JPS6388017A - Pressure container for storing high purity gas - Google Patents
Pressure container for storing high purity gasInfo
- Publication number
- JPS6388017A JPS6388017A JP61234786A JP23478686A JPS6388017A JP S6388017 A JPS6388017 A JP S6388017A JP 61234786 A JP61234786 A JP 61234786A JP 23478686 A JP23478686 A JP 23478686A JP S6388017 A JPS6388017 A JP S6388017A
- Authority
- JP
- Japan
- Prior art keywords
- adsorbent
- gas
- container
- purity
- pressure vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003463 adsorbent Substances 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 238000004080 punching Methods 0.000 abstract 1
- 238000011144 upstream manufacturing Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 44
- 229910021536 Zeolite Inorganic materials 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 9
- 239000010457 zeolite Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- -1 ice hydride Chemical class 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- 102220539100 Putative 40S ribosomal protein S26-like 1_H31P_mutation Human genes 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052990 silicon hydride Inorganic materials 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、各種の高純度ガスを貯蔵する圧力容器に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure vessel for storing various high-purity gases.
従来、圧力容器の内面に金や樹脂の特殊なコーテングを
施しているに過ぎず、不純ガスを除去する手段を備えて
いなかった。Conventionally, the inner surface of the pressure vessel was simply coated with a special coating of gold or resin, and no means were provided to remove impure gas.
しかし、例えば、02 、CO、COz 、Hz Oす
(!:’の不純ガスが、容器内壁からの脱離、容器への
高純度ガス充填時の洩れ込み、容器の出口側に備えられ
たバルブからの洩れ込み等によって、圧力容器内の高純
度ガスに混入し、いかに純度の高いガスを精製装置から
圧力容器に充填しても、圧力容器から供給されるガスの
純度を、例えば、不純ガスが1 ppb以下というよう
な超高純度に維持できない欠点があった。However, for example, impure gases such as 02, CO, COz, and Hz O(!:') may be desorbed from the inner wall of the container, leaked when high-purity gas is filled into the container, or caused by a valve installed on the outlet side of the container. No matter how pure the gas is filled into the pressure vessel from the purification equipment, the purity of the gas supplied from the pressure vessel may be affected by impure gas, for example. It has a drawback that it cannot maintain ultra-high purity, such as 1 ppb or less.
本発明の目的は、圧力容器における純度低下を阻止し、
圧力容器から供給されるガスを確実に高純度に維持でき
るようにする点にある。The purpose of the present invention is to prevent purity deterioration in pressure vessels,
The purpose is to ensure that the gas supplied from the pressure vessel can be maintained at a high purity.
本発明の特徴構成は、不純ガスに対する吸着剤の充填層
を、容器内空間と容器出口の間で流動する高純度ガスが
前記充填層を通過するようにバルブより内方側に配置し
たことにあり、その作用効果は次の通りである。The characteristic configuration of the present invention is that a packed bed of adsorbent for impure gas is arranged inward from the valve so that high-purity gas flowing between the inner space of the container and the outlet of the container passes through the packed bed. The functions and effects are as follows.
つまり、容器内壁からの脱離で容器内の高純度ガスに不
純ガスが混入しても、貯蔵時のガス拡散によって不純ガ
スが吸着剤で除去されると共に、圧力容器からのガス供
給時に高純度ガスが吸着剤の充填層を通過するから、不
純ガスが確実に除去され、圧力容器からの供給ガスを確
実に高純度にできる。In other words, even if impure gas mixes with the high-purity gas in the container due to desorption from the inner wall of the container, the impure gas will be removed by the adsorbent through gas diffusion during storage, and the high-purity gas will be removed when gas is supplied from the pressure vessel. Since the gas passes through the packed bed of adsorbent, impurity gases are reliably removed and the gas supplied from the pressure vessel can be reliably purified.
また、圧力容器への高純度ガス充填時に不純ガスが洩れ
込んでも、高純度ガスが吸着剤の充填層を通過するから
、不純ガスが確実に除去され、さらに、貯蔵時に圧力容
器の出口側に備えられたバルブから不純ガスが洩れ込ん
でも、ガス拡散によって不純ガスが吸着剤で除去され、
全体として、圧力容器におけるガスの純度低下を十分に
阻止できる。In addition, even if impure gas leaks when filling the pressure vessel with high-purity gas, the high-purity gas passes through the packed bed of adsorbent, so the impure gas is reliably removed. Even if impure gas leaks from the equipped valve, the impure gas will be removed by the adsorbent through gas diffusion.
Overall, it is possible to sufficiently prevent a decrease in the purity of the gas in the pressure vessel.
その結果、従来の圧力容器では不可能であった超高純度
のガス、つまり99.9999%(ドライベース)より
高純度のガスを、長期にわたって確実に供給でき、例え
ば不純ガスが1 ppb以下の不活性ガスを必要とする
超々LSI製造などの、超高純度ガスを必要とする業界
へのガス供給に極めて有効な高純度ガス貯蔵用圧力容器
を提供できるようになった。As a result, it is possible to reliably supply gas of ultra-high purity, that is, gas with a purity higher than 99.9999% (dry base), which is impossible with conventional pressure vessels, for a long period of time. It is now possible to provide a high-purity gas storage pressure vessel that is extremely effective in supplying gas to industries that require ultra-high purity gas, such as ultra-super LSI manufacturing that requires inert gas.
次に実施例を示す。 Next, examples will be shown.
第1図に示すように、圧力容器(1)にバルブ(V)付
の給排管(2)を接続し、圧力容器(1)にその内部に
位置する状態でパンチングメタルや金網などから成る多
孔状容器(3)を取付け、その多孔状容器(3)内に不
純ガスに対する吸着剤の充填層(4)を形成し、容器内
空間(5)と容器出口(6)の間で流動する高純度ガス
が充填層(4)を通るように、充填層(4)を配置して
ある。As shown in Figure 1, a supply/discharge pipe (2) with a valve (V) is connected to the pressure vessel (1), and the pressure vessel (1) is made of punched metal, wire mesh, etc., and is located inside the pressure vessel (1). A porous container (3) is attached, and a packed layer (4) of an adsorbent for impure gas is formed in the porous container (3), and the adsorbent flows between the container interior space (5) and the container outlet (6). The packed bed (4) is arranged so that high purity gas passes through the packed bed (4).
吸着剤の種類は貯蔵される高純度ガスの種類に見合って
適当に選定され、以下に具体例を示す。The type of adsorbent is appropriately selected depending on the type of high-purity gas to be stored, and specific examples are shown below.
ビ)Nz+Ar+He等の不活性ガス
第■族金属系化学吸着剤、ゼオライト系物理吸着剤の両
方又はいずれか一方
(lニア1 Ox及びN2、あるいは、それと不活性
ガスの混合ガス
ゼオライト系物理吸着剤
(ハ)N H31P Hs + A s H3等のVa
族氷水素化物あるいは、それと不活性ガスの混合ガスゼ
オライト系物理吸着剤あるいは活性炭系物理吸着剤ある
いはCu系化学吸着剤に) SiH4,5izH&等の
硅素水素化物、あるいは、それと不活性ガスの混合ガス
ゼオライト系物理吸着剤あるいはCu系化学吸着剤
(ホ) CF a、CHz F を等のハロゲン化炭素
、あるいは、それと不活性ガスの混合ガス
ゼオライト系物理吸着剤あるいはNi+ Cu等の還元
金属系吸収剤あるいは活性炭系物理吸着剤
〔実験例〕
次に実験例を示す。B) Inert gas such as Nz + Ar + He etc. Group Ⅰ metal-based chemical adsorbent, zeolite-based physical adsorbent, both or either (1) Ox and N2, or a mixed gas zeolite-based physical adsorbent of them and inert gas (c) Va of N H31P Hs + A s H3 etc.
Group ice hydride or a mixture of it and an inert gas Zeolite-based physical adsorbent, activated carbon-based physical adsorbent, or Cu-based chemical adsorbent) Silicon hydride such as SiH4,5izH&, or a mixture of it and an inert gas Zeolite-based physical adsorbent or Cu-based chemical adsorbent (e) Halogenated carbon such as CF a, CHz F , or a mixture of it and an inert gas Zeolite-based physical adsorbent or reduced metal-based absorbent such as Ni + Cu Or an activated carbon-based physical adsorbent [Experimental example] Next, an experimental example will be shown.
本発明の圧力容器は、内容積が501で吸着剤の充填層
容積が21であり、従来の圧力容器は吸着剤充填層の無
いものである。The pressure vessel of the present invention has an internal volume of 501 and an adsorbent packed bed volume of 21, whereas a conventional pressure vessel does not have an adsorbent packed bed.
配管に本発明の圧力容器と従来の圧力容器を各別に接続
し、それら配管を同種の通常グレードのガスでパージし
、その後、同じ純度の高純度ガスを貯蔵した圧力容器か
ら配管に容器内の高純度ガスをION l /ll1i
nの流量で供給し、10分後に配管から供給される高純
度ガス中に不純ガスの濃度を分析した。尚、0□。The pressure vessel of the present invention and the conventional pressure vessel are connected to piping separately, the piping is purged with the same type of normal grade gas, and then the pressure vessel containing the same high-purity gas is connected to the piping. High purity gas is transferred to ION l/ll1i
The high purity gas supplied from the pipe was analyzed for the concentration of impure gas after 10 minutes. Furthermore, 0□.
CHaはガスクロマトグラフ質量分析計で、かつ、H2
O,COは半導体レーザー赤外分光光度計で分析した。CHa is a gas chromatograph mass spectrometer and H2
O and CO were analyzed using a semiconductor laser infrared spectrophotometer.
実験例1
高純度のN2を対象にし、吸着剤をNi系吸着剤とゼオ
ライト系吸着剤の混合物にし、下記表の結果を得た。Experimental Example 1 High-purity N2 was targeted, and the adsorbent was a mixture of a Ni-based adsorbent and a zeolite-based adsorbent, and the results shown in the table below were obtained.
実験例2
高純度のArを対象にし、実験例1と同様の吸着剤にし
、下記表に示す結果を得た。Experimental Example 2 The same adsorbent as in Experimental Example 1 was used for high-purity Ar, and the results shown in the table below were obtained.
実験例3
高純度のHeを対象にし、実験例1と同様の吸着剤にし
、下記表に示す結果を得た。Experimental Example 3 The same adsorbent as in Experimental Example 1 was used for high-purity He, and the results shown in the table below were obtained.
実験例4
高純度のotを対象にし、吸着剤をゼオライト系吸着剤
にし、Hz O濃度を調べた結果、本発明の圧力容器で
はH20< 400ppbであり、従来の圧力容器では
HzO<ippmであった。Experimental Example 4 Using high-purity OT as the target, using a zeolite-based adsorbent as the adsorbent, we investigated the HzO concentration. As a result, in the pressure vessel of the present invention, H20 < 400 ppb, and in the conventional pressure vessel, HzO < ippm. Ta.
実験例5
高純度のN H3を対象にし、吸着剤をCu系化学吸着
剤と活性炭系吸着剤の混合物にし、下記表に示す結果を
得た。Experimental Example 5 High-purity N H3 was targeted, and the adsorbent was a mixture of a Cu-based chemical adsorbent and an activated carbon-based adsorbent, and the results shown in the table below were obtained.
実験例6
高純度のA s H3を対象にし、実験例5と同様の吸
着剤にし、下記表に示す結果を得た。Experimental Example 6 High purity As H3 was used as the same adsorbent as in Experimental Example 5, and the results shown in the table below were obtained.
実験例7
高純度の5iHaを対象にし、吸着剤をゼオライト系吸
着剤にし、HtO濃度を調べた結果、本発明の圧力容器
ではHt O< 400ppbであり、従来の圧力容器
ではHzO<lppmであったQ
実験例8
高純度のCF aを対象にし、吸着剤をCu系化学吸収
剤とゼオライト系吸着剤の混合物にし、下記表に示す結
果を得た。Experimental Example 7 Using high-purity 5iHa as the target, using a zeolite-based adsorbent as the adsorbent, the HtO concentration was investigated, and the results showed that in the pressure vessel of the present invention, HtO < 400 ppb, and in the conventional pressure vessel, HzO < lppm. Experimental Example 8 Targeting high-purity CF a, a mixture of a Cu-based chemical absorbent and a zeolite-based adsorbent was used as the adsorbent, and the results shown in the table below were obtained.
実験例9
高純度のCHF3を対象にし、実験例8と同様の吸着剤
にし、下記表に示す結果を得た。Experimental Example 9 High purity CHF3 was used as the same adsorbent as in Experimental Example 8, and the results shown in the table below were obtained.
以上、いずれの実験例においても、本発明の圧力容器を
利用すると従来よりも大巾に純度の高いガスを供給でき
る。In all of the experimental examples described above, when the pressure vessel of the present invention is used, it is possible to supply gas with a much higher purity than before.
次に別実施例を示す。 Next, another example will be shown.
吸着剤の充填層(4)を設けるに、構造や配置等におい
て適宜変更が可能であり、例えば第2図に示すように、
パルプ(V)付給排管(2)の複数本を圧力容器(1)
に接続して、吸着剤の充填層(4)を給排管(2)に対
して各別に設けてもよい。また、第3図に示すように、
給徘管(2)を圧力容器(1)内に突出させて、粒状吸
着剤が沈降して、充填層(4)の上面と圧力容器(1)
の間に隙間(7)が生じても、圧力容器(1)内の高純
度ガスが確実に充填層(4)を通って給排管(2)に送
られるようにし、そして、粒状吸着剤が給徘管(2)内
に入らないように、網などの適当なフィルター(8)を
設けてもよい。When providing the adsorbent packed layer (4), the structure and arrangement can be changed as appropriate; for example, as shown in Fig. 2,
Multiple pulp (V) supply and discharge pipes (2) are connected to the pressure vessel (1).
A packed bed (4) of adsorbent may be provided separately for each supply/discharge pipe (2). Also, as shown in Figure 3,
The supply pipe (2) is made to protrude into the pressure vessel (1), and the granular adsorbent settles out onto the upper surface of the packed bed (4) and the pressure vessel (1).
Even if there is a gap (7) between them, the high-purity gas in the pressure vessel (1) is ensured to pass through the packed bed (4) to the supply/discharge pipe (2), and the granular adsorbent A suitable filter (8), such as a mesh, may be provided to prevent the water from entering the feed pipe (2).
尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.
第1図は本発明の実施例を示す概念図、第2図及び第3
図は本発明の各別の実施例を示す概念図である。
(4)・・・・・・吸着剤の充填層、(5)・・・・・
・容器内空間、(6)・・・・・・容器出口、(V)・
・・・・・バルブ。Figure 1 is a conceptual diagram showing an embodiment of the present invention, Figures 2 and 3 are
The figures are conceptual diagrams showing different embodiments of the present invention. (4)... Filled bed of adsorbent, (5)...
・Container interior space, (6)...Container outlet, (V)・
·····valve.
Claims (1)
(5)と容器出口(6)の間で流動する高純度ガスが前
記充填層(4)を通過するようにバルブ(V)より内方
側に配置してある高純度ガス貯蔵用圧力容器。A packed bed (4) of an adsorbent for impure gas is opened by a valve (V) so that high-purity gas flowing between the container interior space (5) and the container outlet (6) passes through the packed bed (4). A pressure vessel for storing high-purity gas located on the inside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61234786A JPH06104177B2 (en) | 1986-10-02 | 1986-10-02 | Pressure vessel for high-purity gas storage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61234786A JPH06104177B2 (en) | 1986-10-02 | 1986-10-02 | Pressure vessel for high-purity gas storage |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6388017A true JPS6388017A (en) | 1988-04-19 |
JPH06104177B2 JPH06104177B2 (en) | 1994-12-21 |
Family
ID=16976355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61234786A Expired - Lifetime JPH06104177B2 (en) | 1986-10-02 | 1986-10-02 | Pressure vessel for high-purity gas storage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06104177B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5518528A (en) * | 1994-10-13 | 1996-05-21 | Advanced Technology Materials, Inc. | Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds |
US5676735A (en) * | 1996-10-31 | 1997-10-14 | Advanced Technology Materials, Inc. | Reclaiming system for gas recovery from decommissioned gas storage and dispensing vessels and recycle of recovered gas |
US5704967A (en) * | 1995-10-13 | 1998-01-06 | Advanced Technology Materials, Inc. | Fluid storage and delivery system comprising high work capacity physical sorbent |
US5707424A (en) * | 1994-10-13 | 1998-01-13 | Advanced Technology Materials, Inc. | Process system with integrated gas storage and delivery unit |
US5851270A (en) * | 1997-05-20 | 1998-12-22 | Advanced Technology Materials, Inc. | Low pressure gas source and dispensing apparatus with enhanced diffusive/extractive means |
US5985008A (en) * | 1997-05-20 | 1999-11-16 | Advanced Technology Materials, Inc. | Sorbent-based fluid storage and dispensing system with high efficiency sorbent medium |
US6027547A (en) * | 1997-05-16 | 2000-02-22 | Advanced Technology Materials, Inc. | Fluid storage and dispensing vessel with modified high surface area solid as fluid storage medium |
US6083298A (en) * | 1994-10-13 | 2000-07-04 | Advanced Technology Materials, Inc. | Process for fabricating a sorbent-based gas storage and dispensing system, utilizing sorbent material pretreatment |
US6132492A (en) * | 1994-10-13 | 2000-10-17 | Advanced Technology Materials, Inc. | Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same |
US6204180B1 (en) | 1997-05-16 | 2001-03-20 | Advanced Technology Materials, Inc. | Apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing sorbent-based fluid storage and dispensing system for reagent delivery |
US6406519B1 (en) * | 1998-03-27 | 2002-06-18 | Advanced Technology Materials, Inc. | Gas cabinet assembly comprising sorbent-based gas storage and delivery system |
US6660063B2 (en) | 1998-03-27 | 2003-12-09 | Advanced Technology Materials, Inc | Sorbent-based gas storage and delivery system |
US6991671B2 (en) | 2002-12-09 | 2006-01-31 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US7857880B2 (en) | 2002-10-31 | 2010-12-28 | Advanced Technology Materials, Inc. | Semiconductor manufacturing facility utilizing exhaust recirculation |
US8858685B2 (en) | 2002-12-10 | 2014-10-14 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US9126139B2 (en) | 2012-05-29 | 2015-09-08 | Entegris, Inc. | Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent |
US9234628B2 (en) | 2011-01-19 | 2016-01-12 | Entegris, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
-
1986
- 1986-10-02 JP JP61234786A patent/JPH06104177B2/en not_active Expired - Lifetime
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5518528A (en) * | 1994-10-13 | 1996-05-21 | Advanced Technology Materials, Inc. | Storage and delivery system for gaseous hydride, halide, and organometallic group V compounds |
US5704965A (en) * | 1994-10-13 | 1998-01-06 | Advanced Technology Materials, Inc. | Fluid storage and delivery system utilizing carbon sorbent medium |
US5707424A (en) * | 1994-10-13 | 1998-01-13 | Advanced Technology Materials, Inc. | Process system with integrated gas storage and delivery unit |
US6083298A (en) * | 1994-10-13 | 2000-07-04 | Advanced Technology Materials, Inc. | Process for fabricating a sorbent-based gas storage and dispensing system, utilizing sorbent material pretreatment |
US6125131A (en) * | 1994-10-13 | 2000-09-26 | Advanced Technology Materials, Inc. | Laser system utilizing sorbent-based gas storage and delivery system |
US6132492A (en) * | 1994-10-13 | 2000-10-17 | Advanced Technology Materials, Inc. | Sorbent-based gas storage and delivery system for dispensing of high-purity gas, and apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing same |
US5704967A (en) * | 1995-10-13 | 1998-01-06 | Advanced Technology Materials, Inc. | Fluid storage and delivery system comprising high work capacity physical sorbent |
US5676735A (en) * | 1996-10-31 | 1997-10-14 | Advanced Technology Materials, Inc. | Reclaiming system for gas recovery from decommissioned gas storage and dispensing vessels and recycle of recovered gas |
US6027547A (en) * | 1997-05-16 | 2000-02-22 | Advanced Technology Materials, Inc. | Fluid storage and dispensing vessel with modified high surface area solid as fluid storage medium |
US6204180B1 (en) | 1997-05-16 | 2001-03-20 | Advanced Technology Materials, Inc. | Apparatus and process for manufacturing semiconductor devices, products and precursor structures utilizing sorbent-based fluid storage and dispensing system for reagent delivery |
US5851270A (en) * | 1997-05-20 | 1998-12-22 | Advanced Technology Materials, Inc. | Low pressure gas source and dispensing apparatus with enhanced diffusive/extractive means |
US5985008A (en) * | 1997-05-20 | 1999-11-16 | Advanced Technology Materials, Inc. | Sorbent-based fluid storage and dispensing system with high efficiency sorbent medium |
US6406519B1 (en) * | 1998-03-27 | 2002-06-18 | Advanced Technology Materials, Inc. | Gas cabinet assembly comprising sorbent-based gas storage and delivery system |
US6540819B2 (en) * | 1998-03-27 | 2003-04-01 | Advanced Technology Materials, Inc. | Gas cabinet assembly comprising sorbent-based gas storage and delivery system |
US6660063B2 (en) | 1998-03-27 | 2003-12-09 | Advanced Technology Materials, Inc | Sorbent-based gas storage and delivery system |
US7857880B2 (en) | 2002-10-31 | 2010-12-28 | Advanced Technology Materials, Inc. | Semiconductor manufacturing facility utilizing exhaust recirculation |
US6991671B2 (en) | 2002-12-09 | 2006-01-31 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US7501010B2 (en) | 2002-12-09 | 2009-03-10 | Advanced Technology Materials, Inc. | Rectangular parallelepiped fluid storage and dispending vessel |
US9062829B2 (en) | 2002-12-09 | 2015-06-23 | Entegris, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US9636626B2 (en) | 2002-12-09 | 2017-05-02 | Entegris, Inc. | Rectangular parallelepiped fluid storage and dispensing vessel |
US8858685B2 (en) | 2002-12-10 | 2014-10-14 | Advanced Technology Materials, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US9518701B2 (en) | 2002-12-10 | 2016-12-13 | Entegris, Inc. | Gas storage and dispensing system with monolithic carbon adsorbent |
US9234628B2 (en) | 2011-01-19 | 2016-01-12 | Entegris, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
US9468901B2 (en) | 2011-01-19 | 2016-10-18 | Entegris, Inc. | PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same |
US9126139B2 (en) | 2012-05-29 | 2015-09-08 | Entegris, Inc. | Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent |
Also Published As
Publication number | Publication date |
---|---|
JPH06104177B2 (en) | 1994-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6388017A (en) | Pressure container for storing high purity gas | |
US5492682A (en) | Hydrogen purification | |
EP0696256B1 (en) | Process for the removal of gaseous impurities from a stream of hydrogen | |
US3237379A (en) | Adsorption systems in heatless fractionation processes | |
JP2002338209A (en) | Gas purifying apparatus, valve assembly including the same and liquefied gas vessel system | |
US6261528B1 (en) | Hydrogen purification using metal hydride getter material | |
JP2981304B2 (en) | Gas separation method | |
US5833738A (en) | Specialty gas purification system | |
JPH0372566B2 (en) | ||
JP2001300244A (en) | Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen | |
JPS58151304A (en) | Production of oxygen by pressure swing method | |
JPH05111611A (en) | Device for separating produced gas | |
US6436352B1 (en) | Hydrogen purification | |
JPS58120511A (en) | Purifying method for silane | |
JP2960992B2 (en) | Hydrogen isotope separation method | |
JPH0230607A (en) | Production of highly pure nitrogen | |
JPH0578366B2 (en) | ||
KR101605283B1 (en) | Adsorption vessels having reduced void volume and uniform flow distribution | |
JPS6096506A (en) | Method and apparatus for purification of hydrogen gas | |
JP2915245B2 (en) | Oxygen concentrator | |
JPH0592123A (en) | Removal of trace oxygen | |
US20200101413A1 (en) | Adsorption vessels having reduced void volume through the use of non-porous, low-density filler material to reduce voids | |
JPS5848205B2 (en) | Adsorption device | |
JPH09142809A (en) | Ozone adsorption / desorption method and device | |
RU1784815C (en) | Device for deep purifying of gas from water vapors and oxygen |