JPS63250657A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63250657A
JPS63250657A JP8526887A JP8526887A JPS63250657A JP S63250657 A JPS63250657 A JP S63250657A JP 8526887 A JP8526887 A JP 8526887A JP 8526887 A JP8526887 A JP 8526887A JP S63250657 A JPS63250657 A JP S63250657A
Authority
JP
Japan
Prior art keywords
layer
charge
work function
charge transport
generating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8526887A
Other languages
Japanese (ja)
Inventor
Yuichi Hashimoto
雄一 橋本
Hideyuki Takai
秀幸 高井
Akio Maruyama
晶夫 丸山
Teigo Sakakibara
悌互 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8526887A priority Critical patent/JPS63250657A/en
Publication of JPS63250657A publication Critical patent/JPS63250657A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve injection of carriers from an electric charge generating layer to a charge transfer layer and to enhance printing resistance by rendering the work function of the charge generating layer higher than that of the charge transfer layer and the difference of them a specified value or more. CONSTITUTION:The electrophotographic sensitive body is prepared by laminating a photosensitive layer composed of the charge generating layer and the charge transfer layer on a conductive supporting body, and the work function of the charge generating layer is made higher than that of the charge transfer layer and the difference of them is regulated to >=0.2eV. The work function of the charge generating layer is regulated by combining a charge generating material, such as azo pigments, with a binder, such as a vinylbutyral resin, and the work function of the charge transfer layer containing the charge transfer material, such as hydrazone derivatives, is allowed to match that of the generating layer, thus permitting rise of potential in the light to be lessened by specifying the work functions of the generating layer and the transfer layer, consequently, durability of a high-speed copying machine to be enhanced, and superior characteristics to be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関し、更に詳しくは、積層型
の電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor, and more particularly to a laminated type electrophotographic photoreceptor.

〔従来の技術〕[Conventional technology]

これまで、セレン、硫化カドミウム、酸化亜鉛などの無
機光導電住を感光成分として利用した電子写真感光体は
公知である。
Electrophotographic photoreceptors using inorganic photoconductive materials such as selenium, cadmium sulfide, and zinc oxide as photosensitive components have been known so far.

一方、特定の有機化合物が光導電性を示すことが発見さ
れてから、数多くの有機光導電体が開発されできた。例
えば、ポリ−N−ビニルカルバゾール、ポリビニルアン
トラセンなどの有機光導電性ポリマー、カルバゾール、
アントラセン、ピラゾリン類、オキサジアゾール類、ヒ
ドラゾン類、ボリアリールアルカン類などの低分子の有
機光導電体やフタロシアニン顔料、アゾ顔料、シアニン
染料、多環キノン顔料、ペリレン系顔料、インジゴ染料
、チオ・インジゴ染料あるいはスクエアリック酸メチン
染料などの有機顔料や染料が知られている。特に、光導
電性を有する有機顔料や染料は無機材料に比べて合成が
容易で、しかも適当な波長域に光導電性を示す化合物を
選択できるバリエーションが拡大されたことなどから、
数多(の光導電性有機顔料や染料が提案されている。
On the other hand, since the discovery that certain organic compounds exhibit photoconductivity, many organic photoconductors have been developed. For example, organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, carbazole,
Low-molecular organic photoconductors such as anthracene, pyrazolines, oxadiazoles, hydrazones, polyaryl alkanes, phthalocyanine pigments, azo pigments, cyanine dyes, polycyclic quinone pigments, perylene pigments, indigo dyes, thio- Organic pigments and dyes such as indigo dyes and methine squaric acid dyes are known. In particular, organic pigments and dyes that have photoconductivity are easier to synthesize than inorganic materials, and the variety of compounds that exhibit photoconductivity in an appropriate wavelength range has been expanded.
A large number of photoconductive organic pigments and dyes have been proposed.

例えば、米国特許第4123270号、同第42476
14号、同第4251613号、同第4251614号
、同第4256821号、同第4260672号、同第
4268596号、同第4278747号、同第429
3628号明細書などに開示された様に電荷発生層と電
荷輸送層に機能分離した感光層における電荷発生物質と
して光導電性を示すジスアゾ顔料を用いた電子写真感光
体などが知られている。
For example, US Pat. No. 4,123,270, US Pat. No. 42,476
No. 14, No. 4251613, No. 4251614, No. 4256821, No. 4260672, No. 4268596, No. 4278747, No. 429
As disclosed in Japanese Patent No. 3628, electrophotographic photoreceptors are known that use a disazo pigment exhibiting photoconductivity as a charge generation substance in a photosensitive layer that is functionally separated into a charge generation layer and a charge transport layer.

この様な有機光導電体を用いた電子写真感光体はバイン
ダーを適当に選択することによって塗工で生産できるた
め、極めて生産性が高く、安価な感光体を提供でき、し
かも有機顔料の選択によって感光波長域を自在にコント
ロールできる利点を有している。
Electrophotographic photoreceptors using such organic photoconductors can be produced by coating by appropriately selecting a binder, so it is possible to provide photoreceptors with extremely high productivity and at low cost. It has the advantage of being able to freely control the sensitive wavelength range.

上記した感光体の静電潜像形成機構は、次のように考え
られている。即ち、光照射により電荷発生層で生産した
励起子は電荷発生層内、又は電荷発生層と電荷輸送層と
の境界において電子と正孔とに解離してキャリア(正孔
)を発生し、該キャリアは電荷輸送層に注入され、感光
体表面の負電荷を中和することにより静電潜像を形成す
る。一方、電子は導電性支持体に移行する。
The electrostatic latent image forming mechanism of the photoreceptor described above is considered as follows. That is, excitons produced in the charge generation layer by light irradiation dissociate into electrons and holes within the charge generation layer or at the boundary between the charge generation layer and the charge transport layer to generate carriers (holes). The carrier is injected into the charge transport layer and forms an electrostatic latent image by neutralizing negative charges on the surface of the photoreceptor. On the other hand, electrons migrate to the conductive support.

感光層を電荷輸送層と電荷発生層とに2分した感光体に
あっては電荷発生層から電荷輸送層へのキャリア注入性
が問題となる。即ち、電荷発生層でのキャリア発生効率
及び電荷輸送層でのキャリア輸送効率が良くても、両層
間の境界におけるキャリア注入性が悪ければ、残霜、感
度低下、コピ一枚数の増加に伴う明部電位(VL)の上
昇等の弊害が生じる。
In a photoreceptor in which the photosensitive layer is divided into a charge transport layer and a charge generation layer, carrier injection from the charge generation layer to the charge transport layer becomes a problem. In other words, even if the carrier generation efficiency in the charge generation layer and the carrier transport efficiency in the charge transport layer are good, if the carrier injection property at the boundary between the two layers is poor, residual frost, decreased sensitivity, and brightness due to an increase in the number of copies will occur. This causes harmful effects such as an increase in the partial potential (VL).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、以上のような従来公知の電子写真感光
体が持っている問題点を解決し、キャリア注入性の優れ
た高耐刷性の電子写真感光体を提供するものである。
An object of the present invention is to solve the above-mentioned problems of conventionally known electrophotographic photoreceptors and to provide an electrophotographic photoreceptor with excellent carrier injection properties and high printing durability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは検討の結果、電荷発生層と電荷輸送層との
仕事関数差に、ある閾値を持った電子写真感光体によっ
て上記目的が達成されることを見い出し完成するに至っ
たものである。
As a result of studies, the present inventors have discovered that the above object can be achieved by an electrophotographic photoreceptor that has a certain threshold value in the work function difference between the charge generation layer and the charge transport layer. .

すなわち、本発明は導電性支持体上に、電荷発生層と電
荷輸送層を積層した感光層を有する電子写真感光体にお
いて、電荷発生層の仕事関数が電荷輸送層の仕事関数よ
り大きく、且つ電荷発生層と電荷輸送層の仕事関数差が
0,2eV以上であることを特徴とする電子写真感光体
である。
That is, the present invention provides an electrophotographic photoreceptor having a photosensitive layer in which a charge generation layer and a charge transport layer are laminated on a conductive support, in which the work function of the charge generation layer is larger than that of the charge transport layer, and the charge The electrophotographic photoreceptor is characterized in that the work function difference between the generation layer and the charge transport layer is 0.2 eV or more.

この様な電荷発生層と電荷輸送層の積層構造からなる感
光層は電荷発生層の仕事関数が電荷輸送層の仕事関数に
比べて大きいことが必要である。
In a photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer, the work function of the charge generation layer is required to be larger than that of the charge transport layer.

一方、電荷輸送物質が帯電や露光等の繰り返し特性に対
して安定であるためには仕事関数が大きい程有利である
On the other hand, in order for a charge transport material to be stable against repeated characteristics such as charging and exposure, a larger work function is advantageous.

従って、上記電荷輸送物質を用いるためには電荷発生層
と電荷輸送層の仕事関数差にある閾値がなければマツチ
ングがとれず残霜の上昇、感度低下特に明部電位(Vt
)の上昇を引き起こしてしまう。これは、感光ドラムを
1回転2秒以下のプロセス速度によって回転させて、少
なくとも帯電・露光・現像・転写のプロセスを行うこと
により画像を形成するような高速の複写機において顕著
である。そこで、バインダーを電荷発生物質と組み合わ
せることにより、電荷発生層の仕事関数を制御して、電
荷輸送層とのマツチングをはかる。
Therefore, in order to use the above-mentioned charge transport material, the work function difference between the charge generation layer and the charge transport layer must have a certain threshold value.
) will cause an increase in This is noticeable in high-speed copying machines that form images by rotating the photosensitive drum at a process speed of 2 seconds or less per rotation and performing at least the processes of charging, exposing, developing, and transferring. Therefore, by combining a binder with a charge-generating substance, the work function of the charge-generating layer can be controlled and matching with the charge-transporting layer can be achieved.

本発明の電子写真感光体は、電荷発生層と電荷輸送層と
の仕事関数差が0.2eV以上、好ましくは0.3eV
以上であることを特徴とし、これによって電荷発生層か
ら電荷輸送層への良好なキャリア注入が得られる。
The electrophotographic photoreceptor of the present invention has a work function difference between the charge generation layer and the charge transport layer of 0.2 eV or more, preferably 0.3 eV.
The above characteristics make it possible to obtain good carrier injection from the charge generation layer to the charge transport layer.

電荷発生物質としては、フタロシアニン系顔料。Phthalocyanine pigments are used as charge generating substances.

アントアントロン顔料、ジベンズピレン顔料、ピラント
ロン顔料、アゾ顔料、インジゴ顔料、キナクリドン系顔
料ピリリウム、チアピリリウム系染料、キサンチン系色
素、キノンイミン系色素、トリフェニルメタン系色素、
スチリル系色素等があげられる。
Anthrone pigment, dibenzpyrene pigment, pyranthrone pigment, azo pigment, indigo pigment, quinacridone pigment pyrylium, thiapyrylium dye, xanthine dye, quinoneimine dye, triphenylmethane dye,
Examples include styryl dyes.

電荷発生物質はここに記載したものに限定されるもので
はなく、その使用に際しては、電荷発生物質を1種類あ
るいは2種類以上混合して用いることができる。
The charge generating substance is not limited to those described herein, and when used, one type or a mixture of two or more types of charge generating substances can be used.

電荷発生層は上述の電荷発生物質を適当なバインダーと
共に(バインダーがなくても可)基体の上に塗工するこ
とによって形成でき、また真空蒸管装置により蒸着膜を
形成することによって得ることができる。
The charge-generating layer can be formed by coating the above-mentioned charge-generating substance on a substrate together with a suitable binder (or without a binder), or can be obtained by forming a vapor-deposited film using a vacuum vapor tube apparatus. can.

電荷発生層を塗工によって形成する際に用いうるバイン
ダーとしては広範な絶縁製樹脂から選択でき、またポリ
−N−ビニルカルバゾール、ポリビニルアントラセンや
ポリビニルピレン等の有機光導電性ポリマーから選択で
きる。好ましくは、ポリビニルブチラール、ボリアリレ
ート(ビスフェノールAとフタル酸の縮重合体等)、ポ
リカーボネート、ポリエステル、フェノキシ樹脂、ポリ
酢酸ビニル、アクリル樹脂、ポリアクリルアミド樹脂。
The binder that can be used when forming the charge generating layer by coating can be selected from a wide variety of insulating resins, and can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin.

ポリアミド、ポリビニルピリジン、セルロース系樹脂、
ウレタン樹脂、エポキシ樹脂、カゼイン。
polyamide, polyvinylpyridine, cellulose resin,
Urethane resin, epoxy resin, casein.

ポリビニルアルコール、ポリビニルピロリドン等の絶縁
性樹脂を挙げることができる。
Examples include insulating resins such as polyvinyl alcohol and polyvinylpyrrolidone.

これらの樹脂を溶解する溶剤は、樹脂の種類によって異
なり、具体的な有機溶剤としては、メタノール、エタノ
ールイソプロパノール等のアルコール類、アセトン、メ
チルエチルケトン、クロヘキサノン等のケトン類、N、
N−ジメチルホルムアミド、N、N−ジメチルアセトア
ミド等のアミド類、ジメチルスルホキシドなどのスルホ
キシド類、テトラヒドロフラン、ジオキサン、エチレン
グリコールモノメチルエーテル等のエーテル類、酢酸メ
チル、酢酸エチルなどのエステル類、クロロホルム、塩
化メチレン、ジクロルエチレン、四塩化炭素、トリクロ
ルエチレン等の脂肪族ハロゲン化炭化水素類あるいはベ
ンゼン、トルエン、キシレン、リグロイン、モノクロル
ベンゼン、ジクロルベンゼンなどの芳香族類等を用いる
ことができる。
Solvents that dissolve these resins vary depending on the type of resin, and specific organic solvents include alcohols such as methanol and ethanol isopropanol, ketones such as acetone, methyl ethyl ketone, and clohexanone, N,
Amides such as N-dimethylformamide and N,N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, chloroform, and methylene chloride. , aliphatic halogenated hydrocarbons such as dichloroethylene, carbon tetrachloride, and trichlorethylene, or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, and dichlorobenzene.

塗工は、浸漬コーティング法、スプレーコーティング法
、スピンナーコーティング法、ビードコーティング法、
マイヤーバーコーティング法。
Coating methods include dip coating, spray coating, spinner coating, bead coating,
Meyer bar coating method.

ブレードコーティング法、ローラーコーティング法、カ
ーテンコーティング法等のコーティング法を用いて行う
ことができる。乾燥は室温における指触乾燥後、加熱乾
燥する方法が好ましい。加熱乾燥は、30℃〜200℃
で5分〜2時間の範囲の時間で静止または送風下で行う
ことができる。
This can be carried out using a coating method such as a blade coating method, a roller coating method, or a curtain coating method. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying at 30°C to 200°C
It can be carried out stationary or under ventilation for a time ranging from 5 minutes to 2 hours.

電荷輸送層は、上述の電荷発生層と電気的に接続されて
おり、電界の存在下で電荷発生層から注入された電荷キ
ャリアを受は取るとともに、これらの電荷キャリアを輸
送できる機能を有している。
The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving and receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers. ing.

この際、この電荷輸送層は、電荷発生層の上に積層され
ていてもよく、またその下に積層されていてもよい。
At this time, this charge transport layer may be laminated on or under the charge generation layer.

電荷輸送層における電荷キャリアを輸送する物質(以下
、単に電荷輸送層材料という)は、上述の電荷発生層が
感応する電磁波の波長域に実質的に非感応性であること
が好ましい。ここで言う「電磁波」とは、γ線、X線、
遠赤外線などを包含する広義の「光線」の定義を包含す
る。電荷輸送層の光感応性波長域が電荷発生層のそれと
一致またはオーバーラツプする時には、両者で発生した
電荷キャリアが相互に捕獲し合い、結果的には感度の低
下の原因となる。
The substance that transports charge carriers in the charge transport layer (hereinafter simply referred to as charge transport layer material) is preferably substantially insensitive to the wavelength range of electromagnetic waves to which the charge generation layer is sensitive. The "electromagnetic waves" mentioned here include gamma rays, X-rays,
Includes a broad definition of "ray" that includes far-infrared rays. When the photosensitive wavelength range of the charge transport layer coincides with or overlaps that of the charge generation layer, charge carriers generated in both layers trap each other, resulting in a decrease in sensitivity.

電荷発生層は十分な吸光度を有し、且つ発生した電荷キ
ャリアの飛程を短くするため、5μm以下、特には0.
01−1μmの膜厚をもつ薄膜層とすることが好適であ
る。このことは入射光量の大部分が電荷発生層で吸収さ
れて多くの電荷キャリアを生成すること、さらに発生し
た電荷キャリアを再結合や捕獲(トラップ)により失活
することな(電荷輸送層に注入する必要があることに起
因している。
In order to have sufficient absorbance and shorten the range of generated charge carriers, the charge generation layer has a thickness of 5 μm or less, particularly 0.5 μm or less.
A thin film layer having a thickness of 0.01-1 μm is preferred. This means that most of the incident light is absorbed by the charge generation layer, generating many charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping (injected into the charge transport layer). This is due to the need to do so.

電荷輸送層は前述の電荷発生層と電気的に接続されてお
り、電界存在下で電荷発生層から注入された電荷キャリ
アを受は取ると共に、これらの電荷キャリアを表面まで
輸送できる機能を有している。この際電荷輸送層は、電
荷発生層の上に積層されていることが望ましい。
The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving and taking charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. ing. At this time, the charge transport layer is preferably laminated on the charge generation layer.

電荷輸送物質としては電子輸送性物質と正孔輸送性物質
があり、電子輸送性物質としては、クロルアニル、ブロ
モアニル、テトラシアノエチレン、テトラシアノキノジ
メタン、2,4.7− )ジニトロ−9−フルオレノン
、2,4,5.7−テトラニトロ−9−フルオレノン、
2,4.7−ドリニトロー9−ジシアノメチレンフルオ
レノン、2,4,5.7−チトラニトロキサントン、2
,4.8−)リニトロチオキサントン等の電子吸引性物
質やれらの電子吸引物質を高分子化したもの等がある。
Charge transporting substances include electron transporting substances and hole transporting substances, and electron transporting substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2,4.7-)dinitro-9- Fluorenone, 2,4,5.7-tetranitro-9-fluorenone,
2,4,7-dolinitro 9-dicyanomethylenefluorenone, 2,4,5,7-titranitroxanthone, 2
, 4.8-) There are electron-withdrawing substances such as linitrothioxanthone, and polymerization of these electron-withdrawing substances.

正孔輸送性物質としては、ピレン、N−エチルカルバゾ
ール、N−イソプロピルカルバゾール、N−メチル−N
−フェニルヒドラジノ−3−メチリデシー9−エチルカ
ルバゾール、N、N−ジフェニルヒドラジノ−3−メチ
リデン−9−エチルカルバゾール等のカルバゾール類、
N、Nジフェニルヒドラジノ−3−メチリデン−10−
エチルフェノチアジン、p−ジエチルアミノベンズアル
デヒド−N、N−ジフェニルヒドラゾン、p−ジエチル
アミノベンズアルデヒド−N−α−ナフチル−フェニル
ヒドラゾン、p−ジエチルベンズアルデヒド−3−メチ
ルベンズチアゾリノン−2−ヒドラゾン等のヒドラゾン
類、2.5−ビス(p−ジエチルアミノフェニル)−1
゜3.4−オキサジアゾール、1−(ピリジル(2))
 −3−(p−ジエチルアミノスチリル)−5−(p−
ジエチルアミノフェニル)ピラゾリン、l−〔ピリジル
(3))−3−(p−ジエチルアミノスチリル)−5−
(p−ジエチルアミノフェニル)ピラゾリン、1−〔レ
ピジル(2))−3−(p−ジエチルアミノスチリル)
−5−(p−2ジエチルアミノフエニル)ピラゾリン、
■−フェニルー3−(p−ジエチルアミノスチリル)−
4−メチル−5(p−ジエチルアミノフェニル)ピラゾ
リン、スピロピラゾリンなどのピラゾリン類、2−(p
−ジエチルアミノスチリル)−6−ンエチルアミノベン
ズオキサゾール、2−(p−ジエチルアミノフェニル)
−4−(p−ジメチルアミノフェニル)−5−(2−ク
ロロフェニル)オキサゾール等のオキサゾール系化合物
、2−(p−ジエチルアミノスチリル)−6−ジニチル
アミノベンゾチアゾール等のチアゾール系化合物、ビス
(4−ジエチルアミノ−2−メチルフェニル)−フェニ
ルメタン等のトリアリールメタン系化合物、1.1−ビ
ス(4−N、N−ジエチルアミノ−2−メチルフェニル
)へブタン、1,1,2.2−デトラキス(4−N、N
−ジメチルアミノ−2−メチルフェニル)エタン等のボ
リアリールアルカン類、トリフェニルアミン、ポリ−N
−ビニルカルバゾール、ポリビニルピレン、ポリビニル
アントラセン、ポリビニルアクリジン、ポリ−9−ビニ
ルフェニルアントラセン、ピレン−ホルムアルデヒド樹
脂、エチルカルバゾールホルムアルデヒド樹脂等がある
Examples of hole transporting substances include pyrene, N-ethylcarbazole, N-isopropylcarbazole, N-methyl-N
- Carbazoles such as phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole,
N,N diphenylhydrazino-3-methylidene-10-
Hydrazones such as ethylphenothiazine, p-diethylaminobenzaldehyde-N, N-diphenylhydrazone, p-diethylaminobenzaldehyde-N-α-naphthyl-phenylhydrazone, p-diethylbenzaldehyde-3-methylbenzthiazolinone-2-hydrazone, 2.5-bis(p-diethylaminophenyl)-1
゜3.4-oxadiazole, 1-(pyridyl (2))
-3-(p-diethylaminostyryl)-5-(p-
diethylaminophenyl)pyrazoline, l-[pyridyl(3))-3-(p-diethylaminostyryl)-5-
(p-diethylaminophenyl)pyrazoline, 1-[lepidyl (2))-3-(p-diethylaminostyryl)
-5-(p-2 diethylaminophenyl)pyrazoline,
■-Phenyl-3-(p-diethylaminostyryl)-
Pyrazolines such as 4-methyl-5(p-diethylaminophenyl)pyrazoline and spiropyrazoline, 2-(p-diethylaminophenyl)pyrazoline,
-diethylaminostyryl)-6-ethylaminobenzoxazole, 2-(p-diethylaminophenyl)
Oxazole compounds such as -4-(p-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole, thiazole compounds such as 2-(p-diethylaminostyryl)-6-dinithylaminobenzothiazole, bis(4 -Triarylmethane compounds such as -diethylamino-2-methylphenyl)-phenylmethane, 1,1-bis(4-N,N-diethylamino-2-methylphenyl)hebutane, 1,1,2,2-detrakis (4-N, N
-Polyarylalkanes such as dimethylamino-2-methylphenyl)ethane, triphenylamine, poly-N
-Vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, poly-9-vinylphenylanthracene, pyrene-formaldehyde resin, ethylcarbazole formaldehyde resin, and the like.

電荷輸送物質が成膜性を有していない時には、適当なバ
インダーを選択することによって被膜形成できる。バイ
ンダーとして使用できる樹脂は例えばアクリル樹脂、ボ
リアリレート、ポリエステル。
When the charge transport material does not have film-forming properties, a film can be formed by selecting an appropriate binder. Examples of resins that can be used as binders include acrylic resin, polyarylate, and polyester.

ポリカーボネート、ポリスチレン、アクリロニトリル−
スチレンコポリマー、アクリロニトリル−ブタジェンコ
ポリマー、ポリビニルブチラール。
Polycarbonate, polystyrene, acrylonitrile
Styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral.

ポリビニルホルマール、ポリアクリルアミド、ポリアミ
ド、塩素化ゴムなどの絶縁性樹脂あるいはポリ−N−ビ
ニルカルバゾール、ポリビニルアントラセン、ポリビニ
ルピレンなどの有機光導電性ポリマーを挙げることがで
きる。
Examples include insulating resins such as polyvinyl formal, polyacrylamide, polyamide, and chlorinated rubber, and organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene.

電荷輸送層は、電荷キャリアを輸送できる限界があるの
で必要以上に膜厚を厚くすることができない。一般的に
は5〜30μmであるが、好ましい範囲は8〜20μm
である。塗工によって電荷輸送層を形成する際には前述
した様な適当なコーティング法を用いることができる。
The charge transport layer cannot be made thicker than necessary because there is a limit to its ability to transport charge carriers. Generally 5 to 30 μm, but the preferred range is 8 to 20 μm
It is. When forming the charge transport layer by coating, an appropriate coating method as described above can be used.

感光層は、導電性を有する支持体すなわち導電性支持体
の上に設けられる。導電性支持体としては、支持体自体
が導電性をもつもの、例えばアルミニウム、アルミニウ
ム合金、銅、亜鉛、ステンレス、バナジウム、モリブデ
ン、クロム、チタン。
The photosensitive layer is provided on a support having electrical conductivity, that is, a conductive support. As the conductive support, the support itself is conductive, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, and titanium.

ニッケル、インジウム、金や白金等を用いることができ
、その他にアルミニウム、アルミニウム合金、酸化イン
ジウム、酸化スズ、酸化インジウム−酸化錫合金等を真
空蒸着法によって被膜形成した層を有するプラスチック
(例えば、カーボンブラック、銀粒子等)を適当なバイ
ンダーとともにプラスチックの上に被覆した支持体、酸
化チタン。
Nickel, indium, gold, platinum, etc. can be used, and plastics (for example, carbon Titanium oxide (black, silver particles, etc.) is coated on plastic with a suitable binder.

酸化スズなどの導電性粒子を適当なバインダーに分散し
た樹脂層を設けた支持体や導電性ポリマーを有するプラ
スチック等を用いることができる。
A support provided with a resin layer in which conductive particles such as tin oxide are dispersed in a suitable binder, a plastic having a conductive polymer, etc. can be used.

導電性支持体と感光層の中間に、バリヤー機能と接着機
能をもつ下引層を設けることができる。下引層は、カゼ
イン、ポリビニルアルコール、ニトロセルロース、エチ
レン−アクリル酸コポリマー。
A subbing layer having barrier and adhesive functions can be provided between the conductive support and the photosensitive layer. The subbing layer is casein, polyvinyl alcohol, nitrocellulose, and ethylene-acrylic acid copolymer.

ポリビニルブチラール、フェノール樹脂、ポリアミド(
ナイロン6、ナイロン66、ナイロン610゜共重合ナ
イロン、アルコキシメチル化ナイロン等)、ポリウレタ
ン、ゼラチン、酸化アルミニウムなどによって形成でき
る。
Polyvinyl butyral, phenolic resin, polyamide (
It can be formed from nylon 6, nylon 66, nylon 610° copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc.

下引層の膜厚は0.1〜40μm1好ましくは0.1〜
3μmが適当である。
The thickness of the undercoat layer is 0.1 to 40 μm, preferably 0.1 to 40 μm.
3 μm is appropriate.

次に、本発明を実施例により、さらに具体的に説明する
。なお、実施例中の「部」はすべて重量部を表わす。
Next, the present invention will be explained in more detail with reference to Examples. In addition, all "parts" in the examples represent parts by weight.

実施例1 下記構造式のアゾ顔料(No、l)を10部、下記構造
を持つベンザール樹脂(ポリ(ビニル・アセテートーコ
ービニル・アルコールーコービニルベンザール))を6
部および 1!:200  m:92  n:8 シクロへキサノン60部を1φガラスピーズを用いたサ
ンドミル装置で20時間分散した。この分散液にメチル
エチルケトン100部を加えてAI!シート上に塗布し
、1006Cで10分間の加熱乾燥をして、0.1g/
%の塗布量の電荷発生層をもうけた。
Example 1 10 parts of an azo pigment (No, l) having the following structural formula, 6 parts of benzal resin (poly(vinyl acetate-corvinyl alcohol-corvinyl benzal)) having the following structure
Part and 1! :200 m:92 n:8 60 parts of cyclohexanone was dispersed for 20 hours using a sand mill device using 1φ glass beads. Add 100 parts of methyl ethyl ketone to this dispersion and add AI! Coat it on a sheet, heat dry at 1006C for 10 minutes, and get 0.1g/
% of the charge generation layer was formed.

次いで、下記構造式のヒドラゾン化合物を10部、及び
ポリカーボネート10部をジクロルメタン100部に溶
解した。この溶液を上記電荷発生層上に塗布し、l 0
00C1時間熱風乾燥して20μm厚の電荷輸送層を形
成した。
Next, 10 parts of a hydrazone compound having the following structural formula and 10 parts of polycarbonate were dissolved in 100 parts of dichloromethane. This solution is applied onto the charge generation layer, and l 0
00C was dried with hot air for 1 hour to form a charge transport layer with a thickness of 20 μm.

この感光体について、低エネルギー電子分光装置((掬
理研計器製:AC−1)を用いて各層の仕事関数を測定
した。
Regarding this photoreceptor, the work function of each layer was measured using a low energy electron spectrometer (AC-1 manufactured by Kyuriken Keiki).

次に、この感光体について、静電複写紙試験装置((m
用日電、贅製作所製: EPA−8100)を用いて、
暗部電位が一700Vになるように、負のコロナ帯電を
行い、明部電位が一200vになるようにハロゲン光を
照射し、2秒/回転のサイクルで50000回帯電、露
光を繰り返し、明部電位の増加(ΔVt)を測定した。
Next, this photoreceptor was tested using an electrostatic copying paper tester ((m
Using Nichiden, Wa Seisakusho: EPA-8100),
Negative corona charging is performed so that the dark area potential becomes 1700 V, and halogen light is irradiated so that the bright area potential becomes 1200 V. Charging and exposure are repeated 50,000 times at a cycle of 2 seconds/rotation, and the bright area is charged. The increase in potential (ΔVt) was measured.

併せて、露光後の表面電位が初期表面電位の1/2に減
少するのに要する露光量E%(I!ux−8eC)を測
定した。結果を表−1に示す。
At the same time, the exposure amount E% (I!ux-8eC) required for the surface potential after exposure to decrease to 1/2 of the initial surface potential was measured. The results are shown in Table-1.

また、この感光体をコロナ帯電器、露光光学系。This photoreceptor is also used as a corona charger and exposure optical system.

現像器、転写器、除電露光光学系及びブレードクリーニ
ングを備えた電子写真複写機のシリンダーに貼り付けて
耐久を行ったところ、10000枚耐久後も初期画像と
変わらないコントラストの良好な画像が得られた。
When the film was pasted on the cylinder of an electrophotographic copying machine equipped with a developing device, a transfer device, a static elimination exposure optical system, and a blade cleaning, an image with good contrast similar to the initial image was obtained even after 10,000 copies. Ta.

実施例2 アゾ顔料No、lを10部、ブチラール樹脂(商品名工
スレツクB:BX−1.積水化学製)6部およびシクロ
へキサノン60部をlφガラスピーズを用いたサンドミ
ル装置で20時間分散した。この分散液にメチルエチル
ケトン100部を加えて、AI!シート上に塗布し、1
00℃で10分間の加熱乾燥をして0.1g/rdの塗
布量の電荷発生層をもうけた。
Example 2 10 parts of azo pigment No.1, 6 parts of butyral resin (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 60 parts of cyclohexanone were dispersed for 20 hours using a sand mill device using lφ glass beads. . Add 100 parts of methyl ethyl ketone to this dispersion and add AI! Apply on the sheet, 1
It was heated and dried at 00° C. for 10 minutes to form a charge generation layer with a coating weight of 0.1 g/rd.

次いで、下記構造式のベンジジン系化合物を10部 及びポリカーボlO部をジクロルメタン100部に溶解
した。この溶液を上記電荷発生層上に塗布し、100’
C1時間熱風乾燥して20μm厚の電荷輸送層を形成し
た。
Next, 10 parts of a benzidine compound having the following structural formula and 10 parts of polycarbohydrate were dissolved in 100 parts of dichloromethane. This solution was coated on the charge generation layer and 100'
A charge transport layer having a thickness of 20 μm was formed by drying with hot air for 1 hour.

この感光体について、実施例1と同様にして各層の仕事
関数、△vL及びEy2を測定した。結果を表−1に示
す。
Regarding this photoreceptor, the work function, ΔvL, and Ey2 of each layer were measured in the same manner as in Example 1. The results are shown in Table-1.

比較例1 電荷輸送層に用いる電荷輸送物質として下記構造式のス
チルベン系化合物を用いた以外は実施例1と同様にして
、本発明の電子写真感光体を作成し、△VLおよび8%
を測定した。
Comparative Example 1 An electrophotographic photoreceptor of the present invention was prepared in the same manner as in Example 1 except that a stilbene compound having the following structural formula was used as a charge transport material for the charge transport layer, and ΔVL and 8%
was measured.

結果を表−1に示す。The results are shown in Table-1.

比較例2 電荷発生層に用いるバインダーとしてアクリル樹脂(P
MMA :ダイヤナールBR−85.三菱レーヨン製)
を用いた以外は実施例2と同様にして本発明の電子写真
感光体を作成し、△VLおよび8%を測定した。
Comparative Example 2 Acrylic resin (P
MMA: Dianal BR-85. Made by Mitsubishi Rayon)
An electrophotographic photoreceptor of the present invention was prepared in the same manner as in Example 2 except that ΔVL and 8% were measured.

結果を表−1に示す。The results are shown in Table-1.

実施例3 下記構造式のアゾ顔料(No、2)を10部、アクリル
樹脂(PMMA :ダイヤナールBR−85.三菱レー
ヨン製) 6部およびシクロヘキサノン60部をlφガラスピーズ
を用いた。サンドミル装置で20時間分散した。
Example 3 10 parts of an azo pigment (No. 2) having the following structural formula, 6 parts of an acrylic resin (PMMA: Dianal BR-85, manufactured by Mitsubishi Rayon), and 60 parts of cyclohexanone were used in lφ glass beads. Dispersion was carried out using a sand mill apparatus for 20 hours.

この分散液にメチルエチルケトン100部を加えてAl
シート上に塗布し、100°Cで10分間の加熱乾燥を
して、0 、1 g 、/ iの塗布量の電荷発生層を
もうけた。
Add 100 parts of methyl ethyl ketone to this dispersion to
It was coated onto a sheet and dried by heating at 100°C for 10 minutes to form a charge generation layer with a coating weight of 0, 1 g, /i.

次いで、下記構造式のベンジジン化合物を10部及びポ
リカーボlO部をジクロルメタン100部に溶解した。
Next, 10 parts of a benzidine compound having the following structural formula and 10 parts of polycarbohydrate were dissolved in 100 parts of dichloromethane.

この溶液を上記電荷発生層上に塗布し、lOO’C1時
間熱風乾燥して20μm厚の電荷輸送層を形成した。
This solution was applied onto the charge generation layer and dried with hot air for 1 hour to form a charge transport layer with a thickness of 20 μm.

この感光体について、実施例1と同様にして各層の仕事
関数、△VL及びEAを測定した。結果を表−1に示す
Regarding this photoreceptor, the work function, ΔVL, and EA of each layer were measured in the same manner as in Example 1. The results are shown in Table-1.

実施例4 電荷発生層に用いるバインダーとしてブチラール樹脂(
エスレツクB : BX−1,積木化学製)を用い、電
荷輸送層に用いる電荷輸送物質として下記構造式のヒド
ラゾン系化合物を用いる以外は、実施例1と同様にして
、本発明の電子写真感光体を作成し、△VL及びEIA
を測定した。
Example 4 Butyral resin (
The electrophotographic photoreceptor of the present invention was prepared in the same manner as in Example 1, except that Esrec B: BX-1 (manufactured by Miki Kagaku) was used and a hydrazone compound having the following structural formula was used as the charge transport material for the charge transport layer. Create △VL and EIA
was measured.

結果を表−1に示す。The results are shown in Table-1.

比較例3 電荷輸送層に用いる電荷輸送物質として下記構造式のヒ
ドラゾン系化合物を用いる以外は、2H5 ■ 実施例3と同様にして、本発明の電子写真感光体を作成
し、△VL及び8%を測定した。
Comparative Example 3 An electrophotographic photoreceptor of the present invention was prepared in the same manner as in Example 3, except that a hydrazone compound having the following structural formula was used as the charge transport material for the charge transport layer, and ΔVL and 8% was measured.

結果を表−1に示す。The results are shown in Table-1.

比較例4 電荷発生層に用いるバインダーとしてポリカーボ樹脂(
ビスフェノールZ型車リカーボネート、Mv、=250
00.音大化学製)を用いる以外は、実施例4と同様に
して本発明の電子写真感光体を作成し、△VL及び8%
を測定した。結果を表−1に示す。
Comparative Example 4 Polycarbon resin (
Bisphenol Z type car recarbonate, Mv, = 250
00. An electrophotographic photoreceptor of the present invention was prepared in the same manner as in Example 4, except that ΔVL and 8%
was measured. The results are shown in Table-1.

実施例5 アゾ顔料(No、l)を10部ポリカーポ樹脂(ビスフ
ェノールZ型車リカーボネートMV25000.音大化
学製)6部およびシクロへキサノン60部をφガラスピ
ーズを用いたサンドミル装置で20時間分散した。この
分散液にメチルエチルケトン100部を加えて、Aj7
シート上に塗布し、l OO’Cで10分間の加熱乾燥
をして、0.1g/rdの塗布量の電荷発生層をもうけ
た。
Example 5 10 parts of azo pigment (No, L), 6 parts of polycarpo resin (Bisphenol Z type car recarbonate MV25000, manufactured by Ondai Kagaku) and 60 parts of cyclohexanone were dispersed for 20 hours in a sand mill device using φ glass beads. did. 100 parts of methyl ethyl ketone was added to this dispersion, and Aj7
It was coated on a sheet and dried by heating at lOO'C for 10 minutes to form a charge generating layer with a coating weight of 0.1 g/rd.

次いで、下記構造式のヒドラゾン化合物を10部、及び
ポリカーボlO部をジクロルメタン100部に溶解した
。この溶液を上記電荷発生層上に塗布し、100’C1
時間熱風乾燥して20μm厚の電荷輸送層を形成した。
Next, 10 parts of a hydrazone compound having the following structural formula and 10 parts of polycarbohydrate were dissolved in 100 parts of dichloromethane. This solution was applied onto the charge generation layer, and 100'C1
A charge transport layer having a thickness of 20 μm was formed by drying with hot air for a period of time.

この感光体について、低エネルギー電子分光装置((掬
理研計器製:AC−t)を用いて各層の仕事関数を測定
した。
Regarding this photoreceptor, the work function of each layer was measured using a low energy electron spectrometer (AC-t manufactured by Kyuriken Keiki).

次に、この感光体について、静電複写紙試験装置((掬
用口電機製作所:EPA−8100)を用いて、暗部電
位が一700vになるように負のコロナ帯電を行い、明
部電位が一200vになるようにハロゲン光を照射し、
8秒/回転、4秒/回転、2秒/回転、1秒/回転のサ
イクルでそれぞれ50000回帯電、露光を繰り返し、
明部電位の増加(△vL)を測定した。併せて、露光後
の表面電位が初期表面電位の%に減少するのに要する露
光i!kE’A<lux・5ec)を測定した。
Next, this photoreceptor was subjected to negative corona charging using an electrostatic copying paper tester ((Kikiyokuchi Denki Seisakusho: EPA-8100) so that the dark area potential became 1700V, and the bright area potential was Irradiate halogen light to -200V,
Charging and exposure were repeated 50,000 times each in cycles of 8 seconds/rotation, 4 seconds/rotation, 2 seconds/rotation, and 1 second/rotation.
The increase in light area potential (ΔvL) was measured. In addition, the exposure i! required for the surface potential after exposure to decrease to % of the initial surface potential. kE′A<lux·5ec) was measured.

結果を表−2に示す。The results are shown in Table-2.

比較例5 電荷輸送層に用いる電荷輸送物質として下記構造式のス
チルベン系化合物を用いた以外はC2I]5 ■ 実施例5と同様にして、本発明の電子写真感光体を作成
し、ΔvL及びE’Aを測定した。結果を表−2に示す
Comparative Example 5 An electrophotographic photoreceptor of the present invention was prepared in the same manner as in Example 5, and ΔvL and E 'A was measured. The results are shown in Table-2.

表−1 表−2 〔発明の効果〕 本発明の電子写真感光体は、耐久による明部電位(VL
)の上昇が小さく、且つ初期感度も優れており、特に高
速複写機に対して耐久性が向上する等の優れた特性を示
すものである。
Table-1 Table-2 [Effects of the Invention] The electrophotographic photoreceptor of the present invention has a bright area potential (VL
), the initial sensitivity is also excellent, and durability is particularly improved for high-speed copying machines.

Claims (1)

【特許請求の範囲】[Claims] 導電性支持体上に、電荷発生層と電荷輸送層を積層した
感光層を有する電子写真感光体において、電荷発生層の
仕事関数が電荷輸送層の仕事関数より大きく、且つ電荷
発生層と電荷輸送層の仕事関数差が0.2eV以上であ
ることを特徴とする電子写真感光体。
In an electrophotographic photoreceptor having a photosensitive layer in which a charge generation layer and a charge transport layer are laminated on a conductive support, the work function of the charge generation layer is larger than that of the charge transport layer, and the charge generation layer and the charge transport An electrophotographic photoreceptor characterized in that the work function difference between the layers is 0.2 eV or more.
JP8526887A 1987-04-07 1987-04-07 Electrophotographic sensitive body Pending JPS63250657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8526887A JPS63250657A (en) 1987-04-07 1987-04-07 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8526887A JPS63250657A (en) 1987-04-07 1987-04-07 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63250657A true JPS63250657A (en) 1988-10-18

Family

ID=13853825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8526887A Pending JPS63250657A (en) 1987-04-07 1987-04-07 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63250657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608562A1 (en) * 1992-12-28 1994-08-03 Canon Kabushiki Kaisha Image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608562A1 (en) * 1992-12-28 1994-08-03 Canon Kabushiki Kaisha Image forming method

Similar Documents

Publication Publication Date Title
JP2544981B2 (en) Laminated electrophotographic photoreceptor having an undercoat layer
JPS58187931A (en) Electrophotographic receptor
JPS63250657A (en) Electrophotographic sensitive body
JPS61177462A (en) Electrophotographic sensitive body
JPH01185635A (en) Electrophotographic sensitive body
JPH0434742B2 (en)
JPS61151544A (en) Electrophotographic sensitive body
JPS61179453A (en) Electrophotographic sensitive body
JPS63163366A (en) Electrophotographic sensitive body
JPS61179445A (en) Electrophotographic sensitive body
JPS61126553A (en) Electrophotographic sensitive body
JPS6219868A (en) Electrophotographic sensitive body
JPH0448225B2 (en)
JPS61294450A (en) Electrophotographic sensitive body
JPH04102857A (en) electrophotographic photoreceptor
JPS61179450A (en) Electrophotographic sensitive body
JPS628157A (en) Electrophotographic sensitive body
JPS6188264A (en) Photoconductive film and electrophotographic sensitive body using said film
JPS61189548A (en) Electrophotographic sensitive body
JPS627057A (en) Electrophotographic sensitive body
JPS622263A (en) Electrophotographic sensitive body
JPS61198167A (en) Electrophotographic sensitive body
JPS6219863A (en) Electrophotographic sensitive body
JPS61179442A (en) Electrophotographic sensitive body
JPS61184550A (en) Electrophotographic sensitive body