JPS619624A - Driving method of liquid crystal element - Google Patents
Driving method of liquid crystal elementInfo
- Publication number
- JPS619624A JPS619624A JP59130000A JP13000084A JPS619624A JP S619624 A JPS619624 A JP S619624A JP 59130000 A JP59130000 A JP 59130000A JP 13000084 A JP13000084 A JP 13000084A JP S619624 A JPS619624 A JP S619624A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- display
- state
- electrodes
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3651—Control of matrices with row and column drivers using an active matrix using multistable liquid crystals, e.g. ferroelectric liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/13781—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering using smectic liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/12—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
- G02F2201/122—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
- G09G3/3655—Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
Landscapes
- Physics & Mathematics (AREA)
- Liquid Crystal (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は液晶を用いた光シヤツターアレイ、画像表示装
置等の駆動方法に関するものであり、さらに詳しくは双
安定性液晶、特に強誘電性液晶をアクティブマトリック
ス構成により駆動する方法に関するものである。[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for driving optical shutter arrays, image display devices, etc. using liquid crystals, and more specifically relates to bistable liquid crystals, particularly ferroelectric liquid crystals. The present invention relates to a method of driving a liquid crystal using an active matrix configuration.
[従来の技術]
従来より、走査電極群と信号電極群をマトリクス状に構
成し、その電極間に液晶化合物を充填し、多数の画素を
形成し−C画像或いは情報の表示を行う液晶表示素子は
、よく知られている。この表示素子の駆動法としでは、
走査電極群に、順次、周期的にアドレス信号を選択印加
し、信号電極群には所定の情報信号をアドレス信号と同
期させて並列的に選択印加する時分割駆動が採用されて
いるが、この表示素子及びその駆動法は、以下に述へる
如き致命的とも看える大きな欠点を有していた。[Prior Art] Conventionally, a liquid crystal display device has a scanning electrode group and a signal electrode group configured in a matrix, and a liquid crystal compound is filled between the electrodes to form a large number of pixels, thereby displaying a C image or information. is well known. The driving method for this display element is as follows:
Time-division driving is used in which address signals are selectively applied to the scanning electrode group in a sequential and periodic manner, and predetermined information signals are selectively applied in parallel to the signal electrode group in synchronization with the address signal. Display elements and their driving methods have had major and potentially fatal drawbacks as described below.
即ち、画素密度を高く、或いは画面を大きくするのかつ
°・「しいことである。従来の液晶の中で応答速度が比
較的高く、しかも泊費電力が小さいことから、表示素子
として実用に供されているのは殆とか、例えば、M、
5chadtとW、 He1frich著、”Appl
ied Physics’Letters” 、 Vo
l、 18. No、4(1!171.2.15) 、
P、 127〜1128の°’Vo l tage−
Dependent 0ptical Activit
y of a TwistedNematic Liq
uid Crystal”に示されたTN(twist
ed nematic)型の液晶を用いたも(7)?l
−あり、この型の液晶は、無電界状態で正の誘電異方性
をもつ、ネマチ・ンク液晶の分子が、液晶層厚方向で捩
れた構造(ヘリカル構造)を形成し、両電極面でこの液
晶の分子が互いに並行に配列した構造を形成している。In other words, it is important to increase the pixel density or make the screen larger.Among conventional liquid crystals, the response speed is relatively high, and the electricity consumption is low, making it difficult to use as a display device. Most of them are, for example, M,
5chadt and W. He1frich, “Appl.
ied Physics' Letters”, Vo
l, 18. No, 4 (1!171.2.15),
P, 127-1128 °'Voltage-
Dependent 0ptical Activit
y of a Twisted Nematic Liq
TN (twist
ed nematic) type liquid crystal (7)? l
- Yes, in this type of liquid crystal, the molecules of nematic liquid crystal, which has positive dielectric anisotropy in the absence of an electric field, form a twisted structure (helical structure) in the liquid crystal layer thickness direction, and both electrode surfaces The molecules of this liquid crystal form a structure in which they are arranged in parallel to each other.
一方、電界印加状態では、正の、1秀電異方性をもつネ
マチ・ンク!後品が電界方向に配列し、この結果光調変
調を起すことができる。On the other hand, in the state where an electric field is applied, Nemati Nku! has positive 1-shuden anisotropy! The latter are aligned in the direction of the electric field, resulting in optical modulation.
この型の液晶を用いてマトリクス電極構造によって表示
素子を構成した場合、走査電極と信号電極か共に訳択さ
れる領域(選択点)には、液晶分子を’:1j:極面に
垂直に配列させるに要する閾値以上の電圧が印加され、
走査電極と信弓−電極か共に選択されない領域(非選択
点)には゛電圧は印加されず、したがって液晶分子は電
極面に対して並行な安定配列を保っている。このような
液晶セルの上下に、互いにクロスニコル関係にある直線
偏光子を配置することにより、選択点では光が透過せす
、非選択点では光が透過するため、画像素子とすること
が可能となる。然し乍ら、マトリクス電極構造を構成し
た場合には、走査電極が選択され、信号電極が選択され
ない領域或いは、走査電極が選択されず、信号電極が選
択される領域(所謂””l′−選択点゛′)にも有限の
電界がかかってしまう。選択点にかかる電圧と、半選択
点にかかる電圧の差が充分に大きく、液晶分子を電界に
垂直に配列させるに要する電圧閾値がこの中間の電圧値
に設定されるならば、表示素子は正常に動作するわけで
ある。しかし、この方式において、走査線Ml (N
)を増やして行った場合、画面全体(1フレーム)を走
査する間に一つの選択点に有効な電界がかかっている時
間(duty比)は、1/Nの割合で1戒少してしまう
。このために、くり返し走査を杓っだ場合の選択点と非
遮択点にかかる実効値としての電圧差は、走査線数が増
えれば増える程小ざくなり、結果的には画像コントラス
トの低下やクロストークが避は難い欠点となっている。When a display element is constructed with a matrix electrode structure using this type of liquid crystal, liquid crystal molecules are arranged perpendicularly to the ':1j:polar plane in the area (selection point) where both the scanning electrode and the signal electrode are selected. A voltage higher than the threshold required to
No voltage is applied to a region where neither the scanning electrode nor the beam electrode is selected (non-selected point), and therefore the liquid crystal molecules maintain a stable alignment parallel to the electrode plane. By placing linear polarizers above and below such a liquid crystal cell in a cross-Nicol relationship with each other, light is transmitted at selected points and at non-selected points, making it possible to use it as an image element. becomes. However, when a matrix electrode structure is configured, there are areas where scan electrodes are selected and signal electrodes are not selected, or areas where scan electrodes are not selected and signal electrodes are selected (so-called "l'-selection point"). ′) is also subject to a finite electric field. If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align liquid crystal molecules perpendicular to the electric field is set to a voltage value in between, the display element will function normally. This is why it works. However, in this method, the scanning line Ml (N
), the time during which an effective electric field is applied to one selected point while scanning the entire screen (one frame) (duty ratio) decreases by one command at a rate of 1/N. For this reason, the effective voltage difference between the selected point and the non-blocked point when repeated scanning is performed becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and Crosstalk is an unavoidable drawback.
このような現象は、双安定状態を有さない液晶(電極面
に対し、液晶分子が水平に配向しているのが安定状態て
あり、電界が有効に印加されている間のみ垂直に配向す
る)を、時間的蓄積効果を利用して駆動する(即ち、繰
り返し走査する)ときに生じる木質的には避は難い問題
点である。この点を改良するために、電圧平均化法、2
周波駆動法や多重マトリクス法等が既に提案されている
が、いずれの方法でも不充分であり、表示素子の大画面
化や高密度化は、走査線数が充分に増やせないことによ
って頭打ちになっているのか現状である。This phenomenon is caused by liquid crystals that do not have a bistable state (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is an unavoidable problem that arises when driving (that is, repeatedly scanning) using the temporal accumulation effect. In order to improve this point, the voltage averaging method, 2
Frequency driving methods and multiple matrix methods have already been proposed, but none of these methods are sufficient, and the ability to increase the screen size and density of display devices has reached a plateau due to the inability to increase the number of scanning lines sufficiently. This is the current situation.
[発明が解決しようとする問題点]
本発明の目的は、前述したような従来の液晶表示素子に
おける問題点を悉く解決した新規な双安’tjl性液晶
、特に強誘電性液晶素子の駆動1人を提供することにあ
る。[Problems to be Solved by the Invention] An object of the present invention is to provide a new method for driving a ferroelectric liquid crystal device, especially a ferroelectric liquid crystal device, which solves all the problems in conventional liquid crystal display devices as described above. It's about providing people.
即ち、本発明は電圧応答速度が早く、状yハ1記憶性を
有する強誘電性液晶をアクティブマトリンクスにより2
方向の電界を印加して明、暗の2つの状!ルに駆動する
ことにより、画素数の多い大画面の表示及び高速度で画
像を表示する強誘電性液晶の駆動方法を提供することを
目的とするものである。That is, in the present invention, a ferroelectric liquid crystal having a fast voltage response speed and a memory property of 2 is formed by an active matrix.
By applying a directional electric field, there are two states: bright and dark! The object of the present invention is to provide a method for driving a ferroelectric liquid crystal that can display a large screen with a large number of pixels and display images at high speed by driving the ferroelectric liquid crystal in a large number of pixels.
[問題点を解決するための手段]及び[作用コ木発明の
液晶素子の駆動方法は、FET (電界効果トランジス
タ)のゲート以外の端子である第一端子と接続した画素
電極を該FETに対応して複数設けた第一基板と該画素
電極に対向する対向電極を設けた第二基板を有し、前記
画素電極と対向電極の間に電界に対して双安定状態を有
する強誘電性液晶を挟持した構造の液晶素子の駆動法で
あって、前記FETのゲートがゲートオン状態となる信
じ一印加と同期させてFETのゲート以外の端子である
第一端子と第二端子の間で電界を形成することによって
、第一の配向状態に強誘電性液晶の配列を制御する第一
位相と、前記第一端子と第二端子の間で形成した電界と
逆極性の電界を第一端子と第二端子の間で形成すること
によって、第二の配向状態に強誘電性液晶の配列を制御
する第二位相を有し、前記対向電極(複数のストライプ
状対向電極群)に表示信号を印加するとともに各画素に
対応しているFET端子のうち、ソース又はドレインを
共通端子に接続してゲートに走査信号を印加する時分割
駆動であり、走査信号線(ゲート)に所定の走査信号を
印加するとともに、選択された表示信号線(ストライプ
状の対向電極群)に所定の表示信号′を印加して、第一
の配向状態に基づく表示状態を書込み、次に別の選択さ
れた表示信号線に所定の表示信号を印加して第二の配向
状態に基づく表示状態の書込みを行うことを特徴とする
ものである。[Means for Solving the Problems] and [Operations] The method for driving a liquid crystal element according to the invention is such that a pixel electrode connected to a first terminal, which is a terminal other than the gate of an FET (field effect transistor), corresponds to the FET. a ferroelectric liquid crystal having a bistable state with respect to an electric field between the pixel electrode and the counter electrode; A method for driving a liquid crystal element having a sandwiched structure, in which an electric field is formed between a first terminal and a second terminal, which are terminals other than the gate of the FET, in synchronization with the application of a signal that turns the gate of the FET into a gate-on state. The first phase controls the alignment of the ferroelectric liquid crystal in the first alignment state, and the electric field of opposite polarity to the electric field formed between the first terminal and the second terminal is applied to the first terminal and the second terminal. A second phase is formed between the terminals to control the alignment of the ferroelectric liquid crystal in a second alignment state, and when a display signal is applied to the counter electrode (a plurality of striped counter electrode groups), This is a time division drive in which the source or drain of the FET terminals corresponding to each pixel is connected to a common terminal and a scanning signal is applied to the gate, and a predetermined scanning signal is applied to the scanning signal line (gate). , apply a predetermined display signal ′ to the selected display signal line (striped counter electrode group) to write a display state based on the first orientation state, and then write a predetermined display signal to another selected display signal line. The display state is written based on the second orientation state by applying a display signal.
本発明の駆動法で用いる強誘電性液晶としては、加えら
れる電界に応じて第一の光学的安定状IU′;と第二の
光学的安定状態とのいずれかを取る、すなわち電界に対
する双安定状態を有する物質、特にこのような性質を有
する液晶が用いられる。The ferroelectric liquid crystal used in the driving method of the present invention takes either the first optically stable state IU' or the second optically stable state depending on the applied electric field, that is, it is bistable with respect to the electric field. A substance having a state, particularly a liquid crystal having such properties, is used.
本発明の駆動法で用いることができる双安定性を有する
強誘電性液晶としては、強誘電性を有するカイラルスメ
クティック液晶が最も好ましく、そのうち力イラルスメ
クティックC相(SmC*)又H相(SmH*)の液晶
が適している。この強誘電性液晶については、”LE
JOURNAL DE PHYSIOUEL E T
T E、RS″313 (L−Ei9) 1975.
r FerroelectricLiquid Cr
ystals J ;Applied physics
Let−ters″313 (11) 1980、r
Submicro 5econd B1−5tabl
e Electrooptic Switching
in LiquidCrystals J ;”固体物
理″1B (141) 1981 r液晶」′(に記
載されており、本発明ではこれらに開示された強誘電性
液晶を用いることができる。As the ferroelectric liquid crystal with bistability that can be used in the driving method of the present invention, chiral smectic liquid crystals with ferroelectricity are most preferable, among which chiral smectic C phase (SmC*) or H phase (SmH* ) is suitable. Regarding this ferroelectric liquid crystal, please refer to “LE
JOURNAL DE PHYSIOUELE T
T E, RS″313 (L-Ei9) 1975.
r FerroelectricLiquid Cr
ystals J; Applied physics
Let-ters''313 (11) 1980, r
Submicro 5econd B1-5table
eElectrooptic Switching
In Liquid Crystals J; "Solid State Physics" 1B (141) 1981 r Liquid Crystals' (), and the ferroelectric liquid crystals disclosed therein can be used in the present invention.
より具体的には、本発明法に用いられる強誘電性液晶化
合物の例としては、デシロキシベンジリテンーP′−ア
ミノ−2−メチルブチルシンナメート(DOBAMBC
) 、ヘキシルオキシベンシリテン−P′−7ミノー2
−クロロプロビルシンナメ−1・(HOBACPC)お
よび4−o−(2−メチル)−ブチルレソルシリテンー
4′−オクチルアニリン(MBRA8)等か挙けられる
。More specifically, as an example of the ferroelectric liquid crystal compound used in the method of the present invention, decyloxybenzyritene-P'-amino-2-methylbutylcinnamate (DOBAMBC
), hexyloxybensyritene-P'-7 minnow 2
-Chloroprovir cinname-1. (HOBACPC) and 4-o-(2-methyl)-butylresorsilitene-4'-octylaniline (MBRA8).
これらの材料を用いて、素子を構成する場合、諦晶化合
物かSmC’i相又はSmH*相となるような7□′、
に1隻状yハtに保持する為、必要に応じて素子をヒー
ターが埋め込まれた銅ブロック等により支持することが
できる。When constructing an element using these materials, 7□', which becomes a yield crystal compound, SmC'i phase or SmH* phase,
In order to hold the element in a single ship shape, the element can be supported by a copper block or the like in which a heater is embedded, if necessary.
第1図は、強誘電性1夜品セルの例を模式的に描いたも
ノーc’ある。1と1′は、Ir+403 、 ’5n
02やITO(Inclium−Tin 0xide)
等の透明電極がコートされたり、(扱(ガラス板)であ
り、その間に液晶分子層2がガラス面に垂直になるよう
配向したSmC4相の液晶が封入されている。太線で示
した線3が液晶分子を表わしており、この液晶分子3は
、その分子に直交した方向に双極子モーメント(Pよ)
4をイ〕している。7i1.;板1と1′−Lの電極間
に一定の1、′ζ1仙以」−の電圧を印加すると、液晶
分子3のらせん構造がほどけ、双極子モーメンI・(P
、) 4はすべて電界方向に向くよう、液晶分子3の配
向方向を変えることができる。液晶分子3は細長い形状
を有しており、その長袖方向と短軸方向て屈折イ・り異
方性を示し、従って例えはカラス面の上ドに−IJ:い
にクロスニコルの位置関係に配置した偏光子を置けは、
電圧印加極性によっ−C光学特性が変わる1イ(高光学
変調素子となることは、容易に理解される。さらに!f
k品セルの厚さを充分にl・すくした場合(例えは1座
)には、第2図に示すように電界を印加していない状y
ハチでも液晶分子のらせん構造は、はどけ(非らせん4
^1造)、その双極子モーメントP又はP′は上向き(
4a)又は下向(4b)のとちらかの状態をとる。この
ようなセルに第2図に示す如く一足の■I値以」−の極
性の異なる電界E又はE′を所定時間付与すると、y、
極子モーメントは電界E又はE′の電界ベクトルに対応
して上向き4a又は、下向き4bと向きを変え、それに
応じて液晶分子は第一の配向状態5があるいは第二の配
向状jm’45 ′の何れか一力に配向する。FIG. 1 schematically depicts an example of a ferroelectric overnight cell. 1 and 1' are Ir+403, '5n
02 and ITO (Inclium-Tin Oxide)
It is coated with transparent electrodes such as (glass plate), and SmC4 phase liquid crystal with liquid crystal molecular layer 2 oriented perpendicular to the glass surface is sealed between them. represents a liquid crystal molecule, and this liquid crystal molecule 3 has a dipole moment (P) in the direction perpendicular to the molecule.
4). 7i1. ; When a constant voltage of 1,'ζ1"- is applied between the electrodes of the plates 1 and 1'-L, the helical structure of the liquid crystal molecules 3 is unraveled, and the dipole moment I・(P
, ) 4 can change the orientation direction of the liquid crystal molecules 3 so that they all face in the direction of the electric field. The liquid crystal molecule 3 has an elongated shape and exhibits refraction anisotropy in its long axis direction and short axis direction. Place the arranged polarizer,
It is easy to understand that -C optical properties change depending on the polarity of voltage application (it becomes a high optical modulation element. Furthermore! f
If the thickness of the K-product cell is sufficiently reduced by 1 (for example, 1 cell), the state in which no electric field is applied is y, as shown in Figure 2.
Even in bees, the helical structure of liquid crystal molecules is broken (non-helical 4
^1 construction), its dipole moment P or P' is upward (
4a) or downward (4b). When an electric field E or E' with a different polarity than the I value is applied for a predetermined time to such a cell as shown in Fig. 2, y,
The polar moment changes its direction upward 4a or downward 4b in response to the electric field vector of the electric field E or E', and accordingly, the liquid crystal molecules change from the first orientation state 5 to the second orientation state jm'45'. Orient yourself towards something.
このような強誘電性液晶を光学変調素子として用いるこ
との利点は2つある。第1に、応答速度が極めて速いこ
と、第2に液晶分子の配向が双安定状態を有することで
ある。第2の点を例えば第2図によって説明すると、電
界Eを印加すると液晶分子は第一の配向状態5に配向す
るが、この状y!1.は電界を切っても安定である。又
、逆向きの電界E′を印加すると、液晶分子は第二の配
向状態5′に配向して、その分子の向きを変えるが、や
はり電界を切ってもこの状態に留っている。又、与える
電界Eが一定の閾値を越えない限り、それぞれの配向状
態にやはり維持されている。このような応答速度の速さ
と、双安定性が有効に実現されるには、セルとしては出
来るだけ薄い方が好ましく、一般的には、0.5川〜2
0ル、特に1ル〜5川が適している。この種の強誘電性
液晶を用いたマトリクス電極構造を有する液晶−電気光
学装置は、例えばクラークとラガバルにより、米国特許
第4387924号明細書で提案されている。There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has a bistable state. To explain the second point with reference to FIG. 2, for example, when the electric field E is applied, the liquid crystal molecules are aligned in the first alignment state 5, but in this state y! 1. is stable even when the electric field is turned off. When an electric field E' in the opposite direction is applied, the liquid crystal molecules are oriented to a second orientation state 5' and the orientation of the molecules is changed, but they remain in this state even after the electric field is turned off. Further, as long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable for the cell to be as thin as possible, and generally, the thickness is 0.5 to 2.
0 ru, especially 1 ru to 5 kawa are suitable. A liquid crystal-electro-optical device having a matrix electrode structure using ferroelectric liquid crystals of this type has been proposed by Clark and Ragaval in US Pat. No. 4,387,924, for example.
本発明は、アクティブマトリックスを構成するTPT
(薄膜トランジスタ)等のFET (電界効果トラ
ンジスタ)構造の素子が、ドレインとソースの印加電圧
を逆にする事により、いずれをドレインとしていずれを
ソースとしても使用しうるという事にもとづいている。The present invention utilizes TPTs constituting an active matrix.
It is based on the fact that an element with an FET (field effect transistor) structure, such as a thin film transistor (thin film transistor), can be used as either the drain or the source by reversing the voltages applied to the drain and source.
アクティブマトリックスを構成する素子としてはFET
構造の素子であれはアモルファスシリコンTPT 、多
結晶シリコンTFT ′:gのいずれであっても使用し
うる。又FET構造以外のバイポーラトランジスタであ
っても同様に行う事も可能である。FET is the element that constitutes the active matrix.
As for the structural element, either amorphous silicon TPT or polycrystalline silicon TFT':g can be used. Further, it is also possible to perform the same operation with a bipolar transistor other than the FET structure.
N型FETは、■ をドレイン電圧、Vc をゲート
電圧、■、をソース電圧、■、をゲー トソース間の閾
値電圧とするとv >■ であり S
す、vo>VS十v、の時導通状態となり、vGくv、
+V、の時非導増状態となる。An N-type FET is in a conductive state when v > ■, where ■ is the drain voltage, Vc is the gate voltage, ■ is the source voltage, and ■ is the threshold voltage between the gate and source. Then, vGkuv,
+V, it becomes a non-conducting state.
P型FET i、: オイテはVDくvsとし、vG
くv8+vPで導通状7g トA”す、vG>vs+v
Pて非導通状態となる。P-type FET i: Oite is VD vs vs, vG
Continuity is 7g with v8+vP, vG>vs+v
P becomes non-conductive.
P型であってもN型であってもFETの端子のいずれが
ドレインとして作用し、いずれがソースとして作用する
かは、電圧の印加の方向によって定まる。すなわちN型
では電圧の低い方がソースであり、P型では電圧の高い
方がソースとして作用する。Whether the FET is P-type or N-type, which terminal of the FET acts as the drain and which acts as the source is determined by the direction of voltage application. That is, for N type, the lower voltage side acts as a source, and for P type, the higher voltage side acts as a source.
強誘電性液晶においては、液晶セルに印加する、正、負
の電圧に対していずれを「明」状態とし、イずれを「υ
1“7」状態とするかはセルの上ドに配置するクロスニ
コル状態にした一対の偏光子の偏1光軸と、液晶分子長
袖との向きにより自由に設定できる。In ferroelectric liquid crystals, either positive or negative voltage applied to the liquid crystal cell is in the "bright" state, and any deviation is "υ".
The 1"7" state can be freely set depending on the orientation of the polarized optical axes of a pair of polarizers in a crossed nicol state arranged in the upper part of the cell and the long sleeve of the liquid crystal molecules.
本発明は液晶セルに印加される電界をアクティブマトリ
ックスの各素子の端子間電圧を制御する事によって制御
し、表示を行なうものであるから、各信号の電圧レベル
は以下の実施例にとられれる事なく、各信号の電位差を
相対的に維持すれば、実施する事が可能である。Since the present invention performs display by controlling the electric field applied to the liquid crystal cell by controlling the voltage between the terminals of each element of the active matrix, the voltage level of each signal is taken as shown in the following example. This can be carried out without any problems as long as the potential difference between each signal is maintained relatively.
[実施例]
次に、本発明のアクティブマトリックスによる強1誘電
性液晶の駆動方法の具体例を第3図〜第71/1に基づ
いて説明する。[Example] Next, a specific example of a method for driving a ferroelectric liquid crystal using an active matrix of the present invention will be described based on FIGS. 3 to 71/1.
第3図はアクティブマトリックスの回路図、第4図は対
応画素の番地を示す説明図及び第5図は対応画素の表示
例を示す説明図である。FIG. 3 is a circuit diagram of an active matrix, FIG. 4 is an explanatory diagram showing addresses of corresponding pixels, and FIG. 5 is an explanatory diagram showing an example of display of corresponding pixels.
6は走査電極群であり、7は表示電極群である。6 is a scanning electrode group, and 7 is a display electrode group.
第6図(a)は走査信号を示す図であって、位相tl
+t2 +・・・においてそれぞれ選択された走査
電極に印加される電気信号とそれ以外の走査電極(選択
されない走査電極)に印加される電気信号を示している
。第6図(b)は、表示信号を示す図であって位相tl
+j2 +・・・においてそれぞれ選択された表示
電極と選択されない表示電極に与えられる電気信号を示
している。FIG. 6(a) is a diagram showing a scanning signal, in which the phase tl
+t2 + . . . shows electrical signals applied to each selected scan electrode and electrical signals applied to other scan electrodes (unselected scan electrodes). FIG. 6(b) is a diagram showing the display signal, and the phase tl
+j2 + . . . shows electrical signals applied to selected display electrodes and unselected display electrodes, respectively.
第6図においては、それぞれ横軸が時間を、縦軸が電圧
を表す。例えば、動画を表示するような場合には、走査
電極群6は逐次、周期的に選択される。選択された走査
電極に与えられる電気信号は、第6図(a)に示される
如く「明」書込み時では、+■oであり、「暗」書込み
時では、0である。In FIG. 6, the horizontal axis represents time and the vertical axis represents voltage. For example, when displaying a moving image, the scanning electrode groups 6 are sequentially and periodically selected. As shown in FIG. 6(a), the electrical signal applied to the selected scanning electrode is +0 during "bright" writing, and is 0 during "dark" writing.
また、それ以外の選択されない走査電極に与えられる電
気信号は第6図(a)に示す如< Vcである。一方
、選択された表示電極に与えられる電気信号は、第6図
(b)に示される如く「明」書込み時には+V。てあり
、「暗」書込み時には−V。である。また選択されない
表示電極に与えられる電気信号はいずれも0である。以
上に於て各々の電圧値は、以下の関係を満足する所望の
値に設定される。Further, the electrical signals applied to the other unselected scanning electrodes are <Vc as shown in FIG. 6(a). On the other hand, the electrical signal applied to the selected display electrode is +V during "bright" writing, as shown in FIG. 6(b). -V when writing "dark". It is. Furthermore, all electrical signals given to unselected display electrodes are 0. In the above, each voltage value is set to a desired value that satisfies the following relationship.
走査電極m=qラインに表示電極n =11の信号線で
、「明」を書込み、次に走査電極m=qラインに表示電
極n=、Q2で「暗」の書込みをする場合、
v cIllv p > V L C’+ V S
、 (m=q 、n 2文1)Vs +vLcく
vcn (n 2文1 )vGm=
o (m=q、n=文、)
vS −vLC””Cn (n =
up )v cmv p < vcn、
(m≠q )但し、各記号は下記の車項を表わす。When writing "bright" to the scan electrode m=q line using the signal line of display electrode n=11, and then writing "dark" to the scan electrode m=q line using the display electrode n=Q2, v cIllv p > V L C'+ V S
, (m=q, n 2 sentences 1) Vs +vLckuvcn (n 2 sentences 1) vGm=
o (m=q, n=sentence,)
vS −vLC””Cn (n =
up ) v cmv p < vcn,
(m≠q) However, each symbol represents the following car terms.
■ 、ゲート電極(走査信号)電圧
m
V :対向電極(表示信号)電圧
Cn
■、:ソース又はドレイン(共通端子)電圧vLC’強
誘電性液晶の閾値電圧の絶対値v、:ゲート、ソース間
の閾値
以上の動作をq=l−Nまて繰返し書込みを行う。この
際、対向電極は第12図に示す様にストライプ形状のも
のとすることができる。■, Gate electrode (scanning signal) voltage m V: Counter electrode (display signal) voltage Cn ■,: Source or drain (common terminal) voltage vLC' Absolute value of threshold voltage of ferroelectric liquid crystal v,: Between gate and source Writing is performed repeatedly for q=l−N operations exceeding the threshold value. At this time, the counter electrode can be formed into a stripe shape as shown in FIG.
この様な電気信号が与えられたときの各画素のうち、例
えば第4図中の画素の書込み動作を第7状態を表わす。Among the pixels when such an electric signal is applied, the write operation of the pixel in FIG. 4, for example, represents the seventh state.
すなわち、第7図より明らかな如く、位相1.において
選択された走査線上にある画素P には、閾値V
を越えるV L C< V sN+1.N
LCVcの電圧が印加される。したがって
、第4図において画素”N+1.Nは配向を変え「暗」
に転移(スインチ)する。次に、位相t2において、選
択された走査線上にある画素P 、PN+2.NにN
、N
は閾イ1(i−V ヲdえる電圧V L C> V
S V Cが印加される。したがって画素P
、PN、N N+2.N
は「明」に転移(スイッチ)する。位相t2以降の位相
t3〜t6の動作は、前記t1〜t2と同じように、選
択された走査線上及び表示線にある画素にまず「暗jが
書込まれ、次に同一走査線上にある前回庶択されなかっ
た画素に「明」が書込まれていく。以上、各動作でわか
る通り、選択された走査電極線上に表示電極が選択され
たが否かに紀、じて、選択された場合には、液晶分子は
第一の配向状態あるいは第二の配向状態に配向を揃え、
画素はON (明)あるいはOFF (暗)となり、
選択されない走査線上では、すべての画素に印加される
電圧は、いずれも閾値電圧を越えない。従って、第7図
に示される如く、選択された走査線−」二以外の各画素
における液晶分子は配向状態を変えることなく前回走査
されたときの信号状態(QN−1)に対応した配向を、
そのまま保持している。即ち、走査電極が選択されたと
きにその1ティン分の信号の書き込みが行われ、1フレ
ームが終了して次回選択されるまでの間は、その信号状
yu4を保持し得るわけである。従って、走査電極数が
増えても、実質的なデユーティ比はかわらず、コントラ
ストの低下は全く生じない。That is, as is clear from FIG. 7, phase 1. The pixel P on the scanning line selected in , has a threshold value V
V L C< V sN+1. N
A voltage of LCVc is applied. Therefore, in FIG. 4, pixel "N+1.N" changes orientation and becomes "dark".
transfer (sinch) to. Next, at phase t2, pixels P, PN+2, . N to N
, N is the threshold 1 (i-V voltage V L C> V
S V C is applied. Therefore, pixel P
, PN, N N+2. N transfers (switches) to "light". The operation in phases t3 to t6 after phase t2 is similar to t1 to t2 above, in which "dark j" is first written to the pixels on the selected scanning line and display line, and then the previous pixel on the same scanning line is written. "Bright" is written to the pixels that were not selected. As can be seen from each operation described above, regardless of whether a display electrode is selected on the selected scanning electrode line, when the display electrode is selected, the liquid crystal molecules are in the first alignment state or the second alignment state. Align the orientation to the state,
The pixel becomes ON (bright) or OFF (dark),
On unselected scan lines, none of the voltages applied to all pixels exceeds the threshold voltage. Therefore, as shown in FIG. 7, the liquid crystal molecules in each pixel other than the selected scanning line "2" maintain the orientation corresponding to the signal state (QN-1) when scanned last time without changing the orientation state. ,
It is kept as is. That is, when a scanning electrode is selected, one tin's worth of signals is written, and the signal state yu4 can be held until the next selection after one frame is completed. Therefore, even if the number of scanning electrodes increases, the actual duty ratio does not change and the contrast does not deteriorate at all.
第5図に於て、走査′電極G’G 、GN+2.・
・・N’ N+1
と表示電極CCC・・・の交点で形成するN’ N
+1’ N+2’
画素のうち、斜線部の画素は’ IJIf J状7U:
に、白地で示した画素は「明」状態に対応するものとす
る。今、第5図中の表示電極SN上−の表示に注[1す
ると、走査電極GN、GN+2に対応する画素では「明
」状態であり、それ以外の画素は’ lli’f J状
yト;である。前記、位相t1〜t6の各動作によって
、第5図の表示パターンが完成する。In FIG. 5, scanning electrodes G'G, GN+2.・
...N' N formed at the intersection of N' N+1 and display electrode CCC...
+1'N+2' Of the pixels, the pixels in the shaded area are 'IJIf J-shaped 7U:
It is assumed that the pixels shown in white correspond to the "bright" state. Now, note the display above the display electrode SN in FIG. ; is. The display pattern shown in FIG. 5 is completed by each operation of the phases t1 to t6.
なお、第6図において駆動波形は走査信号、表示信号と
も3レベルをもつ電圧信号であるが、共通電極として使
用している対向電極の電位を、第一の表示状態書込みの
時はGNDに、第二の表示状態1;;込みのν1には+
■8にすることより、走査信1j、表示信号とも2レヘ
ルの電圧信号で駆動することかできる。In FIG. 6, the drive waveform is a voltage signal with three levels for both the scanning signal and the display signal, but the potential of the counter electrode used as a common electrode is set to GND when writing the first display state. The second display state 1;; includes +
(2) By setting it to 8, both the scanning signal 1j and the display signal can be driven with a voltage signal of 2 levels.
第8[/1に2レベルの電圧による駆動波形の例を小す
。An example of a driving waveform using two levels of voltage is shown in the eighth [/1].
本発明の強誘電性液晶の駆動方法において、走査電極と
(iM号電極の配置は任意であり、例えは第9図(a)
、 (b)に示すように一夕1jに画素を配置する
ことも可能であり、この様に配置するとシャック−アレ
・r等として利用することができる。In the method for driving a ferroelectric liquid crystal of the present invention, the arrangement of the scanning electrode and the (iM electrode) is arbitrary, for example, as shown in FIG.
, As shown in (b), it is also possible to arrange the pixels at 1j, and by arranging them in this way, it can be used as a shack-area, r, etc.
次に、以上に説明した実施例において、強誘゛屯性l(
k品として口OBAMBGを駆動するのに好ましい具体
的数値を示すと、例えば
人力周波数f、= lXlO4〜lXl06H210<
I v61 <80V (波高値)0.3 < l
VSl <IOV (波高値)か挙げられる。Next, in the embodiment described above, the forcible strength l(
Preferred specific values for driving the mouth OBAMBG as a k product are, for example, human power frequency f, = lXlO4~lXl06H210<
I v61 <80V (peak value) 0.3 < l
VSl < IOV (wave height value).
第1O図は本発明において使用されるTFTにおけるF
ETの構成を示す断面図、第11図はTPTを用いた強
誘電性液晶セルの断面図、第12図はTPT基板の斜視
図、第13図はTPT基板の平面図、第14図は第13
図のA−A ′線で切断した部分断面図、第15図は第
13図のB−B ′線で切断した部分断面図であり、以
上に示す各図はいずれも本発明の一実施yル様を示すも
のである。Figure 1O shows F in the TFT used in the present invention.
11 is a cross-sectional view of a ferroelectric liquid crystal cell using TPT, FIG. 12 is a perspective view of the TPT substrate, FIG. 13 is a plan view of the TPT substrate, and FIG. 14 is a cross-sectional view showing the configuration of ET. 13
FIG. 15 is a partial cross-sectional view taken along line A-A' in the figure, and FIG. 15 is a partial cross-sectional view taken along line B-B' in FIG. It shows Mr. Le.
第11図は、本発明の方法て用いうる液晶素子の1つの
具体例を表わしている。カラス、プラスチンク″ターの
基板20の上にゲート電極24、絶縁膜22(水素原子
をドーピングした窒化シリコン膜など)を介して形成し
た半導体膜16(水素原子を1・−ヒンジしたアモルフ
ァスシリコン)と、この半導体膜1日に接する2つ端子
8とLlで構成したTPTと、TPTの端子11と接続
しだ画素電極12(ITO; Indnium Tin
O!1de)か形成されている。FIG. 11 shows one specific example of a liquid crystal device that can be used in the method of the present invention. Semiconductor film 16 (amorphous silicon with 1-hinged hydrogen atoms) formed on a substrate 20 of glass or plastic film via a gate electrode 24 and an insulating film 22 (silicon nitride film doped with hydrogen atoms, etc.) A TPT composed of two terminals 8 and Ll that are in contact with this semiconductor film, and a pixel electrode 12 (ITO; Indnium Tin) connected to the terminal 11 of the TPT.
O! 1de) is formed.
さらに、この上に絶縁層13(ポリイミI・、ポリアミ
ド、ポリヒニルアルコール、ポリパラキシリレン、Si
O、SiO2) とアルミニウムやクロムなとからなる
光遮蔽膜9が設けられている。対向基板となる基板20
′の」二には対向電極2+ (ITO; Indniu
n Tin O++1de)と絶縁膜22が形成されて
いる。Furthermore, an insulating layer 13 (polyimide I, polyamide, polyhinyl alcohol, polyparaxylylene, Si
A light shielding film 9 made of O, SiO2), aluminum, or chromium is provided. Substrate 20 serving as a counter substrate
'' is a counter electrode 2+ (ITO; Indniu
nTin O++1de) and an insulating film 22 are formed.
この基板20と20′の間には、前述の強誘電性液1、
xjJ 23か挟持されている。又、この基板2oと2
0′の周囲部には強調心性液晶23を封止するためのシ
ール材25か設けられている。Between the substrates 20 and 20', the above-mentioned ferroelectric liquid 1,
xjJ 23 is being held. Also, this board 2o and 2
A sealing material 25 for sealing the enhanced cardiac liquid crystal 23 is provided around 0'.
この様なセル構造の液晶素子の両側にはクロスニコル状
態の偏光子18と18′が配置され、観察渚Aが大川光
重。よりの反射光重、にょって表示4人yパてを見るこ
とかできる様に偏光子18′の背後に反射板18(乱反
射性アルミニウムシーi・又は板)が1□9けられてい
る。Polarizers 18 and 18' in a crossed Nicol state are arranged on both sides of a liquid crystal element with such a cell structure, and the observation point A is Mitsushige Okawa. A reflector plate 18 (diffuse reflective aluminum sheet or plate) is placed 1□9 behind the polarizer 18' so that the four people on the display can see the reflected light. .
又、上記の各図においてソース電極、i・レイン′屯イ
!iとは、ドレインからソースへ電流が流れる場合に限
定した命名である。FETの働きではソースかドレイン
として働く場合も可能である。Also, in each of the above figures, the source electrode, i・rain′tuni! The term "i" is used only when current flows from the drain to the source. It is also possible for the FET to function as either a source or a drain.
[発明の効果]
−1−記の4i1’J ]′hよりなるA、、発明の強
調゛市性液晶の駆動方法を用いることにより、アクティ
ツマ(・リックスに画素数の多い大画面の表示及び高速
度で解。[Effects of the Invention] A consisting of 4i1'J ]'h in -1-. Solved at high speed.
明な両像を表示することができる。It is possible to display both clear images.
第、1図及び第2図は、本発明の方法に用いる強誘電性
液晶を模式的に表わす斜視図、第3図は本発明の方法に
用いるマトリックス電極の回路図、第4図は対応画素の
番地を示す説明図、第5図は対応画素の表丞例を示す説
明図、第6図(a)及び(b)は走査電極及び表示電極
に印加する電気信号を表わす説明図、第7図は各画素へ
の書込み動作を表わす説明図、第8図は2レベルの電圧
による!5(駆動波形の説明図、第9図(a)及び(b
)はアクティブマトリックス回路と画素配(買の例を示
す配線図、第10図はTFTにおけるFETの構成を示
す断面図、第11図はTPTを用いた強調′屯性液晶セ
ルの断面図、第12図はTPT基板の斜視図、第13図
はTPT基板の平面図、第14図はA−A′線線部分断
面図及第第15図B−B ′部分断面図である。
1.1′、透明電極がコー]・されたノ、(板2、液晶
分子層
3、液晶分子
4;双極子モーメント(P工)
4a;上向き双極子モーメント
4b、下向き双極子モーメント
5:第一の配向状態 ル
5′;第二の配向状yル
9;光遮蔽膜 10;n+層
11: ドレイン′ITr、極(ソース電極)12;
画素電極 13;絶縁層
14;基板 15;半導体直下の光遮蔽膜16:半
導体 17;ゲート配線部の透明電極18:反射板
19.l!1′、偏光板20.20′;ガラス、プラ
スチック等の透明基板21;対向電極 22;絶縁膜
23;強誘電性液晶層
24;ゲート電極
25;シール材 26.薄膜半導体
27:ゲート配線 28;パネルノ、(板28;光遮断
効果を有するケート部
1′〜M′、走査電極
1−N、表示電極
り、共通電極
LC;フイ支晶1, and 2 are perspective views schematically showing the ferroelectric liquid crystal used in the method of the present invention, FIG. 3 is a circuit diagram of a matrix electrode used in the method of the present invention, and FIG. 4 is a corresponding pixel. FIG. 5 is an explanatory diagram showing an example of a table of corresponding pixels. FIGS. 6(a) and (b) are explanatory diagrams showing electrical signals applied to the scanning electrode and display electrode. The figure is an explanatory diagram showing the write operation to each pixel, and FIG. 8 is based on two levels of voltage! 5 (Explanatory diagram of drive waveform, Fig. 9 (a) and (b)
) is a wiring diagram showing an example of an active matrix circuit and pixel arrangement (Fig. 10 is a cross-sectional view showing the configuration of FET in a TFT, Fig. 11 is a cross-sectional view of an accentuated liquid crystal cell using TPT, 12 is a perspective view of the TPT substrate, FIG. 13 is a plan view of the TPT substrate, FIG. 14 is a partial sectional view taken along line A-A', and FIG. 15 is a partial sectional view taken along line B-B'. 1.1 ', the transparent electrode is coated] (plate 2, liquid crystal molecule layer 3, liquid crystal molecule 4; dipole moment (P) 4a; upward dipole moment 4b, downward dipole moment 5: first orientation State 5′; Second orientation yl 9; Light shielding film 10; N+ layer 11: Drain′ITr, pole (source electrode) 12;
Pixel electrode 13; Insulating layer 14; Substrate 15; Light shielding film 16 directly under the semiconductor: Semiconductor 17; Transparent electrode 18 in gate wiring portion: Reflector
19. l! 1', polarizing plate 20, 20'; transparent substrate 21 made of glass, plastic, etc.; counter electrode 22; insulating film 23; ferroelectric liquid crystal layer 24; gate electrode 25; sealing material 26. Thin film semiconductor 27: gate wiring 28; panel, (plate 28; gate portions 1' to M' having a light blocking effect, scanning electrodes 1-N, display electrode, common electrode LC;
Claims (1)
した画素電極を該FETに対応して複数設けた第一基板
と該画素電極に対向する対向電極を設けた第二基板を有
し、前記画素電極と対向電極の間に電界に対して双安定
状態を有する強誘電性液晶を挟持した構造の液晶素子の
駆動法であって、前記FETのゲートがゲートオン状態
となる信号印加と同期させてFETのゲート以外の端子
である第一端子と第二端子の間で電界を形成することに
よって、第一の配向状態に強誘電性液晶の配列を制御す
る第一位相と、前記第一端子と第二端子の間で形成した
電界と逆極性の電界を第一端子と第二端子の間で形成す
ることによって、第二の配向状態に強誘電性液晶の配列
を制御する第二位相を有し、前記対向電極に表示信号を
印加するとともに各画素に対応しているFET端子のう
ち、ソース又はドレインを共通端子に接続して、ゲート
に走査信号を印加する時分割駆動であり、走査信号線に
所定の走査信号を印加するとともに、選択された表示信
号線に所定の表示信号を印加して、第一の配向状態に基
づく表示状態を書込み、次に別の選択された表示信号線
に所定の表示信号を印加して第二の配向状態に基づく表
示状態の書込みを行うことを特徴とする液晶素子の駆動
法。記載の液晶素子の駆動法。(1) It has a first substrate provided with a plurality of pixel electrodes corresponding to the FETs connected to a first terminal which is a terminal other than the gate of the FET, and a second substrate provided with a counter electrode facing the pixel electrodes. , a method for driving a liquid crystal element having a structure in which a ferroelectric liquid crystal having a bistable state with respect to an electric field is sandwiched between the pixel electrode and the counter electrode, the method comprising: synchronizing with application of a signal to turn the gate of the FET into a gate-on state; a first phase that controls the alignment of the ferroelectric liquid crystal to a first alignment state by forming an electric field between a first terminal and a second terminal that are terminals other than the gate of the FET; A second phase that controls the alignment of the ferroelectric liquid crystal to a second alignment state by forming an electric field between the first terminal and the second terminal with the opposite polarity to the electric field formed between the terminal and the second terminal. It is time-division driving in which a display signal is applied to the counter electrode, and the source or drain of the FET terminals corresponding to each pixel is connected to a common terminal, and a scanning signal is applied to the gate. A predetermined scanning signal is applied to the scanning signal line and a predetermined display signal is applied to the selected display signal line to write a display state based on the first orientation state, and then another selected display signal is applied. 1. A method for driving a liquid crystal element, characterized in that a predetermined display signal is applied to a line to write a display state based on a second alignment state. Driving method of the liquid crystal element described.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59130000A JPS619624A (en) | 1984-06-26 | 1984-06-26 | Driving method of liquid crystal element |
US06/724,828 US4697887A (en) | 1984-04-28 | 1985-04-18 | Liquid crystal device and method for driving the same using ferroelectric liquid crystal and FET's |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59130000A JPS619624A (en) | 1984-06-26 | 1984-06-26 | Driving method of liquid crystal element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS619624A true JPS619624A (en) | 1986-01-17 |
Family
ID=15023668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59130000A Pending JPS619624A (en) | 1984-04-28 | 1984-06-26 | Driving method of liquid crystal element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS619624A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4768863A (en) * | 1985-07-05 | 1988-09-06 | Vdo Adolf Schindling Ag | Liquid crystal cell having MIM elements on both substrates |
US5122424A (en) * | 1989-10-05 | 1992-06-16 | Litton Systems, Inc. | Abrasion-resistant, infrared transmitting optical components |
US5555110A (en) * | 1992-12-21 | 1996-09-10 | Semiconductor Energy Laboratory Company, Ltd. | Method of driving a ferroelectric liquid crystal display |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614026A (en) * | 1984-06-19 | 1986-01-09 | Canon Inc | Driving method of liquid crystal element |
JPS614021A (en) * | 1984-06-19 | 1986-01-09 | Canon Inc | Driving method of liquid crystal element |
-
1984
- 1984-06-26 JP JP59130000A patent/JPS619624A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614026A (en) * | 1984-06-19 | 1986-01-09 | Canon Inc | Driving method of liquid crystal element |
JPS614021A (en) * | 1984-06-19 | 1986-01-09 | Canon Inc | Driving method of liquid crystal element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4768863A (en) * | 1985-07-05 | 1988-09-06 | Vdo Adolf Schindling Ag | Liquid crystal cell having MIM elements on both substrates |
US5122424A (en) * | 1989-10-05 | 1992-06-16 | Litton Systems, Inc. | Abrasion-resistant, infrared transmitting optical components |
US5555110A (en) * | 1992-12-21 | 1996-09-10 | Semiconductor Energy Laboratory Company, Ltd. | Method of driving a ferroelectric liquid crystal display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4973135A (en) | Active matrix display panel having plural stripe-shaped counter electrodes and method of driving the same | |
US4697887A (en) | Liquid crystal device and method for driving the same using ferroelectric liquid crystal and FET's | |
US5227900A (en) | Method of driving ferroelectric liquid crystal element | |
US4770501A (en) | Optical modulation device and method of driving the same | |
KR20020095167A (en) | Bistable chiral nematic liquid crystal display and method of driving the same | |
JPS6244247B2 (en) | ||
JP2805253B2 (en) | Ferroelectric liquid crystal device | |
JPH079508B2 (en) | Liquid crystal display device and driving method thereof | |
JPS60262133A (en) | Driving method of liquid-crystal element | |
JPS614021A (en) | Driving method of liquid crystal element | |
JPS619624A (en) | Driving method of liquid crystal element | |
JPS60230121A (en) | Driving method of liquid crystal element | |
JPH028814A (en) | Liquid crystal device | |
JPS60262136A (en) | Driving method of liquid-crystal element | |
JPS614026A (en) | Driving method of liquid crystal element | |
JPS617829A (en) | Driving method of liquid-crystal element | |
JPH0453293B2 (en) | ||
JPS60262134A (en) | Driving method of liquid-crystal element | |
JPS60262137A (en) | Driving method of liquid-crystal element | |
JPS614022A (en) | Driving method of liquid crystal element | |
JPS60262135A (en) | Driving method of liquid-crystal element | |
JPH0453292B2 (en) | ||
JPS614027A (en) | Driving method of liquid crystal element | |
JPS614023A (en) | Driving method of liquid crystal element | |
JPS614028A (en) | Driving method of liquid crystal element |