JPS6177002A - Optical antireflecting film - Google Patents

Optical antireflecting film

Info

Publication number
JPS6177002A
JPS6177002A JP59198483A JP19848384A JPS6177002A JP S6177002 A JPS6177002 A JP S6177002A JP 59198483 A JP59198483 A JP 59198483A JP 19848384 A JP19848384 A JP 19848384A JP S6177002 A JPS6177002 A JP S6177002A
Authority
JP
Japan
Prior art keywords
refractive index
wavelength
layer
index material
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59198483A
Other languages
Japanese (ja)
Other versions
JPH0238921B2 (en
Inventor
Yasushi Taniguchi
靖 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59198483A priority Critical patent/JPS6177002A/en
Publication of JPS6177002A publication Critical patent/JPS6177002A/en
Publication of JPH0238921B2 publication Critical patent/JPH0238921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain an antireflecting film which is satisfactory with vacuum UV rays by laminating alternately 3 layers of low refractive index materials and intermediate refractive index material on a base body. CONSTITUTION:The 1st layer 2 consisting of the low refractive index material having <=1.5 refractive index with respect to light having 160-230nm wavelength, the 2nd layer 3 consisting of the intermediate refractive index material having 1.6-1.8 refractive index then the 3rd layer 4 consisting of the above- described low refractive index material are successively laminated on the base body 1 consisting of a material allowing the transmission of the above-mentioned light. The optical film thicknesses of the 1st layer 2-3rd layer 4 are preferably made respectively about (1/2)lambda0, about (1/4)lambda0 and about (1/4)lambda0 with respect to the optical design reference wavelength lambda0 within the range of the above- described wavelength.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は光反射防止膜に関し、特に真空紫外線に対して
良好な反射防止作用を有する膜体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a light antireflection film, and particularly to a film body having a good antireflection effect against vacuum ultraviolet rays.

〔従来技術〕[Prior art]

半導体露光装置は、焼付の方式からみて、密着(又はグ
ロキシミティー)方式と投影焼付方式とに分けられ、装
置の解像力は、密着露光の場合には光源波長の平方根に
比例し、また投影露光の場合には光源波長に比例する。
Semiconductor exposure equipment can be divided into contact (or gloximity) and projection printing systems based on the printing method.The resolution of the equipment is proportional to the square root of the light source wavelength in the case of contact exposure; In the case of , it is proportional to the light source wavelength.

このため、露光装置の解像力を高める目的から、光源の
短波長化を図る必要があ夛、現今では200〜270n
mの紫外線を利用した装置が実用化されている。しかし
、将来的には更に解像力を高める必要があシ、波長20
0nm以下の真空紫外線を用いる必要がでてくる。
Therefore, in order to improve the resolution of exposure equipment, it is increasingly necessary to shorten the wavelength of the light source, and currently the wavelength is 200 to 270nm.
A device using ultraviolet rays of 500 m has been put into practical use. However, in the future it will be necessary to further improve the resolution, and the wavelength will be 20.
It becomes necessary to use vacuum ultraviolet light of 0 nm or less.

ところで、半導体1x元装置の照明系において、レンズ
面での反射に起因するゴーストが像面の照明ムラを起す
という問題がある。このため、従来からレンズ面を誘電
体の単層ないし多層からなる反射防止膜で被覆すること
は行なわれているが、真空紫外線領域において作用する
反射防止膜は殆どなく、僅かに特公昭50−40668
号、OpticalEngineering Vol−
18、AI(1979)等に見られるが、これらも十分
な反射防止機能を果たすものとは言い難い。
By the way, in the illumination system of a semiconductor 1x device, there is a problem in that ghosts caused by reflection on the lens surface cause illumination unevenness on the image plane. For this reason, although it has been conventional practice to coat the lens surface with an antireflection film consisting of a single layer or multiple layers of dielectric material, there are almost no antireflection films that work in the vacuum ultraviolet region, and only a few 40668
No., Optical Engineering Vol-
18, AI (1979), etc., but these too cannot be said to have a sufficient antireflection function.

〔発明の目的〕[Purpose of the invention]

本発明の1つの目的は、真空紫外線に対して良好な反射
防止作用を有する反射防止膜を提供することにある。
One object of the present invention is to provide an antireflection film that has a good antireflection effect against vacuum ultraviolet rays.

本発明の他の目的は、真空紫外線に対して良好な反射防
止作用を有すると共に、物理的、化学的に安定な反射防
止膜を提供することにある。
Another object of the present invention is to provide an antireflection film that has a good antireflection effect against vacuum ultraviolet rays and is physically and chemically stable.

上記目的は、波長160〜230 nmの光に対し屈折
率が1.5以下の低屈折率物質と屈折率が1.6〜1.
8の中間屈折率物質とを用い、前記波長の光を透過する
物質からなる基体上に前記低屈折率物質からなる第1層
、前記中間屈折率物質からなる第2層、次いで前記低屈
折率物質からなる第3層の順で積層された3層構造を有
することを特徴とする光反射防止膜によって達成される
The above purpose is to use a low refractive index material with a refractive index of 1.5 or less and a refractive index of 1.6 to 1.5 nm for light with a wavelength of 160 to 230 nm.
8, a first layer made of the low refractive index material, a second layer made of the intermediate refractive index material, and then the low refractive index material on a substrate made of a material that transmits light of the wavelength. This is achieved by a light antireflection film characterized by having a three-layer structure in which a third layer made of a substance is laminated in this order.

〔発明の詳細な説明〕[Detailed description of the invention]

真空紫外線用反射防止膜は、その膜材料が設計、製作上
大きな制約となる。すなわち反射防止膜の膜材料は、真
空紫外線に対し、透明かつ安定な物質でなければならな
い。真空紫外線透過材料としてはMgF2.CaF2.
LiF、 NaF、 LaF3. NdF3等のフッ化
物が知られている。一方、At203.SiO2,Hf
O2等の一部の酸化物は、比較的短波長まで透過するが
波長200 am以下では吸収が犬きくなシ透過しなく
なる。また可視域での反射防止膜に使用されるZrO2
,’rio□、CeO2等の高屈折率物質は、吸収が大
きく透過しないために使用することができない。
For vacuum ultraviolet ray antireflection coatings, the coating material poses a major constraint in design and production. That is, the film material of the antireflection film must be transparent and stable to vacuum ultraviolet rays. As a vacuum ultraviolet transmitting material, MgF2. CaF2.
LiF, NaF, LaF3. Fluorides such as NdF3 are known. On the other hand, At203. SiO2, Hf
Some oxides, such as O2, are transparent up to relatively short wavelengths, but at wavelengths of 200 am or less, their absorption is so strong that they no longer transmit. ZrO2 is also used for anti-reflection coatings in the visible range.
, 'rio□, CeO2, etc. cannot be used because they absorb so much that they do not transmit.

従って本発明の光反射防止膜は、主として7ツ化物系の
防電体材料で構成するのが好ましい。
Therefore, it is preferable that the light antireflection film of the present invention is mainly composed of a heptadide-based electrically shielding material.

このうち、本発明で使用する前記低屈折率物質としては
、MgF2. CaF2.LiF、及びNa 3AtF
 6から選ばれる物質、また前記中間屈折率物質として
は、LaF及びNdF3から選ばれる物質が好適である
Among these, the low refractive index substance used in the present invention is MgF2. CaF2. LiF, and Na3AtF
As the intermediate refractive index material, a material selected from LaF and NdF3 is suitable.

本発明の光反射防止膜は、第1図に示した如く3層構造
を有する光反射防止膜である。
The antireflection film of the present invention has a three-layer structure as shown in FIG.

第1図において、1は波長160〜230 nmの光を
透過する物質からなる基体であシ、具体的には例えば合
成石英、人工水晶、CaF 2、MgF2等の結晶など
からなるレンズ等光学デバイスである。基体1上に積層
された2、4は低屈折率物質の層、3は中間屈折率物質
の層であシ、これらを設層するには、通常真空蒸着法(
イオンブレーティング、スパツタリング等を包含する。
In FIG. 1, 1 is a substrate made of a substance that transmits light with a wavelength of 160 to 230 nm, specifically an optical device such as a lens made of synthetic quartz, artificial quartz, crystals such as CaF2, MgF2, etc. It is. Laminated on the substrate 1, 2 and 4 are layers of a low refractive index material, and 3 is a layer of an intermediate refractive index material, and these layers are usually formed using a vacuum evaporation method (
Includes ion blating, sputtering, etc.

)が用いられる。) is used.

なお、第1図には平板状の膜体を示したが、膜の形状は
これに限定されず、円筒面状、球面状、凹面状、凸面状
等の基体表面の形状に応じて任意に設計することができ
る。
Although a flat film body is shown in FIG. 1, the shape of the film is not limited to this, and may be arbitrarily selected according to the shape of the base surface, such as cylindrical, spherical, concave, or convex. can be designed.

怠の設計基準波長である。)の構成をとり、第1なお、
第1層乃至第3層の各層の光学的膜厚は、所望する波長
域において反射率が最小の値・をとるよう、例えば電子
計算機によシ演算して最適化することができる。
This is the design standard wavelength of laziness. ), and the first one is
The optical thickness of each of the first to third layers can be optimized, for example, by calculation using an electronic computer so that the reflectance takes a minimum value in a desired wavelength range.

以下、実施例によ)本発明を更に具体的に説明する。The present invention will be explained in more detail below by way of examples.

実施例1 第1図の光反射防止膜において、基体1を合成石英から
なるレンズとし、2,4の低屈折率物質をMgF2.3
の中間屈折率物質をLaFsで構成し、これら物質を真
空蒸着法によ)ノ1−トコ−ティングした。構成物質の
屈折率は、分散式で、で求められる。第1表にλ= 1
90 nmとしたときの屈折率を示した。なお、真空蒸
着するにあたっては、第1表に示した如く演算によシ光
学的膜厚を最適化し、この光学的膜厚分だけ蒸着を行っ
た。
Example 1 In the antireflection film shown in FIG. 1, the base 1 is a lens made of synthetic quartz, and the low refractive index substances 2 and 4 are MgF2.3.
The intermediate refractive index material was composed of LaFs, and these materials were coated using a vacuum evaporation method. The refractive index of the constituent materials is determined by the dispersion formula. In Table 1, λ = 1
The refractive index is shown when the wavelength is 90 nm. In vacuum deposition, the optical film thickness was optimized by calculation as shown in Table 1, and the vapor deposition was performed by the optical film thickness.

この実施例で用いたMgF2及びLaFsは、第1表に
示した膜厚程度では殆ど吸収を無視することができる。
With MgF2 and LaFs used in this example, absorption can be almost ignored at film thicknesses shown in Table 1.

また、フッ化物は酸化物と比ベパルクと蒸着膜との構成
に差がなく、再現性がよいという利点がある。
Further, fluoride has the advantage that there is no difference in structure between the bulk and the deposited film compared to oxide, and reproducibility is good.

第1表 かくして得られた光反射防止膜の分光特性を第2図に示
した。これによれば、波長160〜230nmの範囲で
反射率を1%以下、特に波長165〜215 nmの範
囲で反射率を0.5%以下に抑さえることができた。従
って、通常使用する真空紫外線は180 nm付近であ
るため、本発明の光反射防止膜によれば十分に反射率を
低く抑さえることができる。
Table 1 The spectral characteristics of the antireflection film thus obtained are shown in FIG. According to this, it was possible to suppress the reflectance to 1% or less in the wavelength range of 160 to 230 nm, particularly to 0.5% or less in the wavelength range of 165 to 215 nm. Therefore, since the vacuum ultraviolet rays normally used are around 180 nm, the antireflection film of the present invention can suppress the reflectance to a sufficiently low level.

次に、耐久性については、耐溶剤テストとしてアセトン
、イングロビル・アルコール、メタノールを用い、作製
し九九反射防止膜を付したレンズ表面をクリーニングし
たが分光特性、外観上の変化が見られず、十分耐溶剤性
があることが確かめられた。また、スコノチテーグによ
る密着性テスト、綿布(チーズクロス)による耐摩耗テ
ストの結果も剥離、クラック等の外観上の欠陥ならびに
反射率の変化は見られなかった。」湿性についても45
℃、相対湿度95%の恒温恒湿槽に1000時間以上置
いた後も、反射率の低下、腐食等の化学的変化は起こら
なかった。さらに、真空紫外光の照射に対しても、何ら
劣化することはなかった。
Next, regarding durability, we used acetone, Inglovil alcohol, and methanol to clean the surface of the prepared lens with anti-reflection coating in a solvent resistance test, but no changes were observed in the spectral characteristics or appearance. It was confirmed that it had sufficient solvent resistance. Further, as a result of an adhesion test using Sconottigue and an abrasion resistance test using cotton cloth (cheese cloth), no external defects such as peeling or cracks, and no change in reflectance were observed. ” 45 regarding humidity
Even after being placed in a constant temperature and humidity chamber at 95% relative humidity for more than 1000 hours, no chemical changes such as a decrease in reflectance or corrosion occurred. Furthermore, there was no deterioration at all even when irradiated with vacuum ultraviolet light.

実施例2 λo−200nm、第1層の膜材料(物質)をLIF’
とし、第2表に示した屈折率及び最適化された光学的膜
厚とした以外は実施例1と同様にして、光反射防止膜を
作表した。
Example 2 λo-200nm, first layer film material (substance) was LIF'
A light antireflection film was tabulated in the same manner as in Example 1, except that the refractive index and the optimized optical film thickness shown in Table 2 were used.

かぐして得られた光反射防止膜の分光特性を第3図に示
した。本実施例においても、実施例1の光反射防止膜と
同等の光学的性質並びに化学的、物理的安定性を有する
光反射防止膜が得られた。
The spectral characteristics of the anti-reflection film obtained by oxidation are shown in FIG. In this example as well, a light antireflection film having the same optical properties and chemical and physical stability as the light antireflection film of Example 1 was obtained.

第2表 〔発明の効果〕 以上説明したように、本発明の光反射防止膜は、光学的
Kit真空紫外組をはじめとして所望する波長の光に対
してレンズ等基体表面の反射を低くおさえ、ゴースト等
の問題を解決するという優れた光学的性質を持っている
。さらに、耐溶剤性、耐湿性に優れるという化学的安定
性に富むと同時に密着性・n1Li耗性、耐紫外線性な
ど物理的安定性にも優れており、実用的にきわめて有用
である。
Table 2 [Effects of the Invention] As explained above, the antireflection film of the present invention suppresses the reflection of the surface of a substrate such as a lens against light of a desired wavelength, including optical kit vacuum ultraviolet light, and It has excellent optical properties that solve problems such as ghosting. Furthermore, it is highly chemically stable with excellent solvent resistance and moisture resistance, and at the same time has excellent physical stability such as adhesion, n1Li abrasion resistance, and ultraviolet resistance, making it extremely useful for practical purposes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光反射防止膜の構成を説明するため
の図、第2図及び第3図は、実施例1−2で作製した光
反射防止膜の分光特性を示すための曲線図である0 1・・・基体、2,4・・・低屈折率物質層、3・・・
中間屈折率物質層。
FIG. 1 is a diagram for explaining the structure of the anti-reflection film of the present invention, and FIGS. 2 and 3 are curves showing the spectral characteristics of the anti-reflection film produced in Example 1-2. 0 1...Substrate, 2, 4...Low refractive index material layer, 3...
Intermediate refractive index material layer.

Claims (3)

【特許請求の範囲】[Claims] (1)波長160〜230nmの光に対し屈折率が1.
5以下の低屈折率物質と屈折率が1.6〜1.8の中間
屈折率物質とを用い、前記波長の光を透過する物質から
なる基体上に前記低屈折率物質からなる第1層、前記中
間屈折率物質からなる第2層、次いで前記低屈折率物質
からなる第3層の順で積層された3層構造を有すること
を特徴とする光反射防止膜。
(1) The refractive index for light with a wavelength of 160 to 230 nm is 1.
A first layer made of the low refractive index material on a substrate made of a material that transmits light of the wavelength, using a low refractive index material of 5 or less and an intermediate refractive index material of 1.6 to 1.8. A light antireflection film having a three-layer structure in which a second layer made of the intermediate refractive index material and a third layer made of the low refractive index material are laminated in this order.
(2)波長160〜230nmの範囲内の任意の設計基
準波長λ_0に対し、第1層乃至第3層の光学的膜厚が
、それぞれ約1/2λ_0、約1/4λ_0及び約1/
4λ_0である特許請求の範囲第(1)項記載の光反射
防止膜。
(2) For any design reference wavelength λ_0 within the wavelength range of 160 to 230 nm, the optical thickness of the first to third layers is approximately 1/2λ_0, approximately 1/4λ_0, and approximately 1/2λ_0, respectively.
4λ_0. The antireflection film according to claim (1).
(3)低屈折率物質が、MgF_2、CaF_2、Li
F及びNa_3AlF_6から選ばれる物質であり、中
間屈折率物質がLaF_3及びNdF_3から選ばれる
物質である特許請求の範囲第(1)項又は第(2)項記
載の光反射防止膜。
(3) The low refractive index substance is MgF_2, CaF_2, Li
The anti-reflection film according to claim 1 or 2, wherein the material is a material selected from F and Na_3AlF_6, and the intermediate refractive index material is a material selected from LaF_3 and NdF_3.
JP59198483A 1984-09-25 1984-09-25 Optical antireflecting film Granted JPS6177002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198483A JPS6177002A (en) 1984-09-25 1984-09-25 Optical antireflecting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198483A JPS6177002A (en) 1984-09-25 1984-09-25 Optical antireflecting film

Publications (2)

Publication Number Publication Date
JPS6177002A true JPS6177002A (en) 1986-04-19
JPH0238921B2 JPH0238921B2 (en) 1990-09-03

Family

ID=16391860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198483A Granted JPS6177002A (en) 1984-09-25 1984-09-25 Optical antireflecting film

Country Status (1)

Country Link
JP (1) JPS6177002A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461702A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPS6461701A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPH06140707A (en) * 1992-10-27 1994-05-20 Showa Koki Seizo Kk Antireflection film of deliquescent optical crystal
US5661596A (en) * 1994-02-03 1997-08-26 Canon Kabushiki Kaisha Antireflection film and exposure apparatus using the same
JPH09329702A (en) * 1996-06-10 1997-12-22 Nikon Corp Antireflection film
US5981075A (en) * 1995-02-13 1999-11-09 Canon Kabushiki Kaisha Optical articles and devices with a thin film containing krypton, xenon, or radon atoms
EP1227344A1 (en) * 1999-11-05 2002-07-31 Asahi Glass Company Ltd. Antireflection base for ultraviolet and vacuum ultraviolet regions
JP2004302113A (en) * 2003-03-31 2004-10-28 Nikon Corp Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
JP2005257769A (en) * 2004-03-09 2005-09-22 Canon Inc Optical thin film, optical element, exposure apparatus using same, and exposure method
US8552443B2 (en) 2009-02-20 2013-10-08 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system including the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461702A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPS6461701A (en) * 1987-09-01 1989-03-08 Minolta Camera Kk Antireflecting film
JPH06140707A (en) * 1992-10-27 1994-05-20 Showa Koki Seizo Kk Antireflection film of deliquescent optical crystal
US5661596A (en) * 1994-02-03 1997-08-26 Canon Kabushiki Kaisha Antireflection film and exposure apparatus using the same
US5981075A (en) * 1995-02-13 1999-11-09 Canon Kabushiki Kaisha Optical articles and devices with a thin film containing krypton, xenon, or radon atoms
US6372646B2 (en) 1995-02-13 2002-04-16 Canon Kabushiki Kaisha Optical article, exposure apparatus or optical system using it, and process for producing it
US6726814B2 (en) 1995-02-13 2004-04-27 Canon Kk Process for producing optical article
US5963365A (en) * 1996-06-10 1999-10-05 Nikon Corporation three layer anti-reflective coating for optical substrate
JPH09329702A (en) * 1996-06-10 1997-12-22 Nikon Corp Antireflection film
EP1227344A1 (en) * 1999-11-05 2002-07-31 Asahi Glass Company Ltd. Antireflection base for ultraviolet and vacuum ultraviolet regions
EP1227344A4 (en) * 1999-11-05 2005-08-31 Asahi Glass Co Ltd Antireflection base for ultraviolet and vacuum ultraviolet regions
JP2004302113A (en) * 2003-03-31 2004-10-28 Nikon Corp Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
JP2005257769A (en) * 2004-03-09 2005-09-22 Canon Inc Optical thin film, optical element, exposure apparatus using same, and exposure method
US8552443B2 (en) 2009-02-20 2013-10-08 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system including the same

Also Published As

Publication number Publication date
JPH0238921B2 (en) 1990-09-03

Similar Documents

Publication Publication Date Title
US4387960A (en) Multi-layer anti-reflection coating
US5993898A (en) Fabrication method and structure for multilayer optical anti-reflection coating, and optical component and optical system using multilayer optical anti-reflection coating
Musset et al. IV multilayer antireflection coatings
JPH0238924B2 (en)
TWI432770B (en) Optical system
US3858965A (en) Five layer anti-reflection coating
JPS6177002A (en) Optical antireflecting film
JP2004302113A (en) Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
JPH05215915A (en) Multilayer reflection increase film
JP3221770B2 (en) Anti-reflection coating for plastic optical parts
JPS6177001A (en) Optical antireflecting film
JPS6135521B2 (en)
JP2002014203A (en) Antireflection film and optical member using the same
JPH077124B2 (en) Anti-reflection film
JP3031625B2 (en) Heat ray absorbing reflector
JPS6222121B2 (en)
JPS6177003A (en) Optical antireflecting film
JPS6032001A (en) Reflection preventing film
JPH05264802A (en) Multilayered antireflection film
JP2001013304A (en) Optical parts
JPH10123303A (en) Antireflection optical parts
JPS63142301A (en) Optical thin film influenced only slightly by cummulative effect
JP3113371B2 (en) Multi-layer anti-reflective coating
JP3052400B2 (en) Yttria optical components coated with anti-reflective coating
JPH02291502A (en) Multilayered antireflection film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term