JPS6398561A - Capillary column for gas chromatograph - Google Patents
Capillary column for gas chromatographInfo
- Publication number
- JPS6398561A JPS6398561A JP61244229A JP24422986A JPS6398561A JP S6398561 A JPS6398561 A JP S6398561A JP 61244229 A JP61244229 A JP 61244229A JP 24422986 A JP24422986 A JP 24422986A JP S6398561 A JPS6398561 A JP S6398561A
- Authority
- JP
- Japan
- Prior art keywords
- column
- silicon
- silicon wafer
- sio2
- liquid phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 31
- 239000011521 glass Substances 0.000 claims abstract description 21
- 238000004817 gas chromatography Methods 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 7
- 238000000926 separation method Methods 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 3
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 3
- 229910052682 stishovite Inorganic materials 0.000 abstract description 3
- 229910052905 tridymite Inorganic materials 0.000 abstract description 3
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 150000003376 silicon Chemical class 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000005297 pyrex Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/50—Conditioning of the sorbent material or stationary liquid
- G01N30/56—Packing methods or coating methods
- G01N2030/567—Packing methods or coating methods coating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/60—Construction of the column
- G01N30/6095—Micromachined or nanomachined, e.g. micro- or nanosize
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、シリコンウェーハーと硬質ガラス板を材料と
して、マイクロマシーニング技術により製作するガスク
ロマトグラフ装置用小型キャピラリーカラムに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a small capillary column for a gas chromatograph device manufactured by micromachining technology using a silicon wafer and a hard glass plate as materials.
シリコンウェーハーと硬質ガラス板を材料とするガスク
ロマトグラフ装置用キャピラリーカラムに関しては、特
開昭58−195149号公報、[サイエンス4198
3年6月号に記載されている。前者はシリコンウェーハ
ー上に試料注入部、分離用キャピラリーカラム、及び検
出器を一体化した小型ガスクロマトグラフ装置について
記述しているが、カラムに関する精しい記述はない。後
者にはキャピラリーカラム等の製作法が詳しく述べられ
ている。Regarding capillary columns for gas chromatograph devices made of silicon wafers and hard glass plates, Japanese Patent Application Laid-open No. 195149/1982, [Science 4198]
It is described in the June 3rd issue. The former describes a small gas chromatograph device that integrates a sample injection section, a separation capillary column, and a detector on a silicon wafer, but there is no detailed description regarding the column. The latter describes in detail how to fabricate capillary columns, etc.
具体的には直径5cmのシリコンウェーハーにエツチン
グにより幅200μm1深さ40μm1長さ1゜5m程
度の渦巻状の溝を刻んだ後、5 cm角のパイレックス
ガラス板を接着剤を用いずに静電的に張合わせる(以下
、静電接着と記す)ことにより、キャピラリーカラムを
製作する。カラム内壁には液相をコーティングし、気液
分配により成分を分離する。Specifically, after etching a spiral groove with a width of 200 μm, a depth of 40 μm, and a length of about 1.5 m on a silicon wafer with a diameter of 5 cm, a 5 cm square Pyrex glass plate was electrostatically etched without using an adhesive. A capillary column is fabricated by bonding (hereinafter referred to as electrostatic adhesion). The inner wall of the column is coated with a liquid phase, and components are separated by gas-liquid distribution.
従来法では、シリコンウェーハーと硬質ガラス板を静電
接着する前にシリコンウェーハー表面のすべての510
2膜を除去する工程を入れることからキャピラリーカラ
ム内壁面は金属シリコンと硬質ガラスが露出した状態と
なっている。In the conventional method, all 510% of the silicon wafer surface is bonded before electrostatically bonding the silicon wafer and the hard glass plate.
Since the process of removing the two films is included, the metal silicon and hard glass are exposed on the inner wall surface of the capillary column.
ガスクロマトグラフ分離用キャビラリー力ラムの性能は
、カラム壁面の性質と密接な関係がある。The performance of a cavillary force ram for gas chromatographic separation is closely related to the properties of the column wall.
分離能の優れたカラムを得るには、壁面に液相を均一に
コーティングする必要があり、このためにはカラム壁面
と液相の親和性の高いことが望ましい。又、壁面の活性
が高い場合には極性物質は吸着し易く、テーリングを生
じる原因となる。In order to obtain a column with excellent separation ability, it is necessary to uniformly coat the liquid phase on the wall surface, and for this purpose, it is desirable that the column wall surface and the liquid phase have high affinity. Furthermore, if the wall surface has high activity, polar substances are likely to be adsorbed, causing tailing.
従来のシリコンと硬質ガラスが壁面に露出したカラムで
はこれらの点で問題があり、高性能のカラムを得ること
は不可能であった。Conventional columns in which silicon and hard glass are exposed on the walls have these problems, and it has been impossible to obtain high-performance columns.
本発明は、カラム壁面のシリコンを5in2化すること
により、高性能カラム作製に最も好適な壁面を持ったキ
ャピラリーカラムを提供するものである。The present invention provides a capillary column having a wall most suitable for producing a high-performance column by making the column wall silicon 5 in 2 in size.
カラム壁をSiO□化することにより壁面を改質するた
めには、膜厚として0.01μm以上、特に0.05〜
0.2μmのSiO□層を生成させることが好ましい。In order to modify the wall surface by converting the column wall into SiO
Preferably, a 0.2 μm SiO□ layer is produced.
こうしたカラムを得るための方法としてはシリコンと硬
質ガラスを静電接着する前に予めシリコン表面に310
2層を生成しておくことが望ましいが、SiO□で覆わ
れたシリコンに関しては静電接着の可否が問題となる。The method for obtaining such a column is to apply 310 μm on the silicon surface before electrostatically adhering the silicon and hard glass.
Although it is desirable to form two layers, the possibility of electrostatic adhesion becomes an issue regarding silicon covered with SiO□.
静電接着は、通常、シリコンと硬質ガラスの接着に限っ
て用いられ、両者を密着させた状態で、ガラス中のナト
リウムイオンを動き易くするため200〜400℃に加
熱し、シリコン側をアースとしてガラス側に数百ボルト
の負電圧を印加する方法であり、SiO□膜に覆われた
シリコンに適用した例は見当たらない。SiO□は絶縁
性が高いためSiO□層の厚いシリコンでは静電接着は
難しいと考えられる。Electrostatic adhesion is usually used only for bonding silicone and hard glass, and when the two are in close contact, it is heated to 200-400℃ to make the sodium ions in the glass easier to move, and the silicone side is grounded. This method involves applying a negative voltage of several hundred volts to the glass side, and no examples of its application to silicon covered with a SiO□ film have been found. Since SiO□ has high insulating properties, it is thought that electrostatic adhesion is difficult with silicon having a thick SiO□ layer.
実際に、シリコンの場合には容易に接着可能な250℃
、 500Vの条件では、0.1μnのSiO□層を有
するシリコンは接着しない。SiO□化したシリコンを
静電接着するには、接着条件を強化する必要があり、S
in□膜厚0.1μmではI KVの電圧で300℃以
上の温度にすることにより初めて達成できることを見出
した。In fact, silicon can be easily bonded at 250°C.
, 500V, silicon with a 0.1 μn SiO□ layer does not adhere. In order to electrostatically bond SiO□ silicon, it is necessary to strengthen the bonding conditions.
It has been found that an in□ film thickness of 0.1 μm can only be achieved by raising the temperature to 300° C. or higher at a voltage of I KV.
本発明は、このように接着条件を強化することによって
、5iDz膜に覆われたシリコンと硬質ガラス板の静電
接着を可能ならしめたことにより達成されたものである
。The present invention has been achieved by making it possible to electrostatically bond the silicon covered with the 5iDz film and the hard glass plate by strengthening the bonding conditions as described above.
すなわち本発明は、表面をSiO□化したシリコンウェ
ーハーと硬質ガラス板によりキャピラリー管を構成する
ガスクロマトグラフ用キャピラリーカラムである。That is, the present invention is a capillary column for a gas chromatograph in which a capillary tube is constructed of a silicon wafer whose surface is SiO□ and a hard glass plate.
本発明に従って製作したキャピラリーカラムの内壁面は
SiO□及び硬質ガラスよりなり、ガスクロ分析に汎用
される溶融シリカキャピラリーカラム及びガラスキャピ
ラリーカラムを併合した性質を有することから、これら
に用いられる液相コーティング技術をそのまま用いるこ
とにより、高性能の分離カラムを得ることができる。The inner wall surface of the capillary column manufactured according to the present invention is made of SiO□ and hard glass, and has properties that are a combination of fused silica capillary columns and glass capillary columns that are commonly used for gas chromatography analysis, so the liquid phase coating technology used for these can be used as is. By doing so, a high-performance separation column can be obtained.
最近では液相をカラム壁に化学結合させることにより、
耐熱化、長寿命化を図る手法も汎用されているが、Si
O□化によって、この方法も可能となる。Recently, by chemically bonding the liquid phase to the column wall,
Methods to improve heat resistance and extend life are widely used, but Si
This method is also possible due to O□ conversion.
本発明に従ってカラム壁をシリコンから5in2に変え
ることにより、液相コーティングに適した表面が得られ
ることから、カラム性能は著しく向上する。具体的には
、シリコンのカラムと比較して分離性能を示す理論段数
が増大するとともに、極性試料のピーク形も改善されテ
ーリングの少ないクロマトグラムが得られる。By changing the column walls from silicon to 5in2 in accordance with the present invention, column performance is significantly improved by providing a surface suitable for liquid phase coating. Specifically, compared to a silicon column, the number of theoretical plates exhibiting separation performance increases, the peak shape of polar samples is also improved, and a chromatogram with less tailing can be obtained.
以下に実施例によって詳細に説明する。Examples will be described in detail below.
キャピラリーカラム製作手順の一例を以下に示す。 An example of the capillary column manufacturing procedure is shown below.
1.3インチのシリコンウェーハー上に、幅200μm
1深さ70μm1長さ3mのカラム溝パターンをエツチ
ングにより作成する。200 μm wide on 1.3 inch silicon wafer
A column groove pattern having a depth of 70 μm and a length of 3 m is created by etching.
2、 ウェハー上のすべての5iOz膜を除去した後、
熱酸化により約0.1μmのSiO2層をシリコン表面
に生成させる。2. After removing all 5iOz films on the wafer,
A SiO2 layer of approximately 0.1 μm is formed on the silicon surface by thermal oxidation.
3、 これらの処理を行ったシリコンウェーハーと光学
併置を施した3インチ角のパイレックスガラス板を密着
させ、350℃の温度でシリコン側をアースとしてガラ
ス側に−IKVの電圧を印加することによりシリコンウ
ェーハーとガラス板を静電接着する。3. The silicon wafer that has undergone these treatments is brought into close contact with a 3-inch square Pyrex glass plate that has been optically juxtaposed, and the silicon wafer is heated at a temperature of 350°C by applying a voltage of -IKV to the glass side with the silicon side grounded. Electrostatically bond the wafer and glass plate.
4、 カラムコネクターを取付けた後、ジメチルシ 4
リコーン系の0V−101液相をダイナミック法により
コーティングする。4. After installing the column connector, use dimethyl
Coating is performed using a 0V-101 liquid phase based on silicone using a dynamic method.
ここで得られたカラムは熱酸化による0、1μmの
(SiO□囮生成工程を省いたカラムと比較して、理論
′段数が倍加するとともに極性物質のピーク形も改
1善され著しい性能向上を示した。
1SiOz層の有無による性能比較データとして
、ト “ルエンを試料とした理論段数[N ]
N=5.54x(t/W)2[W:半値幅、t:保持時
間〕及びメタノールを試料としたテーリングファクター
[TF] TP=a/bX100[aSbはピー
クの高さをhにしたときの1/10hにおけるピーク幅
をピークトップの前後に配分した値を示すものである]
を以下に示す。The column obtained here has a diameter of 0.1 μm due to thermal oxidation.
(Compared to a column in which the SiO□ decoy generation step was omitted, the number of theoretical plates was doubled, and the peak shape of polar substances was also improved, indicating a significant performance improvement.
1 As performance comparison data with and without a SiOz layer, the number of theoretical plates [N] using toluene as a sample N = 5.54 x (t/W) 2 [W: half width, t: retention time] and methanol as a sample Tailing factor [TF] TP=a/bX100 [aSb is the value obtained by distributing the peak width at 1/10 h when the peak height is h]
is shown below.
第1図、第2図はいずれもガスクロマトダラムであり、
第1図は理論段数〔N〕を計算するためD図、第2図は
テーリングファクター〔TF〕を計算するための図であ
る。図中、Wは半値幅、t)ま保持時間、hはピークの
高さ、aSbは1/10h)ごおけるピーク幅をピーク
トップの前後に配分しtこ値を示すものである。Both Figures 1 and 2 are gas chromatographs.
FIG. 1 is a D diagram for calculating the number of theoretical plates [N], and FIG. 2 is a diagram for calculating the tailing factor [TF]. In the figure, W is the half width, t) is the retention time, h is the height of the peak, and aSb is the peak width of 1/10 h) which is distributed before and after the peak top and shows the t value.
Claims (1)
ス板によりキャピラリー管を構成するガスクロマトグラ
フ用キャピラリーカラムA capillary column for gas chromatography that consists of a silicon wafer with a SiO_2 surface and a hard glass plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61244229A JPS6398561A (en) | 1986-10-16 | 1986-10-16 | Capillary column for gas chromatograph |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61244229A JPS6398561A (en) | 1986-10-16 | 1986-10-16 | Capillary column for gas chromatograph |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6398561A true JPS6398561A (en) | 1988-04-30 |
Family
ID=17115660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61244229A Pending JPS6398561A (en) | 1986-10-16 | 1986-10-16 | Capillary column for gas chromatograph |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6398561A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935040A (en) * | 1989-03-29 | 1990-06-19 | The Perkin-Elmer Corporation | Miniature devices useful for gas chromatography |
US6670024B1 (en) * | 2002-06-05 | 2003-12-30 | The Regents Of The University Of California | Glass-silicon column |
-
1986
- 1986-10-16 JP JP61244229A patent/JPS6398561A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4935040A (en) * | 1989-03-29 | 1990-06-19 | The Perkin-Elmer Corporation | Miniature devices useful for gas chromatography |
US6670024B1 (en) * | 2002-06-05 | 2003-12-30 | The Regents Of The University Of California | Glass-silicon column |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6596144B1 (en) | Separation columns and methods for manufacturing the improved separation columns | |
Vial et al. | Silica sputtering as a novel collective stationary phase deposition for microelectromechanical system gas chromatography column: Feasibility and first separations | |
US8123841B2 (en) | Column design for micro gas chromatograph | |
US4643532A (en) | Field-assisted bonding method and articles produced thereby | |
US20030201390A1 (en) | Separation media, multiple electrospray nozzle system and method | |
US6663697B1 (en) | Microfabricated packed gas chromatographic column | |
US8299426B2 (en) | Conductive conduits for chemical analyses, and methods for making such conduits | |
US4452624A (en) | Method for bonding insulator to insulator | |
WO2002059591A1 (en) | Sol-gel open tubular ods columns with charged inner surface for capillary electrochromatography | |
JPH08111205A (en) | Electric field gradient controller | |
JPS6398561A (en) | Capillary column for gas chromatograph | |
DE19726000C2 (en) | Separation column for a miniaturized gas chromatograph and process for its production | |
JP2007533467A (en) | Method for producing nanochannel and nanochannel produced by this method | |
CN113466393B (en) | A kind of micro gas chromatographic column which can use air as carrier gas and preparation method thereof | |
JPH0152899B2 (en) | ||
JPH0362927A (en) | Semiconductor device and manufacture thereof | |
US20060228823A1 (en) | MEMS structure with anodically bonded silicon-on-insulator substrate | |
CN108181415A (en) | Micro- thermal conductivity detector (TCD) of film-type and preparation method thereof | |
Kreibik et al. | Enhancement of mobile phase velocity in TLC by means of an external alternating electric field | |
JPH07101672B2 (en) | Method for fixing fine materials and forming electrodes | |
US7157004B1 (en) | Freeze drying for gas chromatography stationary phase deposition | |
JP3537631B2 (en) | Micro-mechanical device and manufacturing method thereof | |
Matzke et al. | Quartz channel fabrication for electrokinetically driven separations | |
Sun et al. | Design, modeling, microfabrication and characterization of the micro gas chromatography columns | |
Erill et al. | Silicon microsystem passivation for high-voltage applications in DNA chips |