-type titanyl phthalocyanine used in the present invention thus obtained is shown in FIG. 1(b). This titanium phthalocyanine is 7.5° and 12.30s in the %XX-ray diffraction diagram.
Bragg angles 2θ of 1i3', 25.3°, and 28.7° (with an error range of ±0.2).

)で比較的強いピークを有するものである。) has a relatively strong peak.

第1図には、α−クロロナフタレンから再結晶したβ形
チタニルフタロシアニンのX線回折図〔第1図(el〕
ト、アシッドペースト法〔モザー龜アンド・トーマス著
「フタロシアニン化合物J(19753年発行)に記載
されているα形フタロシアニンを得るための処理方法〕
により処理したα形チタニルフタロシアニンのX線回折
図〔第1図(a)〕も合わせて示す。これらのX線回折
図から前記の方法で得られるチタニルフタロシアニンが
α形であること、並びに、α形チタニルフタロシアニン
がブラッグ角2θ=7.5C%12.3216.s@ 
25.3°及び28.7°において比較的強いピークを
示すものであることが解る。
Figure 1 shows the X-ray diffraction diagram of β-type titanyl phthalocyanine recrystallized from α-chloronaphthalene [Figure 1 (el)]
Acid paste method [Processing method for obtaining α-type phthalocyanine described in "Phthalocyanine Compound J" by Moser and Thomas (published in 19753)]
The X-ray diffraction pattern of α-type titanyl phthalocyanine treated with [FIG. 1(a)] is also shown. These X-ray diffraction diagrams show that the titanyl phthalocyanine obtained by the above method is in the α form, and that the α form titanyl phthalocyanine has a Bragg angle of 2θ=7.5C%12.3216. s@
It can be seen that relatively strong peaks are shown at 25.3° and 28.7°.

本発明で使用されるチタニルフタロシアニンは、第1図
の(bl又は(clの如きX線回折図(Cu−にα線)
を有するα形のものである。
The titanyl phthalocyanine used in the present invention has an X-ray diffraction pattern (α rays on Cu-) as shown in FIG. 1 (bl or (cl)).
It is of α form with .

本発明で使用する他のα形チタニルフタロシアニンは、
ハロゲン原子又はその置換位置又はその置換数の相違に
も拘らず、それらのX線回折図には、共通の、前記5個
の比較的強い特足ピークが認められる。
Other α-type titanyl phthalocyanines used in the present invention are:
Despite differences in the halogen atoms, their substitution positions, or the number of substitutions, the five relatively strong peaks in common are observed in their X-ray diffractograms.

本発明で結着剤として使用する樹脂は、一般に電子写真
用感光体の結着剤として用いられている樹脂が挙げられ
Examples of the resin used as a binder in the present invention include resins that are generally used as binders for electrophotographic photoreceptors.

好適なものとしては、フェノール樹脂、エリア樹脂、メ
ラミン樹脂、エポキシ樹脂、ケイ素値脂、塩化ビニル−
酢酸ビニル共重合体、キシレン樹脂、ウレタン樹脂、ア
クリル樹脂、ポリカーボネート樹脂、ホリアクリレート
樹脂、飽和ポリエステル樹脂、フェノキシ樹脂等が挙げ
られる。
Suitable examples include phenolic resin, area resin, melamine resin, epoxy resin, silicone resin, and vinyl chloride.
Examples include vinyl acetate copolymers, xylene resins, urethane resins, acrylic resins, polycarbonate resins, polyacrylate resins, saturated polyester resins, and phenoxy resins.

本発明の電子写真用感光体は、α形チタニルフタロシア
ニンヲボールミル、サンドミル或いはアトライター等の
岸砕装置で微細7za子になる萱で光分摩砕して使用す
ることが好ましい。その際の摩砕剤としては、通常用い
られるガラスピーズ、スチールビーズ、アルミナビーズ
が挙ケラれ、必要に応じて、食塩、重炭酸ソーダ等の厘
砕助剤を用いてもさしつかえない。また、摩砕時に分散
媒を必要とすると@は摩砕時の温度で液状のものが好ま
しく、例えば、2−エトキシエタノール、ジクライム、
ジオキサン、テトラヒドロフラン、N、N−ジメチルホ
ルムアミド、N−メチルピロリドン、ピリジン、モルホ
リン或いはポリエチレングリコール等の如き結晶形の変
化を促進しないような溶媒が挙げられる。
The electrophotographic photoreceptor of the present invention is preferably used by optically grinding α-type titanyl phthalocyanine into fine grains using a crusher such as a ball mill, sand mill, or attriter. Examples of the grinding agent in this case include commonly used glass beads, steel beads, and alumina beads, and if necessary, grinding aids such as common salt and bicarbonate of soda may also be used. In addition, if a dispersion medium is required during grinding, @ is preferably liquid at the temperature during grinding, such as 2-ethoxyethanol, diclime,
Examples include solvents that do not promote changes in crystal form, such as dioxane, tetrahydrofuran, N,N-dimethylformamide, N-methylpyrrolidone, pyridine, morpholine, or polyethylene glycol.

電荷輸送物質としては、正孔輸送物質と寛子榴送物質と
に分類され、正孔輸送物質としては、例えは、インドリ
ン化合物、キノリン化合物及びトリフェニルアミン化合
物等が挙けられ、電子輸送物質としては、例えばビスア
ゾ化合物が挙けられ、使用する場合は、少なくとも1m
の正孔輸送物質と少なくとも1種の電子輸送物質を併用
することがよシ好ましい。電荷発生物質としては1例え
はペリレン化合物及びビスアゾ化合物等が挙けられる。
Charge-transporting substances are classified into hole-transporting substances and Hiroshima-transporting substances. Examples of hole-transporting substances include indoline compounds, quinoline compounds, and triphenylamine compounds, and as electron-transporting substances. is, for example, a bisazo compound, and when used, at least 1 m
It is more preferable to use a hole transport substance and at least one electron transport substance in combination. Examples of charge generating substances include perylene compounds and bisazo compounds.

インドリン化合物としては、例えは、 一般式    R1 (式中、R1は置換基を有してもよいアルキル基、アラ
ルキル基またはアリール基を表わし、R3及びRsは夫
々独立的に水素原子、ハロゲン原子又は置換基を有して
もよいアルキル基、アラルキル基もしくはアリール基を
表わし、R4は水素原子、ハロゲン原子または置換基を
有してもよいアルキル基もしくはアラルキル基を表わし
%R,及びEL6は夫々独立的に置換基を有してもよい
アルキル基、アラルキル基又はアリール基を表わし、R
3と86は互に一体となって環全形成しても良い。)で
表わされるインドリン化合物を挙げることができる。不
発明で用いるインドリン化合物の好適例を第1表にまと
めて掲げる。
Examples of indoline compounds include the general formula R1 (wherein R1 represents an alkyl group, an aralkyl group, or an aryl group that may have a substituent, and R3 and Rs each independently represent a hydrogen atom, a halogen atom, or represents an alkyl group, aralkyl group, or aryl group that may have a substituent; R4 represents a hydrogen atom, a halogen atom, or an alkyl group or an aralkyl group that may have a substituent; %R and EL6 are each independently represents an alkyl group, aralkyl group or aryl group which may have a substituent, and R
3 and 86 may be integrated with each other to form a complete ring. ) can be mentioned. Preferable examples of indoline compounds used in the invention are summarized in Table 1.

キノリン化合物としては、例えは、一般式R,R。Examples of quinoline compounds include general formulas R and R.

(式中、Bは置換基を有してもよい芳香族炭化水素基又
は芳香族複素環基を示し、Rlb Rlh及びR3は夫
々独立的に、水素原子、ハロゲン原子又は置換基を有し
てもよいアルキル基、アラルキル基又はアリール基を表
わす。)で表わされるキノリン化合物を挙げることがで
きる。本発明で用いるキノリン化合物を第2表にまとめ
て掲げる。
(In the formula, B represents an aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent, and Rlb Rlh and R3 each independently have a hydrogen atom, a halogen atom, or a substituent. (representing an alkyl group, an aralkyl group or an aryl group) can be mentioned. The quinoline compounds used in the present invention are summarized in Table 2.

トリフェニルアミン化合物としては、一般式Arc (式中、Ar、、Arc及びArcは置換、未置換の芳
香族炭素環基及び置換、未置換の芳香族複素環基を表わ
す。)で表わされるトリフェニルアミン化合物を挙げる
ことができ、好適例を第3表に挙けた。
The triphenylamine compound is a triphenylamine compound represented by the general formula Arc (where Ar, Arc, and Arc represent a substituted or unsubstituted aromatic carbocyclic group and a substituted or unsubstituted aromatic heterocyclic group). Phenylamine compounds can be mentioned, and preferred examples are listed in Table 3.

第   3   表 また電荷輸送物質としては他の周知のものも使用でき、
例えばピラゾール、ピラゾリン、オキサジアゾール、チ
アゾール、イミダゾール等の複素環化合物の誘導体、ヒ
ドラゾン騨導体、トリフェニルメタン誘導体、ポリ−N
−ビニルカルバゾール及びその誘導体等などが挙けられ
る。
Table 3 Other well-known charge transport materials can also be used.
For example, derivatives of heterocyclic compounds such as pyrazole, pyrazoline, oxadiazole, thiazole, and imidazole, hydrazone conductors, triphenylmethane derivatives, poly-N
-Vinyl carbazole and its derivatives, etc.

本発明で用いられるビスアゾ化合物としては、一般に電
子写真用感光体に使用されるものであれはさしつかえな
く、好適に使用されるビスアゾ化合物を第4表にまとめ
て掲げる。
The bisazo compounds used in the present invention may be those generally used in electrophotographic photoreceptors, and Table 4 lists bisazo compounds that are preferably used.

本発明で用いられるペリレン化合物としては、例えは、
一般式 (式中、R1及びR2はそれぞれ独立的に水素原子又は
置換もしくは未置換のアルキル基、アリール基、アルキ
ルアリール基或はアミノ基を表わす。)で表わされるペ
リレン化合物を挙げることができる。
Examples of perylene compounds used in the present invention include:
Perylene compounds represented by the general formula (wherein R1 and R2 each independently represent a hydrogen atom or a substituted or unsubstituted alkyl group, aryl group, alkylaryl group, or amino group) can be mentioned.

本発明で用いられるペリレン化合物の具体例を第5表に
まとめて掲ける。
Specific examples of perylene compounds used in the present invention are summarized in Table 5.

本発明の電子写真用感光体は、例えば、前記した微細化
されたα形チタニルフタロシアニンを適当な有機溶剤中
に溶解した樹脂の溶液に加え常法の分散機(ボールミリ
ング、ペイントシェーカー、レドデイビル、超音波分散
機等)によシ均一に分散させ、これを導電性基板上に、
塗布、乾燥することによプ作製できる。塗布は、通常ロ
ールコータ−。
The electrophotographic photoreceptor of the present invention can be prepared, for example, by adding the above-mentioned finely divided α-type titanyl phthalocyanine to a resin solution in a suitable organic solvent using a conventional dispersion machine (ball milling, paint shaker, Red Devil, etc.). (ultrasonic dispersion machine, etc.), and then spread it onto a conductive substrate.
It can be made by coating and drying. Application is usually done using a roll coater.

ワイヤーバー、ドクターブレードなどを用いる。Use a wire bar, doctor blade, etc.

適当な溶媒としては、例えば、ベンゼンやトルエンの如
き芳香族炭化水素類:アセトンやブタノンの如きケトン
類;メチレンクロライドやクロロホルムの如きハロゲン
化炭化水素類;エチルエーテルの如きエーテル類;ナト
2ヒドロフラン、ジオキサンの如き環状エーテル類;酢
酸エチル、メチルセロソルブアセテートの如きエステル
類が挙げられ、これらのうち一種又は二種以上を用いる
ことができる。
Suitable solvents include, for example, aromatic hydrocarbons such as benzene and toluene; ketones such as acetone and butanone; halogenated hydrocarbons such as methylene chloride and chloroform; ethers such as ethyl ether; Examples include cyclic ethers such as dioxane; esters such as ethyl acetate and methyl cellosolve acetate; one or more of these may be used.

本発明の電子写1緘光体は1種々の構造をとることがで
きる。その例を第3図に示した。第3図の(alの感光
体は導電性支持体(11上にチタニルフタロシアニン化
合物(2)を正孔輸送物質(4)、電子輸送物質(5]
、及び結着剤(3)からなる電荷輸送媒体に分散させて
成る感光Nを設けたものでわる。また、感光層には必要
に応じて、電荷発生物質(6)t−含有させてもよい。
The electrophotographic photoreceptor of the present invention can have a variety of structures. An example is shown in FIG. In Figure 3, the photoreceptor (al) is a conductive support (11) with a titanyl phthalocyanine compound (2), a hole transport material (4), and an electron transport material (5).
, and a binder (3). Further, the photosensitive layer may contain a charge generating substance (6) t-, if necessary.

第3図の(bj及び第3図の(c)の感光体は、チタニ
ルフタロシアニン化合物(2)と結着剤(3)からなる
電荷担体発生層(Blと、正孔榴送物質(4)、電子輸
送物質(5)及び結着剤(3)感光層の厚さは、第3図
の(aJcD!IS光体の場合、好ましくは3〜50μ
%更に好ましくは5〜20μである。また、第3図(b
ね(cl、(d)及び・)の感光体の場合には、電荷担
体発生層の浮名は好ましくは5μ以下、更に好lしくに
[L01〜2μでめル、電荷輸送ノーの厚さは好ましく
は、3〜50μ、更に好1しくは、5〜20μである。
The photoreceptor shown in FIG. 3 (bj) and FIG. 3 (c) has a charge carrier generation layer (Bl) consisting of a titanyl phthalocyanine compound (2) and a binder (3), and a hole transport substance (4). , the electron transport material (5) and the binder (3).
% is more preferably 5 to 20μ. In addition, Fig. 3 (b
In the case of a photoreceptor of (Cl, (d) and . Preferably, it is 3 to 50μ, more preferably 5 to 20μ.

金物の割合は、感光層に対してCLO5〜90x量%、
好ましくは15〜50重童%でろシ、電荷輸送物質の割
合は10〜90!:i%、好ましくは10〜60重童%
であシ、電荷発生物質の割合は10〜70重量%、好ま
しくは60〜50′M′jjk%である。なお、第6図
の(al〜(elのいずれの感光体の作製においても、
結着剤とともに可塑剤を用いることができる。
The proportion of metal is 5 to 90x amount% of CLO to the photosensitive layer,
Preferably, it is 15-50%, and the proportion of the charge transport substance is 10-90%. :i%, preferably 10-60%
The proportion of the charge generating material is 10 to 70% by weight, preferably 60 to 50% by weight. In addition, in the production of any of the photoreceptors (al to (el) in FIG. 6,
Plasticizers can be used with binders.

本発明の感光体の導電性支持体には、例えばアルミニウ
ムなどの金属板または金属箔、アルミニウムなどの金属
を蒸着したプラスチックフィルム、あるいは導電処理を
施した紙などが用いられる。
As the conductive support for the photoreceptor of the present invention, for example, a metal plate or foil made of aluminum or the like, a plastic film deposited with a metal such as aluminum, or paper treated with electrical conductivity is used.

以上のように得られる感光体には導電性支持体とl&元
層の間に、必要に応じて接着It!jまたはバリヤ層を
設けることができる。これらの層の材料としては、ポリ
アミド、ニトロセルロース、カゼイン、ポリビニルアル
コールナト?’6タ、その膜厚は1μ以下が望ましい。
The photoreceptor obtained as described above is bonded between the conductive support and the original layer as required. j or a barrier layer can be provided. Materials for these layers include polyamide, nitrocellulose, casein, and polyvinyl alcohol. It is desirable that the film thickness be 1 μm or less.

以下、本発明を実施例によシ、具体的に説明するが、本
発明はその要旨を越えない限シ、以下の実施例に限定さ
れるものではない。
Hereinafter, the present invention will be specifically explained using examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

/化合物、トリフェニルアミン化合物、ビスアゾ化合物
、ペリレン化合物の具体例の716を示す。
/ compound, triphenylamine compound, bisazo compound, and perylene compound.

各例中の1部」はすべて、ことわシのない限夕1量部」
を示す。
1 copy in each example is a limited quantity of 1 copy without any special terms.
shows.

〔実施例〕〔Example〕

7タロジニトリル4C1と4塩化チタン18.?及びα
−クロロナフタレン500−の混合物を窒素気流下24
0〜250℃で3時間加熱攪拌して反応を完結させたそ
の後濾過し、生成物であるジクロロチタニウムフタロシ
アニンを収得した。得られたジクロロチタニウム7タロ
シアニンと濃アンモニア水30011−1の混合物を1
時間加熱還流し、目的物であるチタニルフタロシアニン
IE[’t−得た。生成物はアセトンにより、ソックス
レー抽出器で充分洗浄を行った。
7 Talodinitrile 4C1 and titanium tetrachloride 18. ? and α
-Chloronaphthalene 500- was mixed under nitrogen stream for 24 hours.
The reaction was completed by heating and stirring at 0 to 250°C for 3 hours, and then filtered to obtain the product dichlorotitanium phthalocyanine. A mixture of the obtained dichlorotitanium 7 talocyanine and concentrated aqueous ammonia 30011-1 was added to 1
The mixture was heated under reflux for a period of time to obtain the desired product, titanyl phthalocyanine IE. The product was thoroughly washed with acetone using a Soxhlet extractor.

この生成物を質量スペクトル分析したところ、チタニル
フタロシアニン(M、”576)を主成分とし、クロル
化チタニルフタロシアニン(M”610)を少蓋含むも
のであ実施例 1 前記工によシ得たα形チタニルフタロシアニン(5部)
をアルミナピース(60部)t−用いたボールミルによ
り、64時間摩砕した。その微細化チタニルフタロシア
ニン3部、飽和ポリエステル樹脂(1バイロン200」
■東洋紡製)1部、クロロホルム210部をアルミナピ
ースを用い九ボールミルで18時間混合し、得られた分
散液をアルミニウム蒸着ポリエステルフィルム上にワイ
ヤーバーで塗布し、乾燥膜厚0.5μの電荷発生層を形
成させた。この電荷発生層の上に、電荷移動物質AT−
16(5部)、ポリカーボネート樹脂(1パンライ)−
1250WJ帝大化成■製)5部をクロロホルム65部
に溶かした溶液をワイヤーバーで塗布し、乾燥膜厚10
μの電荷移動層を形成し、複この感光体の感度を[ペー
パーアナライザー −5p−4284(川口電機製作所
社製)を用いて、まず感光体を暗所で印加電圧−6Kv
のコロナ放電によシ帯電させ初期電位(Vo )を測定
し、次に10秒間暗所に放置し10秒後の表面電位保持
率(■1゜/V0)を測定した。ついで、タングステン
ランプから、その表面照度5ルツクスで光照射を行い、
表面電位がに又はにに減少するまでの時間を測定する方
法で光感度Eに及びEにを測定した。
Mass spectrometry analysis of this product revealed that the main component was titanyl phthalocyanine (M, 576) and a small amount of chlorinated titanyl phthalocyanine (M, 610). Form titanyl phthalocyanine (5 parts)
was ground for 64 hours in a ball mill using alumina pieces (60 parts). 3 parts of the micronized titanyl phthalocyanine, saturated polyester resin (1 Vyron 200)
■1 part of Toyobo) and 210 parts of chloroform were mixed in a nine-ball mill using an alumina piece for 18 hours, and the resulting dispersion was applied onto an aluminum-deposited polyester film using a wire bar to generate a charge with a dry film thickness of 0.5μ. A layer was formed. On this charge generation layer, a charge transfer material AT-
16 (5 parts), polycarbonate resin (1 pan-rye) -
A solution of 5 parts of 1250WJ (manufactured by Teidai Kasei ■) dissolved in 65 parts of chloroform was applied with a wire bar to a dry film thickness of 10.
A charge transfer layer of μ was formed, and the sensitivity of the photoreceptor was measured using a Paper Analyzer-5P-4284 (manufactured by Kawaguchi Electric Seisakusho Co., Ltd.).
The sample was charged by corona discharge, the initial potential (Vo) was measured, and then it was left in a dark place for 10 seconds, and the surface potential retention rate (■1°/V0) after 10 seconds was measured. Next, light was irradiated from a tungsten lamp at a surface illuminance of 5 lux.
Photosensitivity E and E were measured by measuring the time taken for the surface potential to decrease.

また、同様にして露光開始後15秒後の表面電位(V工
)も測定した。
In addition, the surface potential (V) 15 seconds after the start of exposure was also measured in the same manner.

更に850 nmに分光された光(光強度10mv/*
”)を入射して測定し、同様に光感度(Eに、i)を測
定した。
Further, the light is split into 850 nm (light intensity 10mv/*
”) was incident and measured, and the photosensitivity (E, i) was similarly measured.

この感光体の分光感度は第4図に示すように520〜9
00nmの広い範囲でレーザープリンター用感光体の実
用化感度E% = 10 erg/cW?(E% =α
1cm”/erg)を超えている。
The spectral sensitivity of this photoreceptor is 520 to 9 as shown in Figure 4.
Practical sensitivity of photoreceptor for laser printer in wide range of 00 nm E% = 10 erg/cW? (E% = α
1 cm”/erg).

加えて、実施例1と同一の塗料を透明なPETフィルム
上に塗布し、測定した可視吸収スペクトルを第5図に示
す。
In addition, the same paint as in Example 1 was applied onto a transparent PET film, and the measured visible absorption spectrum is shown in FIG.

このように650 nmと800 nmに極大吸収を示
す。また。
Thus, it exhibits maximum absorption at 650 nm and 800 nm. Also.

第2図はこの塗料のX線回折図である。FIG. 2 is an X-ray diffraction diagram of this paint.

実1例 24 前記Iで得たα形チタニルフタロシアニンを実施例1と
同様にして摩砕した微細化したチタニルフタロシアニン
1部を濃硫酸」0部に5℃に保ちながら溶解し、引き続
いて2時間攪拌を続は九。この溶液を氷水200部に徐
々に滴下し、攪拌し、沈殿物を蒸留水で充分洗浄する。
Practical Example 24 1 part of finely divided titanyl phthalocyanine obtained by grinding the α-type titanyl phthalocyanine obtained in the above I in the same manner as in Example 1 was dissolved in 0 parts of concentrated sulfuric acid while maintaining the temperature at 5°C, and then dissolved for 2 hours. Continue stirring at step 9. This solution was gradually dropped into 200 parts of ice water, stirred, and the precipitate was thoroughly washed with distilled water.

(このようにして得られたα形チタニルフタロシアニン
のX線回折図が第1図(C)である。)このチタニウム
7タロシアニンtアルミナと−ズを用いたボールミルで
20時間摩砕した後、実施例1と同様の方法で複合型電
子写真感光体を作成し、先と同様の方法で感光体特性を
測定した。
(The X-ray diffraction pattern of the α-type titanyl phthalocyanine thus obtained is shown in Figure 1 (C).) After milling for 20 hours in a ball mill using this titanium 7-talocyanine t-alumina powder, the A composite electrophotographic photoreceptor was prepared in the same manner as in Example 1, and the characteristics of the photoreceptor were measured in the same manner as above.

比較例 1 前記lで得たチタニルフタロシアニンをα−クロロt7
タレンによシ再結晶精製して得たβ形チタニルフタロシ
アニンを用いて、実施例1と同様の方法で単層形電子写
真用感光体を作成し、先と同様の方法で感光体特性を測
定した。
Comparative Example 1 The titanyl phthalocyanine obtained in 1 above was converted into α-chlorot7
A single-layer electrophotographic photoreceptor was prepared in the same manner as in Example 1 using β-type titanyl phthalocyanine obtained by recrystallization and purification using talene, and the characteristics of the photoreceptor were measured in the same manner as before. did.

実施例 6 電荷移動物質AT−16(8部)、ボリアリレート樹脂
(rU 100Jユニオンカーバイト社製)(8部)%
及びジオキサン92部よりなる溶液を乾燥膜厚10μに
なるように塗布する。その上に実施例1と同様の方法で
得た微細化したチタニルフタロシアニン3部、電荷発生
物質AP −53(1部)、電荷移動物質/l6T−1
6(6部)、ボリアリレート樹脂rU 100」(15
部)、及びクロロホルム150部t−ペイントシェーカ
ーで混合した後、乾燥膜厚5μになるように塗布し、複
合型電子写真感光体を作成し、その感光体特性を測定し
第6表にまとめた以上の実施例1〜6及び比較例1の感
光体特性を第6表にまとめて掲げる。
Example 6 Charge transfer substance AT-16 (8 parts), polyarylate resin (rU 100J manufactured by Union Carbide) (8 parts)%
A solution consisting of 92 parts of dioxane and 92 parts of dioxane is applied to a dry film thickness of 10 μm. On top of that, 3 parts of finely divided titanyl phthalocyanine obtained in the same manner as in Example 1, a charge generating substance AP-53 (1 part), a charge transfer substance/l6T-1
6 (6 parts), polyarylate resin rU 100'' (15
150 parts of chloroform) and 150 parts of chloroform were mixed in a T-paint shaker and applied to a dry film thickness of 5 μm to prepare a composite electrophotographic photoreceptor, and the photoreceptor characteristics were measured and summarized in Table 6. The photoreceptor characteristics of Examples 1 to 6 and Comparative Example 1 are summarized in Table 6.

実施例 4〜7 宏愉佑1 8〜14 実施例1と同様にして得た微細化したチタニルフタロシ
アニン6部、飽和ポリエステル樹脂([バイロン200
」■東洋訪英〕1部と下記の第7表の各珈済媒210部
をアルミナピーズを用いたボールミルで18時間混合し
、得られた分散液全アルミニウム蒸着ポリエステルフィ
ルム上にワイヤーバ〒で塗布し、乾燥膜厚Q、3μの電
荷発生層を形成した。以下、実施例1と同様にして、複
合型電子写真感光体を作成し、830 nmに分光され
た光(光強度10 ”W/Lつを入射して、感光体感度
(Eに)を測足し、第7表にまとめた。
Examples 4 to 7 Hiroyuki 1 8 to 14 6 parts of finely divided titanyl phthalocyanine obtained in the same manner as in Example 1, saturated polyester resin ([Vylon 200
1 part of "Toyo Visit to England" and 210 parts of each milling medium listed in Table 7 below were mixed for 18 hours in a ball mill using alumina peas, and the resulting dispersion was coated on an all-aluminum deposited polyester film using a wire bar. A charge generation layer having a dry film thickness Q of 3 μm was formed. Hereinafter, a composite electrophotographic photoreceptor was prepared in the same manner as in Example 1, and the sensitivity (E) of the photoreceptor was measured by inputting 830 nm light (light intensity 10'' W/L). The results are summarized in Table 7.

ツζI−vツ  (J−1呻 実施例1において、電荷移動物質AiT−16の代わシ
に第8表に示す他の電荷移動物質を用い、種々の感光体
を作成し、830 nmに分光された光(光強度101
1W/Elりを入射して感光体感度(Eに)を測定し、
第8表にまとめた。
(J-1) In Example 1, various photoreceptors were prepared using other charge transfer substances shown in Table 8 in place of the charge transfer substance AiT-16, and spectroscopy was performed at 830 nm. light (light intensity 101
Measure the photoreceptor sensitivity (E) by inputting 1W/El,
The results are summarized in Table 8.

第   8   表 実施例 15〜20 実施例1の感光体において、さらに第9表に記載した電
荷発生物質全チタニルフタロシアニンに対して50重童
%添加し、種々の感光体を作成した。各々の感光体の特
性は第9表に1とめる。
Table 8 Examples 15 to 20 In the photoreceptor of Example 1, the charge generating substance listed in Table 9 was further added in an amount of 50% by weight based on the total titanyl phthalocyanine to prepare various photoreceptors. The characteristics of each photoreceptor are listed in Table 9.

第   9   表 〔発明の効果〕 本発明の複合盤電子写真用感光体は、α形チタニルフタ
ロシアニンを結着剤中に分散してなる感光層を有するこ
とにより、520〜900 nmの広い波長領域で高い
感度を有するものであシ、特に700〜900nm前後
の光源を用いたレーザービームプリンタや液晶プリンタ
用の感光体として優れている。
Table 9 [Effects of the Invention] The composite disc electrophotographic photoreceptor of the present invention has a photosensitive layer in which α-type titanyl phthalocyanine is dispersed in a binder. It has high sensitivity and is particularly excellent as a photoreceptor for laser beam printers and liquid crystal printers that use a light source of about 700 to 900 nm.

本発明の複合型電子写真感光体はレーザービームプリン
タのみでなく、半導体レーザー等の750〜850nm
の光源を使用したその他の各種光記録デバイスにも応用
することができる。
The composite electrophotographic photoreceptor of the present invention can be used not only for laser beam printers but also for semiconductor lasers, etc.
The present invention can also be applied to various other optical recording devices using a light source.

【図面の簡単な説明】[Brief explanation of drawings]

Jと±込 第1図はチタニル7タロシアニ/のX#!回折図である
。 (aJ・・・・・・アシッドペースト法処理をしたα形
チタニルフタロシアニンのX緯I竹胆 (b)・−・・・・α形チタニル7メロシアニンのX 
g< Il:IFJ” 囚(cトー・・・・β形チタニ
ルフタロシアニンのX−参に目竹田第2図は、α形チタ
ニルフタロシアニン電荷発注層のX線回折図である。 第6図(al@elは本発明に係る電子写真用感光体の
拡大部分断面図である。 (11−・・・・・導電性支持体 (2)・・・・・・チタニルフタロシアニン(3)・・
・・・・結 着  剤 (41・・・・・・正孔輸送物質 (5)・・・・・・寛子権送物質 (6)・・・・・・電荷発生物質 (Al・・・・・・電荷輸送層 (Bl・・・・・電荷担体発生層 第4図は、実施例1の電子写真用感光体の分光感度を示
す図である。 第5図は、実施例1の感光体の電荷発生層の可視吸収ス
ペクトルを表す図である。
Figure 1 including J and ± is Titanyl 7 Tarociani/X#! It is a diffraction diagram. (aJ...X of α-type titanyl phthalocyanine treated with acid paste method
G @el is an enlarged partial sectional view of the electrophotographic photoreceptor according to the present invention. (11-... Conductive support (2)... Titanyl phthalocyanine (3)...
...Binder (41) ...Hole transport material (5) ...Hole transport material (6) ...Charge generating material (Al... ...Charge transport layer (Bl...Charge carrier generation layer FIG. 4 is a diagram showing the spectral sensitivity of the electrophotographic photoreceptor of Example 1. FIG. 5 is a diagram showing the spectral sensitivity of the electrophotographic photoreceptor of Example 1. FIG. 3 is a diagram showing the visible absorption spectrum of the charge generation layer of FIG.

Claims (1)

【特許請求の範囲】 1、α形チタニルフタロシアニンを結着剤中に分散させ
て成る感光層を有することを特徴とする複合型電子写真
用感光体。 2、感光層が電荷移動物質を含有するものである特許請
求の範囲第1項記載の電子写真用感光体。 3、感光層が電荷移動物質及び電荷発生物質を含有する
ものである特許請求の範囲第1項記載の電子写真用感光
体。 4、α形チタニルフタロシアニンがX線回折図において
、7.5°、12.3°、16.3°、25.3°、及
び28.7°の各ブラツグ角2θで強いピークを示すチ
タニルフタロシアニンである特許請求の範囲第1項記載
の電子写真用感光体。 5、電荷輸送物質がインドリン化合物、キノリン化合物
、トリフエニルアミン化合物、及び、ビスアゾ化合物か
ら成る群から選ばれる少なくとも一種の化合物である特
許請求の範囲第2項乃至第4項記載の電子写真用感光体
。 6、電荷発生物質がペリレン化合物及びビスアゾ化合物
である特許請求の範囲第3項乃至第4項記載の電子写真
用感光体。
[Scope of Claims] 1. A composite electrophotographic photoreceptor comprising a photosensitive layer comprising α-type titanyl phthalocyanine dispersed in a binder. 2. The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer contains a charge transfer substance. 3. The electrophotographic photoreceptor according to claim 1, wherein the photosensitive layer contains a charge transfer substance and a charge generation substance. 4. Titanyl phthalocyanine in which α-type titanyl phthalocyanine exhibits strong peaks at each Bragg angle 2θ of 7.5°, 12.3°, 16.3°, 25.3°, and 28.7° in the X-ray diffraction diagram. An electrophotographic photoreceptor according to claim 1. 5. Electrophotographic photosensitive material according to claims 2 to 4, wherein the charge transport substance is at least one compound selected from the group consisting of indoline compounds, quinoline compounds, triphenylamine compounds, and bisazo compounds. body. 6. The electrophotographic photoreceptor according to claims 3 to 4, wherein the charge generating substance is a perylene compound or a bisazo compound.
JP60079240A 1985-04-16 1985-04-16 Multilayer type photoconductor for electrophotography Expired - Lifetime JPH0629975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60079240A JPH0629975B2 (en) 1985-04-16 1985-04-16 Multilayer type photoconductor for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60079240A JPH0629975B2 (en) 1985-04-16 1985-04-16 Multilayer type photoconductor for electrophotography

Publications (2)

Publication Number Publication Date
JPS61239248A true JPS61239248A (en) 1986-10-24
JPH0629975B2 JPH0629975B2 (en) 1994-04-20

Family

ID=13684333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079240A Expired - Lifetime JPH0629975B2 (en) 1985-04-16 1985-04-16 Multilayer type photoconductor for electrophotography

Country Status (1)

Country Link
JP (1) JPH0629975B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120564A (en) * 1987-11-04 1989-05-12 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
JPH01142659A (en) * 1987-11-30 1989-06-05 Mita Ind Co Ltd Electrophotographic sensitive body
JPH01221461A (en) * 1987-10-26 1989-09-04 Mita Ind Co Ltd Alpha-type titanyl phthalocyanine composition, its production and electrophotographic photoreceptor containing same
JPH0273360A (en) * 1988-09-09 1990-03-13 Takasago Internatl Corp Electrophotographic sensitive body
JPH03116153A (en) * 1989-09-29 1991-05-17 Mita Ind Co Ltd Electrophotographic sensitive body
US5384625A (en) * 1992-12-28 1995-01-24 Canon Kabushiki Kaisha Image forming method
US5391446A (en) * 1990-07-02 1995-02-21 Canon Kabushiki Kaisha Image holding member
US5432278A (en) * 1990-10-24 1995-07-11 Canon Kabushiki Kaisha Process for producing crystalline oxytitanium phthalocyanine
EP0686878A1 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotrographic apparatus unit
US5484673A (en) * 1990-07-10 1996-01-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US5558964A (en) * 1991-10-25 1996-09-24 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and electrophotographic apparatus, device unit, and facsimile machine employing the same
US5576131A (en) * 1993-11-29 1996-11-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotographic apparatus unit
US5837412A (en) * 1996-08-08 1998-11-17 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus utilizing the same
US5972551A (en) * 1996-12-26 1999-10-26 Sharp Kabushiki Kaisha Crystalline titanyl phthalocyanines and use thereof
US6210847B1 (en) 1998-10-28 2001-04-03 Sharp Kabushiki Kaisha Crystalline oxotitanylphthalocyanine and electrophotographic photoreceptor using the same
US6245472B1 (en) 1997-09-12 2001-06-12 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
US6248490B1 (en) 1998-12-01 2001-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6258498B1 (en) 1998-12-25 2001-07-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic photosensitive member
US6268096B1 (en) 1990-11-28 2001-07-31 Fuji Xerox Co., Ltd Titanyl phthalocyanine crystal and electrophotographic photoreceptor using the same
US6270936B1 (en) 1998-08-25 2001-08-07 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6322940B1 (en) 1999-01-08 2001-11-27 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic image forming process
US6335132B1 (en) 1999-06-25 2002-01-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus including the photosensitive member
JP2002055471A (en) * 2000-05-31 2002-02-20 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor and method for producing the same
US6447965B1 (en) 1999-09-01 2002-09-10 Sharp Kabushiki Kaisha Electrophotographic photoreceptor containing TiOPc, method for manufacturing the same, and coating liquid for charge generating layer
US6447967B2 (en) 2000-01-31 2002-09-10 Canon Kabushiki Kaisha Phthalocyanine crystal, production process therefor, and electrophotographic photosensitive member, process cartridge and apparatus using the crystal
US6465143B2 (en) 2000-01-31 2002-10-15 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US6521387B2 (en) 2000-05-09 2003-02-18 Ricoh Company, Ltd. Electrophotographic photoreceptor, method of manufacturing the photoreceptor, and electrophotographic image forming method and apparatus using the photoreceptor
US6703174B2 (en) 2001-01-31 2004-03-09 Canon Kabushiki Kaisha Electrophotographic apparatus and process cartridge
US6773856B2 (en) 2001-11-09 2004-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6815132B2 (en) 2002-06-21 2004-11-09 Samsung Electronics Co., Ltd. Photoconductor materials based on new phase of titanyl phthalocyanine
US6833226B2 (en) 2001-03-30 2004-12-21 Canon Kabushiki Kaisha Electrophotographic apparatus, process cartridge and electrophotographic photosensitive member
US7018757B2 (en) 2003-01-31 2006-03-28 Samsung Electronics Co., Ltd. Photoconductor materials based on complex of charge generating material
US7029810B2 (en) 2002-09-20 2006-04-18 Ricoh Company, Ltd. Electrophotographic image forming apparatus
US7371491B2 (en) 2003-09-30 2008-05-13 Ricoh Company Limited Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, and image forming apparatus and process cartridge using the electrophotographic photoreceptor
US7419751B2 (en) 2002-06-13 2008-09-02 Ricoh Company, Ltd. Titanylphthalocyanine crystal and method of producing the titanylphthalocyanine crystal, and electrophotographic photoreceptor, method, apparatus and process cartridge using the titanylphthalocyanine crystal
EP2020415A1 (en) 2007-08-02 2009-02-04 Orient Chemical Industries Ltd Method for producing alpha-form titanylphthalocyanine and electrophotographic photoreceptor comprising alpha-form titanylphthalocyanine
US7537872B2 (en) 2005-04-13 2009-05-26 Ricoh Company Limited Image bearing member with charge blocking layer and moire prevention layer, and image forming apparatus and process cartridge using the same
US7560203B2 (en) 2003-12-01 2009-07-14 Ricoh Company, Ltd. Electrophotographic photoreceptor, method of image formation, image formation apparatus and process cartridge for image formation apparatus
EP2138899A1 (en) 2008-06-27 2009-12-30 Ricoh Company, Limited Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor
US7670743B2 (en) 2005-03-04 2010-03-02 Ricoh Company, Ltd. Image forming method
EP2259143A1 (en) 2009-06-05 2010-12-08 Ricoh Company, Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor
US20110076602A1 (en) * 2009-09-25 2011-03-31 Kotaro Fukushima Electrophotographic photoconductor and image forming apparatus including the same
US7981581B2 (en) 2004-03-04 2011-07-19 Mitsubishi Chemical Corporation Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition
US8059990B2 (en) 2006-05-12 2011-11-15 Ricoh Company, Ltd. Image forming apparatus
US8114559B2 (en) 2007-05-11 2012-02-14 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same
US8568945B2 (en) 2008-11-26 2013-10-29 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291120B1 (en) 1999-05-14 2001-09-18 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and coating composition for charge generating layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949544A (en) * 1982-09-16 1984-03-22 Asahi Chem Ind Co Ltd Electrophtographic organic receptor
JPS59166959A (en) * 1983-03-14 1984-09-20 Nippon Telegr & Teleph Corp <Ntt> Laminated type electrophotographic sensitive body
JPS59214034A (en) * 1983-05-19 1984-12-03 Sumitomo Chem Co Ltd Manufacturing method of electrophotographic photoreceptor
JPS6026947A (en) * 1983-07-25 1985-02-09 Asahi Chem Ind Co Ltd Organic photosensitive body for electrophotography
JPS6095441A (en) * 1983-10-31 1985-05-28 Toyo Ink Mfg Co Ltd Photosemiconductor material
JPS61109056A (en) * 1984-11-01 1986-05-27 Mitsubishi Chem Ind Ltd Lamination type electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949544A (en) * 1982-09-16 1984-03-22 Asahi Chem Ind Co Ltd Electrophtographic organic receptor
JPS59166959A (en) * 1983-03-14 1984-09-20 Nippon Telegr & Teleph Corp <Ntt> Laminated type electrophotographic sensitive body
JPS59214034A (en) * 1983-05-19 1984-12-03 Sumitomo Chem Co Ltd Manufacturing method of electrophotographic photoreceptor
JPS6026947A (en) * 1983-07-25 1985-02-09 Asahi Chem Ind Co Ltd Organic photosensitive body for electrophotography
JPS6095441A (en) * 1983-10-31 1985-05-28 Toyo Ink Mfg Co Ltd Photosemiconductor material
JPS61109056A (en) * 1984-11-01 1986-05-27 Mitsubishi Chem Ind Ltd Lamination type electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221461A (en) * 1987-10-26 1989-09-04 Mita Ind Co Ltd Alpha-type titanyl phthalocyanine composition, its production and electrophotographic photoreceptor containing same
JPH01120564A (en) * 1987-11-04 1989-05-12 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
JPH0560867B2 (en) * 1987-11-30 1993-09-03 Mita Industrial Co Ltd
JPH01142659A (en) * 1987-11-30 1989-06-05 Mita Ind Co Ltd Electrophotographic sensitive body
JPH0273360A (en) * 1988-09-09 1990-03-13 Takasago Internatl Corp Electrophotographic sensitive body
JPH0541986B2 (en) * 1988-09-09 1993-06-25 Takasago Perfumery Co Ltd
JPH03116153A (en) * 1989-09-29 1991-05-17 Mita Ind Co Ltd Electrophotographic sensitive body
US5391446A (en) * 1990-07-02 1995-02-21 Canon Kabushiki Kaisha Image holding member
US5677095A (en) * 1990-07-10 1997-10-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US5484673A (en) * 1990-07-10 1996-01-16 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US5432278A (en) * 1990-10-24 1995-07-11 Canon Kabushiki Kaisha Process for producing crystalline oxytitanium phthalocyanine
US6268096B1 (en) 1990-11-28 2001-07-31 Fuji Xerox Co., Ltd Titanyl phthalocyanine crystal and electrophotographic photoreceptor using the same
US5558964A (en) * 1991-10-25 1996-09-24 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and electrophotographic apparatus, device unit, and facsimile machine employing the same
US5384625A (en) * 1992-12-28 1995-01-24 Canon Kabushiki Kaisha Image forming method
US5576131A (en) * 1993-11-29 1996-11-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotographic apparatus unit
US5595845A (en) * 1994-06-10 1997-01-21 Canon Kabushiki Kaisha Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotographic apparatus unit
EP0686878A1 (en) 1994-06-10 1995-12-13 Canon Kabushiki Kaisha Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotrographic apparatus unit
US5837412A (en) * 1996-08-08 1998-11-17 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus utilizing the same
US5972551A (en) * 1996-12-26 1999-10-26 Sharp Kabushiki Kaisha Crystalline titanyl phthalocyanines and use thereof
US6472524B2 (en) 1997-09-12 2002-10-29 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
US6245472B1 (en) 1997-09-12 2001-06-12 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
EP1887047A1 (en) 1997-09-12 2008-02-13 Canon Kabushiki Kaisha Phthalocyanine compounds, process for production thereof and electrophotographic photosensitive member using the compounds
US6270936B1 (en) 1998-08-25 2001-08-07 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6210847B1 (en) 1998-10-28 2001-04-03 Sharp Kabushiki Kaisha Crystalline oxotitanylphthalocyanine and electrophotographic photoreceptor using the same
US6248490B1 (en) 1998-12-01 2001-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US6258498B1 (en) 1998-12-25 2001-07-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic photosensitive member
US6322940B1 (en) 1999-01-08 2001-11-27 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and electrophotographic image forming process
US6335132B1 (en) 1999-06-25 2002-01-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member, and process cartridge and electrophotographic apparatus including the photosensitive member
US6447965B1 (en) 1999-09-01 2002-09-10 Sharp Kabushiki Kaisha Electrophotographic photoreceptor containing TiOPc, method for manufacturing the same, and coating liquid for charge generating layer
US6447967B2 (en) 2000-01-31 2002-09-10 Canon Kabushiki Kaisha Phthalocyanine crystal, production process therefor, and electrophotographic photosensitive member, process cartridge and apparatus using the crystal
US6768006B2 (en) 2000-01-31 2004-07-27 Canon Kabushiki Kaisha Phthalocyanine crystal, production process therefor, and electrophotographic photosensitive member, process cartridge and apparatus using the crystal
US6465143B2 (en) 2000-01-31 2002-10-15 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus
US6521387B2 (en) 2000-05-09 2003-02-18 Ricoh Company, Ltd. Electrophotographic photoreceptor, method of manufacturing the photoreceptor, and electrophotographic image forming method and apparatus using the photoreceptor
JP2002055471A (en) * 2000-05-31 2002-02-20 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor and method for producing the same
US6703174B2 (en) 2001-01-31 2004-03-09 Canon Kabushiki Kaisha Electrophotographic apparatus and process cartridge
US6833226B2 (en) 2001-03-30 2004-12-21 Canon Kabushiki Kaisha Electrophotographic apparatus, process cartridge and electrophotographic photosensitive member
US6773856B2 (en) 2001-11-09 2004-08-10 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
US7419751B2 (en) 2002-06-13 2008-09-02 Ricoh Company, Ltd. Titanylphthalocyanine crystal and method of producing the titanylphthalocyanine crystal, and electrophotographic photoreceptor, method, apparatus and process cartridge using the titanylphthalocyanine crystal
US6815132B2 (en) 2002-06-21 2004-11-09 Samsung Electronics Co., Ltd. Photoconductor materials based on new phase of titanyl phthalocyanine
US7029810B2 (en) 2002-09-20 2006-04-18 Ricoh Company, Ltd. Electrophotographic image forming apparatus
US7371497B2 (en) 2002-09-20 2008-05-13 Ricoh Company Ltd. Electrophotographic image forming method
US7018757B2 (en) 2003-01-31 2006-03-28 Samsung Electronics Co., Ltd. Photoconductor materials based on complex of charge generating material
US7371491B2 (en) 2003-09-30 2008-05-13 Ricoh Company Limited Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, and image forming apparatus and process cartridge using the electrophotographic photoreceptor
US7560203B2 (en) 2003-12-01 2009-07-14 Ricoh Company, Ltd. Electrophotographic photoreceptor, method of image formation, image formation apparatus and process cartridge for image formation apparatus
US7981581B2 (en) 2004-03-04 2011-07-19 Mitsubishi Chemical Corporation Phthalocyanine composition and photoconductive material, electrophotographic photoreceptor cartridge, and image-forming apparatus each employing the composition
US7670743B2 (en) 2005-03-04 2010-03-02 Ricoh Company, Ltd. Image forming method
US7537872B2 (en) 2005-04-13 2009-05-26 Ricoh Company Limited Image bearing member with charge blocking layer and moire prevention layer, and image forming apparatus and process cartridge using the same
US8059990B2 (en) 2006-05-12 2011-11-15 Ricoh Company, Ltd. Image forming apparatus
US8114559B2 (en) 2007-05-11 2012-02-14 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge using the same
EP2020415A1 (en) 2007-08-02 2009-02-04 Orient Chemical Industries Ltd Method for producing alpha-form titanylphthalocyanine and electrophotographic photoreceptor comprising alpha-form titanylphthalocyanine
US8053570B2 (en) 2007-08-02 2011-11-08 Orient Chemical Industries, Ltd. Method for producing α-form titanylphthalocyanine and electrophotographic photoreceptor comprising α-form titanylphthalocyanine
JP2009037058A (en) * 2007-08-02 2009-02-19 Orient Chem Ind Ltd METHOD FOR PRODUCING alpha-FORM TITANYLPHTHALOCYANINE AND ELECTROPHOTOGRAPHIC PHOTORECEPTOR COMPRISING alpha-FORM TITANYLPHTHALOCYANINE
KR101379097B1 (en) * 2007-08-02 2014-03-28 오리엔트 가가쿠 고교 가부시키가이샤 METHOD FOR PRODUCING α-FORM TITANYLPHTHALOCYANINE AND ELECTROPHOTOGRAPHIC PHOTORECEPTOR COMPRISING α-FORM TITANYLPHTHALOCYANINE
EP2138899A1 (en) 2008-06-27 2009-12-30 Ricoh Company, Limited Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor
US8178266B2 (en) 2008-06-27 2012-05-15 Ricoh Company, Ltd. Electrophotographic photoreceptor, image forming apparatus using the electrophotographic photoreceptor, and method of producing electrophotographic photoreceptor
US8568945B2 (en) 2008-11-26 2013-10-29 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor
EP2259143A1 (en) 2009-06-05 2010-12-08 Ricoh Company, Ltd Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor
US8206880B2 (en) 2009-06-05 2012-06-26 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor
US20110076602A1 (en) * 2009-09-25 2011-03-31 Kotaro Fukushima Electrophotographic photoconductor and image forming apparatus including the same

Also Published As

Publication number Publication date
JPH0629975B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JPS61239248A (en) Composite electrophotographic photoreceptor
JP2561940B2 (en) Gallium phthalocyanine compound and electrophotographic photoreceptor using the same
JPS61217050A (en) Single layer type electrophotographic sensitive body
JPH05140472A (en) Production of new dichloro-tin phthalocyanine crystal and electrophotographic photoreceptor made by using the crystal
EP0443566A1 (en) Method for preparing coating compositions containing photoconductive perylene pigments
JPS62103650A (en) Electrophotographic sensitive material
JPH0466507B2 (en)
US5766810A (en) Methods for preparing cocrystals of titanyl fluorophthalocyannes and unsubstituted titanyl phthalocyanine, electrophotographic elements, and titanyl phthalocyanine compositions
JPH09157540A (en) Phthalocyanine composition, its production, and electrophotographic photoreceptor and coating fluid for charge generation layer each using the same
US5629418A (en) Preparation of titanyl fluorophthalocyanines
JPH0719067B2 (en) Electrophotographic photoconductor
JPH0530263B2 (en)
JPS61124951A (en) Electrophotographic photoreceptor
JPH07128888A (en) Electrophotographic photoreceptor
JPS61188543A (en) electrophotographic photoreceptor
JP2599170B2 (en) Electrophotographic photoreceptor
JPS62134651A (en) Electrophotographic sensitive body
JPH0158180B2 (en)
JPH01144057A (en) Photosemiconductive material and electrophotographic sensitive body using same
JP2805866B2 (en) Electrophotographic photoreceptor
JP2542716B2 (en) Epsilon-type nickel phthalocyanine compound and electrophotographic photoreceptor using the same
US5491228A (en) Preparative processes for dihydroxygermanium phthalocyanine
JPH01247464A (en) Epsilon-form zinc phthalocyanine compound and electrophotographic photoreceptor prepared therefrom
JPS62121460A (en) Electrophotographic sensitive body
JPH10142818A (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term