JPS623202A - Optical filter - Google Patents
Optical filterInfo
- Publication number
- JPS623202A JPS623202A JP60141693A JP14169385A JPS623202A JP S623202 A JPS623202 A JP S623202A JP 60141693 A JP60141693 A JP 60141693A JP 14169385 A JP14169385 A JP 14169385A JP S623202 A JPS623202 A JP S623202A
- Authority
- JP
- Japan
- Prior art keywords
- rays
- separated
- pitch
- sepn
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 30
- 238000000926 separation method Methods 0.000 claims description 35
- 238000003384 imaging method Methods 0.000 claims description 9
- 239000013078 crystal Substances 0.000 abstract description 24
- 230000007423 decrease Effects 0.000 abstract description 5
- 230000004907 flux Effects 0.000 abstract description 5
- 230000010287 polarization Effects 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 8
- 239000000969 carrier Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 102220616506 Gamma-crystallin D_P24V_mutation Human genes 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
Landscapes
- Color Television Image Signal Generators (AREA)
- Optical Filters (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は光学フィルタに係り、特に多数画素が水平方向
と垂直方向とに整列して直交配列された構成の固体撮像
素子に好適な光学フィルタに関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical filter, and more particularly to an optical filter suitable for a solid-state image sensor having a configuration in which a large number of pixels are aligned and orthogonally arranged in the horizontal and vertical directions.
従来の技術
現在、単管式のカラーテレビジョンカメラには、囮像管
の代わりに第8図に示すCCDCD固体素像素子1み込
んだものがある。同図中、2は画素であり且つ光電変換
素子である多数のフォトダイオードであり、Uで示す水
平方向にピッチaで、■で示す垂直方向にピッチbで整
列して直交配列しである。3は手直転送CCD部、4は
水平CODシフトレジスタである。被写体の光学像はこ
の固体映像素子1の表面に結像され、各フォトダイオー
ド2で光電変換される。各フォトダイオード2に発生し
た光電荷が次々に読み出され、固[機素子より映像信号
が取り出される。2. Description of the Related Art At present, some single-tube color television cameras incorporate a CCDCD solid-state image element 1 shown in FIG. 8 instead of a decoy image tube. In the figure, reference numeral 2 denotes a large number of photodiodes which are pixels and photoelectric conversion elements, and are arranged orthogonally arranged in the horizontal direction indicated by U at pitch a and vertically indicated by black at pitch b. 3 is a manual transfer CCD section, and 4 is a horizontal COD shift register. An optical image of the subject is formed on the surface of this solid-state image element 1, and photoelectrically converted by each photodiode 2. The photocharges generated in each photodiode 2 are read out one after another, and a video signal is taken out from the solid state element.
発明が解決しようとする問題点
こ)で、フォトダイオード2は互いに間隔をおいて配さ
れているため、光学像は、U方向についてはピッチaに
対応した周波数で、■方向についてはピッチbに対応し
た周波数で、空間的にサンプリングされることになり、
水平方向及び垂直方向の空間周波数が零の被写体をvR
像したときにも、映像信号は、第9図中、円弧で表わす
変調波5の形で取り出される。このとぎ、別の変調波6
,7゜8が夫々キャリヤ5a、7a、 8aを中心とす
る円で示すように発生し、上記フォトダイオードの開口
率が比較的低いため変調波6.7のレベルは大きくそれ
が変調波5と重なると、同図中ハツチ“ングで示す空間
周波数領域に折り返し歪9.10が発生する。この折り
返し歪は、例えば細い縞模様の被写体を撮像した場合に
、縞模様を構成する線がビート状の太い線になったりす
る如くに表われる。このように、固体撮像素子1におい
ては、光学像を空間的にサンプリングすることに起因す
る特有の折り返し歪が発生するため、キ17リヤ6a、
7aからの折り返し成分を抑制して折り返し歪9.10
を低減する必要がある。Problem to be Solved by the Invention In this case, since the photodiodes 2 are arranged at intervals, the optical image is generated at a frequency corresponding to pitch a in the U direction, and at a pitch b in the ■ direction. It will be sampled spatially at the corresponding frequency,
vR is an object whose horizontal and vertical spatial frequencies are zero.
When imaging, the video signal is extracted in the form of a modulated wave 5 represented by an arc in FIG. At this point, another modulated wave 6
, 7°8 are generated as shown by the circles centered on the carriers 5a, 7a, and 8a, respectively, and since the aperture ratio of the photodiode is relatively low, the level of the modulated wave 6.7 is high and it is different from the modulated wave 5. When they overlap, aliasing distortion 9.10 occurs in the spatial frequency region indicated by hatching in the figure.This aliasing distortion occurs when, for example, when an object with a thin striped pattern is imaged, the lines making up the striped pattern are shaped like a beat. As described above, in the solid-state image sensor 1, a unique aliasing distortion occurs due to the spatial sampling of the optical image.
Suppressing the aliasing component from 7a to reduce aliasing distortion 9.10
need to be reduced.
ところで、レンズ光学系は、第10図中曲線■で示すよ
うな低域フィルタ特性を有し、光学像のうら高域成分は
低Fする。現在の固体撮像索子1の画素数は撮像部2/
3インチサイズで400画 ″′:素程度で
あるため、空間的サンプリング周波数はflで示すよう
に十分に高くはない。このため、上記f1の1/2の周
波数であるナイキスト限界以上の空間周波数においても
MTF値は比較的大きく、然して折り返し歪は抑制し得
ず、光学フィルタが必要となる。踊像管に適用されてい
る光学フィルタは、一般に、第6図中曲線■で示すよう
なMTF特性である。同図中、トラップ点fu。By the way, the lens optical system has a low-pass filter characteristic as shown by the curve (■) in FIG. 10, and the high-frequency components at the back of the optical image have a low F. The number of pixels of the current solid-state imaging probe 1 is as follows:
400 pixels in 3-inch size ″′: Because it is elementary, the spatial sampling frequency is not high enough as shown by fl. Therefore, the spatial frequency is higher than the Nyquist limit, which is 1/2 the frequency of f1 above. Also, the MTF value is relatively large, but aliasing distortion cannot be suppressed, and an optical filter is required.The optical filter applied to the dancing image tube generally has an MTF value as shown by the curve ■ in Fig. 6. In the figure, the trap point fu.
からfu、の1/2の周波数であるfu2の間の空間周
波数域のMTF値は大きく、第9図中キャリヤ6aより
の折り返し成分の抑圧は不十分である。従って固体撮像
素子1には、・特別に設計した光学フィルタが必要とな
る。The MTF value in the spatial frequency range between fu2, which is 1/2 of the frequency from fu to fu, is large, and the suppression of the aliasing component from the carrier 6a in FIG. 9 is insufficient. Therefore, the solid-state image sensor 1 requires a specially designed optical filter.
本発明は上記問題点を解決した光学フィルタを提供する
ことを目的とする。An object of the present invention is to provide an optical filter that solves the above problems.
問題点を解決するための手段
本発明は、固体撮像素子の走査方向が分離方向であり固
体撮像素子の画素の走査方向のピッチaと等しい分離距
離を有する第1の複屈折透明板と、上記走査方向の分離
距離成分がa/2で、走査直交方向のうち一の方向の分
離距離成分が固体撮像素子の画素の走査直交方向のピッ
チbの1/2であるように分離する第2の複屈折透明板
と、上記走査直交方向のうち上記一の方向とは逆の方向
が分離方向であり、上記ピッチbと等しい分離距離を有
する第3の複屈折透明板と、上記走査方向の分離距離成
分がa/2で、上記走査直交方向のうち上記一の方向と
は逆の方向の分離距離成分がb/2であるように分離す
る第4の複屈折透明板とを重ね合わせてなる構成である
。Means for Solving the Problems The present invention provides a first birefringent transparent plate in which the scanning direction of the solid-state image sensor is the separation direction and has a separation distance equal to the pitch a of the pixels of the solid-state image sensor in the scanning direction; A second method for separating pixels such that the separation distance component in the scanning direction is a/2 and the separation distance component in one of the directions orthogonal to the scanning direction is 1/2 of the pitch b of the pixels of the solid-state image sensor in the direction orthogonal to the scanning direction. A birefringent transparent plate, a third birefringent transparent plate whose separation direction is a direction opposite to the one direction in the orthogonal scanning direction, and a separation distance equal to the pitch b, and separation in the scanning direction. A fourth birefringent transparent plate separated so that the distance component is a/2 and the separation distance component in the direction orthogonal to the scanning direction opposite to the one direction is b/2 is superposed. It is the composition.
作用
上記の構成は単位入射光線を12の光線に分離し、走査
方向及び走査直交方向のMTF特性は、共にキャリヤよ
りの折り返し成分を十分に減衰させるように作用する。Effect: The above configuration separates a unit incident light beam into 12 light beams, and both the MTF characteristics in the scanning direction and the direction perpendicular to the scanning function to sufficiently attenuate the aliasing component from the carrier.
実施例
次に本発明になる光学フィルタの一実施例について説明
する。EXAMPLE Next, an example of the optical filter according to the present invention will be described.
第1図は、前記の固体撮像索子1で、水平ピッチaと垂
直ピッチbが等しい固体撮像素子に適用される光学フィ
ルタ20を示す。光学フィルタ20は、第2図中矢印2
1A方向(固体撮像素子1における走査方向と同一方向
)を分離方向とする第1の水晶板21と、矢印22A方
向を分離方向とする第2の水晶板22と、矢印23A方
向(固体撮像素子1における走査方向に対して直交する
走査直交方向(−V軸方向))を分離方向とする第3の
水晶板23と、矢印24A方向を分離方向とする第4の
水晶板24とが積重された構造 ゛である。FIG. 1 shows an optical filter 20 that is applied to the solid-state imaging element 1 in which the horizontal pitch a and the vertical pitch b are equal. The optical filter 20 is indicated by arrow 2 in FIG.
A first crystal plate 21 whose separation direction is in the 1A direction (the same direction as the scanning direction in the solid-state image sensor 1), a second crystal plate 22 whose separation direction is in the arrow 22A direction, and a second crystal plate 22 whose separation direction is in the arrow 23A direction (the same direction as the scanning direction in the solid-state image sensor 1); A third crystal plate 23 whose separation direction is the scanning orthogonal direction (-V axis direction) perpendicular to the scanning direction in 1 and a fourth crystal plate 24 whose separation direction is the direction of arrow 24A are stacked. This is the structure ゛.
第1の水晶板21はこれによる分離距離がaとなるよう
に厚さtl、第2の水晶板22はこれによる分離距離が
a/72となるように厚さtl、第3の水晶板23はこ
れによる分館距離が 、、b(=a)となる
ように厚さt3、第4の水晶板24はこれによる分離距
離等がa/J2となるように厚さt4に夫々窓めである
。The first crystal plate 21 has a thickness tl such that the separation distance is a, the second crystal plate 22 has a thickness tl such that the separation distance is a/72, and the third crystal plate 23 has a thickness tl such that the separation distance is a/72. The fourth crystal plate 24 has a thickness t3 so that the resulting branch distance becomes , , b (=a), and the fourth crystal plate 24 has a thickness t4 so that the resulting separation distance becomes a/J2.
この光学フィルタ20に入射した円偏光の単位光束25
は、まず第1の水晶板21において複屈折して、第3図
及び第4図(A)中ベクトルOで示すように、U軸方向
に、前記ピッチaと等しい距離P2121分離、光線2
5+ と252とに分かれる。分離された二つの光線2
5+ 、252は、第4図(A)に矢印で示すように、
共に直線偏光であり、偏光方向は互いに直交している。Unit light flux 25 of circularly polarized light incident on this optical filter 20
is first birefringent in the first crystal plate 21, and as shown by the vector O in FIGS. 3 and 4 (A), the light ray 2 is separated by a distance P2121 equal to the pitch a in the U-axis direction.
It is divided into 5+ and 252. Two separated rays 2
5+, 252, as shown by the arrow in FIG. 4(A),
Both are linearly polarized lights, and the polarization directions are orthogonal to each other.
光線25+ 、252は第2の水晶板22.において複
屈折して、第3図及び第4図(B)中ベクトルOで示す
ように、U軸方向の分離距離成分がa/2に等しいP2
2u、■軸方向の分離距離成分がb/2 (=a/2)
に等しいPZ!Vとなるように、即ちU軸に対して+4
5°方向に距離P22(=a/V’2>分離して、光線
251と253及び252と254とに分かれる。こ)
で、分離方向は、上記光線25+ 、252の各偏光方
向に対して45度方向であるため、光線25+ 、25
2の各成分のうち1/2が残り、1/2が分離され、各
光線251〜254の強さは元の単位光束25の強さの
1/4となり、互いに等しい。The light beams 25+, 252 are transmitted to the second crystal plate 22. P2 is birefringent, and the separation distance component in the U-axis direction is equal to a/2, as shown by the vector O in Figures 3 and 4 (B).
2u, ■Axial separation distance component is b/2 (=a/2)
PZ equal to! V, i.e. +4 to the U axis
The distance P22 (=a/V'2> is separated in the 5° direction, and the beams are divided into rays 251 and 253, and 252 and 254.)
Since the separation direction is 45 degrees with respect to each polarization direction of the light rays 25+ and 252, the light rays 25+ and 25
1/2 of each component of 2 remains and 1/2 is separated, and the intensity of each light ray 251 to 254 becomes 1/4 of the intensity of the original unit light beam 25 and is equal to each other.
分離された光線25+〜254は、第3の水晶板23に
おいて複屈折して、第3図及び第4図(C)中のベクト
ル0で示すように、−■@方向に、前記ピッチb(=a
)と等しい距llI P 23分離され、光線251〜
254と255〜258とに分離される。こ)で、分離
方向が各光線251〜254の偏光方向に対して45度
方向であるため、各光線251〜254は、上記の場合
と同様に、光1G 25 +〜254の各成分のうち1
/2が残り、1/2が分離され、各光線251〜258
の強さは単位光束25の強さの1/8となり、互いに等
しい。The separated light rays 25+ to 254 are birefringent in the third crystal plate 23, and as shown by the vector 0 in FIGS. =a
) is separated by a distance llI P 23, and the ray 251~
254 and 255-258. In this case, since the separation direction is at 45 degrees with respect to the polarization direction of each light ray 251 to 254, each light ray 251 to 254 is a component of each component of light 1G 25 + to 254, as in the above case. 1
/2 remains, 1/2 is separated, each ray 251-258
The intensity is 1/8 of the intensity of the unit luminous flux 25, and is equal to each other.
分離された光線251〜258は、第4の水晶板24に
おいて複屈折して、第3図及び第4図(D)中ベクトル
G戻示すように、U軸方向の分離距離成分がa/2に等
し、いP24U、−V軸方向の分離距離成分がb/2に
等しいP24Vとなるように、即ちU軸に対して一45
度方向に距1111 P 24(=a/J2>分離して
、光線251〜25+6に分離される。各光線251〜
258は、上記の場合と同様に、その成分のうち1/2
が残り、1/2が分離される。また光線25+ 、25
2 。The separated light rays 251 to 258 are birefringent in the fourth crystal plate 24, and as shown in FIGS. 3 and 4 (D), the separation distance component in the U-axis direction becomes a/2. equal to P24U, the separation distance component in the -V axis direction is P24V equal to b/2, that is, -45 with respect to the U axis.
The distance 1111 P 24 (=a/J2> is separated in the degree direction, and the beams are separated into rays 251 to 25+6. Each ray 251 to
258 is 1/2 of its components, as in the above case.
remains, and 1/2 is separated. Also, rays 25+, 25
2.
253.25gより分離した光線25s、25to。Ray 25s, 25to separated from 253.25g.
2511.2514は夫々光線25s 、 25a 、
252257と一致し、結果的には単位光束25は1
2の光線に分離される。このうち8つの光線251゜2
53 、 234 、 25s 、 2
512 、 25 電3 、 25+5251
6の強さは夫々元の単位光束25の強さの1/16であ
り、残りの4つの光線の強さは単位光束25の強さの1
/8となる。2511.2514 are the rays 25s, 25a,
252257, and as a result, the unit luminous flux 25 is 1
It is separated into two rays. Eight of these rays are 251°2
53, 234, 25s, 2
512, 25 Den 3, 25+5251
The intensity of rays 6 is 1/16 of the intensity of the original unit beam 25, and the intensity of the remaining four rays is 1/16 of the intensity of the unit beam 25.
/8.
上記のように光線を分離する光学フィルタ20のMTF
特性は、水平方向の空間周波数をU、垂直方向の空間周
波数を■とすると、次式%式%)
で表わされる。この式の(」、■に具体的数値を代入し
て計算すると、第5図に示す二次元MTF特性が得られ
る。第5図の各曲線はMTF値が同じ点を結んだ等電線
に似た曲線である。MTF of optical filter 20 that separates light beams as described above
The characteristics are expressed by the following formula, where U is the spatial frequency in the horizontal direction and ■ is the spatial frequency in the vertical direction. When calculating by substituting specific values for ('' and This is a curve.
U@方向のMTF特性は、第5図中、U軸上の各空間周
波数におけるMTF値の絶対値をプロットすることによ
り得られ、第6図中曲線■で示す如くになる。fulは
前記キャリヤ6aの周波数に対応し、fu2はfU+/
2である。第6図より、MTF値は、水平空間周波数が
上昇するにつれて徐々に低下して、fu2で零となり、
これを越えると多少増加し再度低下してfu、で零とな
り、fu2〜fulの間のMTF値は小さく抑えられて
いることが分かる。The MTF characteristic in the U@ direction is obtained by plotting the absolute value of the MTF value at each spatial frequency on the U axis in FIG. 5, and is as shown by the curve ■ in FIG. 6. ful corresponds to the frequency of the carrier 6a, and fu2 corresponds to fU+/
It is 2. From Figure 6, the MTF value gradually decreases as the horizontal spatial frequency increases, and reaches zero at fu2.
It can be seen that beyond this, the MTF value increases somewhat, then decreases again, and reaches zero at fu, and the MTF value between fu2 and ful is kept small.
こ)で、特に水平空間周波数fu2〜fu1の間のMT
F値が小さく抑えられているため、キルリヤ6aからの
高域成分の折り返し成分が効宋的に抑圧され、発生する
折り返し歪9のレベルは小となる。In this case, especially the MT between horizontal spatial frequencies fu2 to fu1
Since the F value is kept small, the high-frequency aliasing component from the Kirriya 6a is effectively suppressed, and the level of the generated aliasing distortion 9 becomes small.
■軸方向のMTF特性は、第5図中V軸上の各空間周波
数にお1ノるMTF値の絶対値をプロットすることによ
り得られ、第7図中曲線■で示す如 。(2) The axial MTF characteristic is obtained by plotting the absolute value of one MTF value at each spatial frequency on the V axis in FIG. 5, as shown by the curve (2) in FIG. 7.
くになる。fvl は前記キャリr7aの周波数に対応
し、fv2はfV+/2である。第7図より、MTF値
は、第6図に示す水平方向のMTF特性と同様に、垂直
空間周波数が上昇するにつれて徐々に低下して、fv2
で零となり、これを越えると多少増加し再度低下してf
v+で零となり、fv+〜fv2の間のMTF値が小さ
く抑えられていることが分かる。It becomes dark. fvl corresponds to the frequency of the carry r7a, and fv2 is fV+/2. From FIG. 7, similar to the horizontal MTF characteristics shown in FIG. 6, the MTF value gradually decreases as the vertical spatial frequency increases, and fv2
, it becomes zero, and when it exceeds this value, it increases somewhat and then decreases again, and f
It becomes zero at v+, and it can be seen that the MTF value between fv+ and fv2 is kept small.
上記の場合と同様に、第1には、垂直空間周波数fv2
〜fv、の間のMTF値が小ざく抑えられており、第2
には垂直空間周波数fV2のMTF値が小さいため、■
軸方向の折り返し歪も十分に軽減される。As in the above case, firstly, the vertical spatial frequency fv2
The MTF value between ~fv is kept small, and the second
Since the MTF value of vertical spatial frequency fV2 is small, ■
The aliasing strain in the axial direction is also sufficiently reduced.
従って、上記の光学フィルタ10を使用することにより
、U軸方向に表われる折り返し歪及びV軸方向に表われ
る折り返し歪は共に抑制されて低減される。Therefore, by using the optical filter 10 described above, both the aliasing distortion appearing in the U-axis direction and the aliasing distortion appearing in the V-axis direction are suppressed and reduced.
なお、第5図中斜め方向にMTF値の高い所が存在する
が、この場所は原点より十分離れた場所であり空間周波
数も相当高い場所である。このように高い空間周波数成
分に対しては第10図に示すようにレンズ光学系の特性
が効果的に作用してMTF値を下げており、問題は少な
い。Note that there is a place with a high MTF value in the diagonal direction in FIG. 5, but this place is far enough away from the origin and the spatial frequency is also quite high. For such high spatial frequency components, as shown in FIG. 10, the characteristics of the lens optical system effectively act to lower the MTF value, so there are few problems.
なお、本発明の光学フィルタは、上記のようにフォトダ
イオード2の水平方向のピッチaと垂直方向のピッチb
とが等しい固体撮像素子に限って適用しうるちのではな
く、第2.第4の水晶板の分離方向を適宜変えることに
より、aキbである固体撮像素子に好適な構成とし得る
のは勿論である。Note that the optical filter of the present invention has a horizontal pitch a and a vertical pitch b of the photodiodes 2 as described above.
The second . Of course, by appropriately changing the separation direction of the fourth crystal plate, it is possible to obtain a configuration suitable for an a/b solid-state imaging device.
更に、第1〜第4の水晶板21〜24の並びの順序は上
記実施例に限るものではなく、奇数番同志の水晶板又は
偶数番同志の水晶板が隣り合わな ・い限り
は並びの順序は如何様でもよい。Furthermore, the order in which the first to fourth crystal plates 21 to 24 are arranged is not limited to that in the above embodiment, and unless odd-numbered crystal plates or even-numbered crystal plates are adjacent to each other, the order of arrangement is not limited to the above embodiment. The order may be arbitrary.
発明の効果
ト述の如く、本発明による光学フィルタによれば、固体
撮像素子の走査方向及び走査直交方向の両方向について
、固体&f像毒素子よる撮像時に発生するキャリヤの空
間周波数とこの空間周波数の1/2の空間周波数との間
の帯域におけるMTF値が小さく且つ上記後者の空間周
波数付近のMTF値が小さいMTF特性を呈するため、
キャリヤよりの折り返し成分が低減され且つ折り返し歪
部分の成分が低減され、然して走査方向及び走査直交方
向の両方向について折り返し歪を十分に軽減しうること
が出来、固体撮像素子に好適であるという特長を有する
。Effects of the Invention As described above, according to the optical filter according to the present invention, in both the scanning direction and the direction perpendicular to the scanning direction of the solid-state imaging device, the spatial frequency of carriers generated during imaging by the solid-state &f image toxin particles and the spatial frequency of this spatial frequency can be adjusted. Because the MTF characteristic is small in the band between 1/2 spatial frequency and small in the vicinity of the latter spatial frequency,
The aliasing component from the carrier is reduced, and the aliasing distortion component is also reduced, and the aliasing distortion can be sufficiently reduced in both the scanning direction and the direction orthogonal to the scanning direction, making it suitable for solid-state imaging devices. have
第1図は本発明になる光学フィルタの一実施例の構成を
示す斜視図、第2図は第1図の光学フィルタを構成する
各水晶板の光線分離方向を示す図、第3図は第1図の光
学フィルタによる光線分離の状態を示す図、第4図(A
)乃至(D)は夫々第1図の光学フィルタを構成する各
水晶板による光線分離の状態を示す図、第5図は第1図
の光学フィルタの二次元MTF特性を示す図、第6図及
び第7図は夫々水平方向及び垂直方向のMTF特性を示
す図、第8図は本発明の光学フィルタを適用しうるCC
D固体撮像素子の1例を概略的に示す図、第9図は第8
図の固体撮像素子により被′L7体を撮像したときのキ
ャリヤ、変調波及び折り返し歪の表われる状況を模式的
に示す図、第10図はレンズ光学系が有ザる一般的なM
TF特性を示す図である。
1・・・CCD固体撮像素子、2・・・フォトダイオー
ド、5,6.7,8.・・・変調波、6a、7a。
8a・・・キャリヤ、9,10・・・折り返し歪、20
・−・光学フィルタ、21・・・第1の水晶板、22・
・・第2の水晶板、23・・・第3の水晶板、24・・
・第4の水晶板、25・・・単位光束、251〜25電
6・・・分離ざ ′れた光線。
特許出願人 日本ビクター株式会社
第3図
P2ムU(号)FIG. 1 is a perspective view showing the structure of an embodiment of the optical filter according to the present invention, FIG. A diagram showing the state of light beam separation by the optical filter in Figure 1, and Figure 4 (A
) to (D) are diagrams showing the state of light beam separation by each crystal plate constituting the optical filter in FIG. 1, respectively. FIG. 5 is a diagram showing two-dimensional MTF characteristics of the optical filter in FIG. 1, and FIG. and FIG. 7 are diagrams showing MTF characteristics in the horizontal direction and vertical direction, respectively, and FIG. 8 is a diagram showing the CC to which the optical filter of the present invention can be applied.
FIG. 9 is a diagram schematically showing an example of a solid-state image sensor D.
A diagram schematically showing the appearance of carriers, modulated waves, and aliasing distortion when an object is imaged by the solid-state imaging device shown in the figure. Figure 10 is a typical M with a lens optical system.
FIG. 3 is a diagram showing TF characteristics. 1... CCD solid-state image sensor, 2... Photodiode, 5, 6.7, 8. ...Modulated waves, 6a, 7a. 8a...Carrier, 9,10...aliasing distortion, 20
- Optical filter, 21... First crystal plate, 22.
...Second crystal plate, 23...Third crystal plate, 24...
・Fourth crystal plate, 25...Unit luminous flux, 251-25 electric 6...Separated rays. Patent applicant: Victor Japan Co., Ltd. Figure 3 P2 MU (No.)
Claims (1)
る走査直交方向にピッチbで整列した固体撮像素子に適
用される光学フィルタであつて、上記走査方向が分離方
向であり上記ピッチaと等しい分離距離を有する第1の
複屈折透明板と、上記走査方向の分離距離成分がa/2
で、上記走査直交方向のうち一の方向の分離距離成分が
b/2であるように分離する第2の複屈折透明板と、上
記走査直交方向のうち上記一の方向とは逆の方向が分離
方向であり、上記ピッチbと等しい分離距離を有する第
3の複屈折透明板と、上記走査方向の分離距離成分がa
/2で、上記走査直交方向のうち上記一の方向とは逆の
方向の分離距離成分がb/2であるように分離する第4
の複屈折透明板とを重ね合わせてなることを特徴とする
光学フィルタ。An optical filter applied to a solid-state imaging device in which a large number of pixels are arranged at a pitch a in the scanning direction and at a pitch b in a direction orthogonal to the scanning direction, the scanning direction being a separation direction and the pitch a A first birefringent transparent plate having an equal separation distance and a separation distance component in the scanning direction of a/2.
The second birefringent transparent plate is separated such that the separation distance component in one of the directions perpendicular to the scanning direction is b/2, and the second birefringent transparent plate is separated such that the separation distance component in one of the directions perpendicular to the scanning direction is b/2, and the direction opposite to the one direction among the directions perpendicular to the scanning direction is a third birefringent transparent plate having a separation distance equal to the pitch b in the separation direction and a separation distance component in the scanning direction;
/2, and a fourth separation distance component in a direction opposite to the one direction among the scanning orthogonal directions is b/2.
An optical filter characterized by being made by overlapping birefringent transparent plates of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60141693A JPS623202A (en) | 1985-06-28 | 1985-06-28 | Optical filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60141693A JPS623202A (en) | 1985-06-28 | 1985-06-28 | Optical filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS623202A true JPS623202A (en) | 1987-01-09 |
Family
ID=15298014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60141693A Pending JPS623202A (en) | 1985-06-28 | 1985-06-28 | Optical filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS623202A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5477381A (en) * | 1989-02-02 | 1995-12-19 | Canon Kabushiki Kaisha | Image sensing apparatus having an optical low-pass filter |
-
1985
- 1985-06-28 JP JP60141693A patent/JPS623202A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5477381A (en) * | 1989-02-02 | 1995-12-19 | Canon Kabushiki Kaisha | Image sensing apparatus having an optical low-pass filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8514319B2 (en) | Solid-state image pickup element and image pickup apparatus | |
US8253818B2 (en) | Pixel shift type imaging device | |
US4507679A (en) | Color TV camera with four-port prism | |
KR940002348B1 (en) | Solid-state imaging device | |
GB2131648A (en) | Television camera having an optical filter | |
US5452129A (en) | Optical low-pass filter | |
JPH0772769B2 (en) | Solid-state imaging device | |
US5940127A (en) | Imager including a solid state imaging device with optical low pass filter | |
JPS623202A (en) | Optical filter | |
JP2008252397A (en) | Imaging data processing method and imaging device | |
JPH10189930A (en) | Solid-state image sensor | |
JP2775873B2 (en) | Imaging device having optical low-pass filter | |
JP2840619B2 (en) | Optical low-pass filter | |
JPH0114749B2 (en) | ||
WO1996019747A1 (en) | Optical low-pass filter comprising two birefringent optical filter elements | |
JPS5942787Y2 (en) | Color solid-state imaging device | |
JPH05191809A (en) | Color imaging pickup device | |
JPS6090484A (en) | Color solid-state image pickup device | |
JP2570604B2 (en) | Imaging device | |
JPH0318392B2 (en) | ||
JPH0331813A (en) | Image pickup device with optical low-pass filter | |
JP2785160B2 (en) | Imaging device | |
JPS6127955B2 (en) | ||
JP2785159B2 (en) | Imaging device | |
JPS6224202A (en) | Optical filter |