KR100333184B1 - Preparing method of an absorbent for sulfur oxide in low temperature. - Google Patents
Preparing method of an absorbent for sulfur oxide in low temperature. Download PDFInfo
- Publication number
- KR100333184B1 KR100333184B1 KR1019980036632A KR19980036632A KR100333184B1 KR 100333184 B1 KR100333184 B1 KR 100333184B1 KR 1019980036632 A KR1019980036632 A KR 1019980036632A KR 19980036632 A KR19980036632 A KR 19980036632A KR 100333184 B1 KR100333184 B1 KR 100333184B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- sulfur oxide
- adsorbent
- low temperature
- Prior art date
Links
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 34
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 239000002250 absorbent Substances 0.000 title description 8
- 230000002745 absorbent Effects 0.000 title description 8
- 239000003463 adsorbent Substances 0.000 claims abstract description 42
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 30
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 24
- 239000000292 calcium oxide Substances 0.000 claims abstract description 17
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 239000004927 clay Substances 0.000 claims abstract description 8
- 239000010459 dolomite Substances 0.000 claims abstract description 8
- 229910000514 dolomite Inorganic materials 0.000 claims abstract description 8
- 229940043430 calcium compound Drugs 0.000 claims abstract description 6
- 150000001674 calcium compounds Chemical class 0.000 claims abstract description 6
- 239000008188 pellet Substances 0.000 claims abstract description 4
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 9
- 239000000920 calcium hydroxide Substances 0.000 claims description 9
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 9
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 9
- 239000002002 slurry Substances 0.000 claims description 9
- 229910052815 sulfur oxide Inorganic materials 0.000 abstract description 12
- 235000008733 Citrus aurantifolia Nutrition 0.000 abstract description 11
- 235000011941 Tilia x europaea Nutrition 0.000 abstract description 11
- 238000006477 desulfuration reaction Methods 0.000 abstract description 11
- 230000023556 desulfurization Effects 0.000 abstract description 11
- 239000004571 lime Substances 0.000 abstract description 11
- 239000003054 catalyst Substances 0.000 abstract description 6
- 238000001125 extrusion Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 description 24
- 239000007789 gas Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- 229910001385 heavy metal Inorganic materials 0.000 description 7
- 238000000465 moulding Methods 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 239000002351 wastewater Substances 0.000 description 5
- 235000019738 Limestone Nutrition 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 239000010440 gypsum Substances 0.000 description 3
- 229910052602 gypsum Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 235000012254 magnesium hydroxide Nutrition 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- -1 CuO and ZnO Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 1
- 235000010261 calcium sulphite Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- JESHZQPNPCJVNG-UHFFFAOYSA-L magnesium;sulfite Chemical compound [Mg+2].[O-]S([O-])=O JESHZQPNPCJVNG-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3007—Moulding, shaping or extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
본 발명은 저온 영역(120℃ 이하)에서 효과적으로 황산화물을 제거할 수 있는 건식 저온 탈황공정용 황산화물 흡착제의 제조에 관한 것이다.The present invention relates to the preparation of a sulfur oxide adsorbent for dry low temperature desulfurization process that can effectively remove sulfur oxides in the low temperature region (120 ℃ or less).
소석회, 생석회, 또는 소성 돌로마이트(CaOㆍMgO) 중에서 선택된 1종 이상의 칼슘화합물 15∼80중량부, 활성탄 5∼30중량부, 백토 5∼20중량부를 혼합하고 여기에 촉매로서 KMnO4, NaOH, KOH 중에서 선택된 하나 이상을 0.1∼15중량부 첨가하여서 된 혼합물을 50∼200중량부의 물중에서 혼련한 후 건조시켜 혼합물의 함수율을 10∼30%로 조정하여 펠렛트 형태로 압출 성형하는 건식 저온 탈황공정용 황산화물 흡착제의 제조방법에 관한 것이다.15 to 80 parts by weight of at least one calcium compound selected from calcined lime, quicklime, or calcined dolomite (CaO.MgO), 5 to 30 parts by weight of activated carbon, and 5 to 20 parts by weight of clay, are mixed with KMnO 4 , NaOH, KOH as a catalyst. 0.1 to 15 parts by weight of one or more selected from the mixture is kneaded in 50 to 200 parts by weight of water and dried to adjust the water content of the mixture to 10 to 30% for the dry low-temperature desulfurization process for extrusion molding in the form of pellets It relates to a method for producing a sulfur oxide adsorbent.
Description
본 발명은 소석회(消石灰), 생석회(生石灰), 또는 소성 돌로마이트(CaOㆍMgO) 등 반응성이 높은 칼슘 화합물을 주원료로 하고 여기에 활성탄, 백토와 소량의 촉매를 첨가하여 황산화물을 함유하는 배기가스 중의 황산화물을 흡착 제거시키는 건식, 저온용 황산화물 흡착제의 제조방법에 관한 것이다.The present invention is made of a highly reactive calcium compound such as slaked lime, quicklime, or calcined dolomite (CaO.MgO) as a main raw material, and activated carbon, clay and a small amount of catalyst are added to the exhaust gas containing sulfur oxides. A method for producing a dry, low temperature sulfur oxide adsorbent for adsorption and removal of sulfur oxides therein.
산업화의 발전에 따라 석탄, 석유 등 화석 연료의 사용량이 증가되고 이들 연소가스에 포함되어 있는 황산화물(SOX), 질소 산화물(NOX) 등의 배출량도 증가하고 있으며 이들은 공기를 오염시키는 공해물질들이므로 이들에 대한 배출 규제가 점차 강화되고 있는 추세에 있다.With the development of industrialization, the use of fossil fuels such as coal and petroleum increases, and the emissions of sulfur oxides (SO X ) and nitrogen oxides (NO X ) contained in these combustion gases are also increasing. As such, emission regulations for these are increasingly being tightened.
또한, 환경보호 문제는 국내적인 문제일 뿐만 아니라 지구 환경의 보호 차원에서 국제기구를 통하여 공동 대처하는 방안이 논의되고 있는 국제적인 문제이기도 하다.In addition, the issue of environmental protection is not only a domestic issue but also an international issue that discusses how to cope with international organizations in order to protect the global environment.
현재 황산화물의 대기 방출량을 줄이는 방법으로서는 저 유황분의 연료를 사용하는 방법, 탈황된 연료를 사용하는 방법 또는 연소 후 배기 가스를 탈황(Desulfurization)하는 방법 등이 있다.Current methods for reducing the amount of sulfur oxides emitted include low sulfur fuel, desulfurized fuel, or desulfurization after combustion.
본 발명은 연소후 배기가스의 건식 탈황에 사용되는 흡착제의 제조방법에 관한 것이다.The present invention relates to a method for producing an adsorbent for use in dry desulfurization of exhaust gases after combustion.
종래 석회와 수산화마그네슘을 이용하는 배기가스의 황산화물 처리 방법은 주로 비재생(非再生) 습식 공정에 이용되고 있으나 상기의 공정은 대체로 흡착 장치에 따라 처리 성능이 좌우되기 때문에 장치 전체를 변경시키지 않으면 새로운 공정을 도입하기 어려울 뿐만 아니라, 폐수 처리 시설이 필요하고 부산물로 환경 오염의 문제가 있는 폐기물이 생성되는 등 2차적인 환경 오염 문제가 있다. 그 외에 건식 고온 탈황 공정이 일부 소규모의 보일러 등에 사용되고 있으나 경제성 및 제거 효율 등의 관점에서 문제점을 가지고 있다.Conventionally, the sulfur oxide treatment method of the exhaust gas using lime and magnesium hydroxide is mainly used for non-regeneration wet process, but the above process generally depends on the adsorption device, so if the whole device is not changed, Not only is it difficult to introduce the process, but there are also secondary environmental pollution problems, such as the need for wastewater treatment facilities and the generation of waste products by-products of environmental pollution. In addition, the dry high temperature desulfurization process is used in some small boilers, but has problems in terms of economic efficiency and removal efficiency.
습식 공정에서는 슬러리(Slurry) 상태의 석회석이나 소석회, 수산화마그네슘 또는 생석회를 흡수제로 하여 배기 가스중의 SO2를 CaSO3(아황산칼슘)또는 MgSO3(아황산마그네슘)으로 포집, 회수하고 이를 산화시켜 석고를 부산물로 생성한다.In the wet process, the slurry of limestone, slaked lime, magnesium hydroxide or quicklime as an absorbent is used to collect and recover SO 2 in the exhaust gas with CaSO 3 (calcium sulfite) or MgSO 3 (magnesium sulfite) and oxidize it to gypsum. To produce as a by-product.
SO2제거 공정은 다음 반응식에 따르며The SO 2 removal process is according to the following scheme
CaCO3+ SO2+ H2O → CaSO3ㆍ1/2H2O + CO2+ 1/2H2OCaCO 3 + SO 2 + H 2 O → CaSO 3 ㆍ 1 / 2H 2 O + CO 2 + 1 / 2H 2 O
또는 Ca(OH)2+ SO2→ CaSO3ㆍ1/2H2O + 1/2H2OOr Ca (OH) 2 + SO 2- > CaSO 3 -1 / 2H 2 O + 1 / 2H 2 O
또는 Mg(OH)2+ SO2+ 5H2O → MgSO3ㆍ6H2OOr Mg (OH) 2 + SO 2 + 5H 2 O → MgSO 3 ㆍ 6H 2 O
산화공정은 다음 반응식에 따라 진행된다.The oxidation process proceeds according to the following reaction formula.
CaSO3ㆍ1/2H2O + 1/2O2+ 3/2H2O → CaSO4ㆍ2H2OCaSO 3 ㆍ 1 / 2H 2 O + 1 / 2O 2 + 3 / 2H 2 O → CaSO 4 2H 2 O
또는 MgSO3+ 1/2O2→ MgSO4 Or MgSO 3 + 1 / 2O 2 → MgSO 4
석회석 슬러리 또는 석회 슬러리에 의한 SO2흡수 속도는 슬러지의 pH와 농도가 높고 흡수제의 입도가 미세할 수록 빠르다. 석회석 및 석회에 포함된 불순물이 적어야 부산물로 발생된 석고를 여과후 석고 보드 및 시멘트 첨가제용으로 사용 가능하다.The rate of SO 2 absorption by limestone slurry or lime slurry is faster as the pH and concentration of the sludge is higher and the particle size of the absorbent is finer. The less impurities contained in limestone and lime can be used for gypsum board and cement additives after filtration of gypsum generated as a by-product.
위의 반응식에서 CaCO3, Ca(OH)2, Mg(OH)2등은 수용액 중에 분산되어 있으므로 반응 생성물의 여과후 슬러지(Sludge)와 폐수가 필연적으로 발생한다.In the above scheme, since CaCO 3 , Ca (OH) 2 , Mg (OH) 2, and the like are dispersed in an aqueous solution, sludge and waste water are inevitably generated after filtration of the reaction product.
위의 반응은 습식 반응으로써 SO2가스를 물에 용해시킨 후 슬러리 상에서 반응을 유도하는 형태의 기체-액체-고체가 함께 존재하는 일반적인 습식처리 공정이나 이 공정은 배출 가스 중 아황산 가스가 벌크(bulk) 상태로 존재하는 수성 슬러리와 접촉하여 흡수제와 반응을 일으키는 것으로 혼합과 접촉 시간면에서 장점은 있으나 장치가 커지고 반응 후 생성된 슬러지를 탈수하여 폐기해야 하며 또한 발생된 폐수를 정화하기 위하여 폐수 처리 설비가 필요하게 된다.The above reaction is a wet reaction, which is a general wet process in which a gas-liquid-solid is present in the form of dissolving SO 2 gas in water and then inducing a reaction on a slurry. It is an advantage in terms of mixing and contact time, but it is necessary to dehydrate and dispose of sludge produced after the reaction, and also to treat wastewater. Will be needed.
건식 배열 탈황 공정은 습식 공정에 비해 장치 규모가 비교적 작고 폐수 처리 비용이 절감되고 투자 비용이 적게 드는 대신에 SO2제거율이 낮고 고가의 흡수제 사용에 따른 장치 운전비가 많이 든다. 근본적으로 건식 배연 탈황은 기체-고체간의 반응으로 SO2제거 효율에 한계가 있으므로 저유황 석탄 등의 연소 가스 처리에 응용한다.Dry-array desulfurization processes are relatively smaller in size compared to wet processes, reduce waste water treatment costs and lower investment costs, while lowering SO 2 removal rates and operating costs associated with the use of expensive absorbents. Essentially, dry flue gas desulfurization is a gas-solid reaction, which limits the SO 2 removal efficiency, so it is applied to the treatment of combustion gases such as low sulfur coal.
건식법에서 사용되는 일반적인 황산화물 흡수제로는 다음 반응식과 같이 반응하는 것을 이용하는 CuO, ZnO 등의 금속산화물이 있다.Common sulfur oxide absorbents used in the dry method include metal oxides such as CuO and ZnO, which are reacted according to the following reaction formulae.
CuO + SO2+ 1/2O2→ CuSO4 CuO + SO 2 + 1 / 2O 2 → CuSO 4
ZnO + SO2+ 1/2O2→ ZnSO4 ZnO + SO 2 + 1 / 2O 2 → ZnSO 4
그 밖에도 흡착성능이 우수한 활성탄을 직접 흡수제로 사용하기도 한다.In addition, activated carbon, which has good adsorption performance, may be directly used as an absorbent.
현재의 SO2제거 방법으로는 건식법과 습식법이 있는데 건식법의 단점은 CuO, ZnO 활성탄 등 고가의 흡수제를 사용하면서도 SO2제거율이 낮으며, 습식법의 단점은 장치비용의 과대, NaOH, Ca(OH2), Mg(OH)2등에 의한 장치의 부식, 폐수 및 슬러지를 처리해야 하는 어려움이 발생되는데 있다. 본 발명은 이러한 건식법과 습식법의 단점을 개량한 것으로써 SO2가스를 포집하여 흡착제가 충진된 흡착탑으로 보내어 흡착하는 방식으로 장치 비용이 저렴하고 사용되는 흡착제가 저가이며, 폐수가 발생되지 않으며, 흡착이 끝난 SO2흡착제는 비재생 방식으로 매립해야 하는데 매립시 흡착제의 주성부인 석회(생석회, 소석회) 또는 소성 돌로마이트는 토지의 안정화 및 매립지에서 발생되는 중금속을 안정화시켜 줄수 있어 침출수에 의한 환경 오염을 방지하는 역할을 할 수 있다.Current methods of SO 2 removal include dry method and wet method. The disadvantages of dry method are low SO 2 removal rate while using expensive absorbents such as CuO and ZnO activated carbon, and the disadvantage of wet method is excessive equipment cost, NaOH, Ca (OH 2 ), Mg (OH) 2 and the like, there is a difficulty in treating the corrosion, wastewater and sludge of the device. The present invention is to improve the shortcomings of the dry and wet method, the SO 2 gas is collected and sent to the adsorption tower filled with the adsorbent adsorption is inexpensive, the adsorbent used is low cost, no waste water generated, adsorption This SO 2 adsorbent must be landfilled in a non-regenerated manner. Lime (quick lime, hydrated lime) or calcined dolomite, which is the main part of the adsorbent, can stabilize the land and stabilize heavy metals from landfills, preventing environmental pollution from leachate. Can play a role.
본 발명은 저온 영역(120℃ 이하)에서 효과적으로 황산화물을 제거할 수 있는 건식 탈황공정용 흡착제의 제조방법에 관한 것이다. 본 발명의 흡착제를 이용한 탈황 공정은 황산화물 함유 가스를 흡착제가 충진된 흡착탑으로 유입시켜 황산화물을 흡착 제거하는 방법으로 종래의 처리공정에 비해 처리 방법이 간단하고 설비 비용이 저렴하면서 효과적으로 황산화물을 제거할 수 있는 특징을 갖는다.The present invention relates to a method for producing an adsorbent for a dry desulfurization process that can effectively remove sulfur oxides in a low temperature region (120 ℃ or less). The desulfurization process using the adsorbent of the present invention is a method of adsorbing and removing sulfur oxides by introducing a sulfur oxide-containing gas into an adsorption tower filled with an adsorbent. It has a feature that can be removed.
본 발명의 황산화물 흡착제 제조 방법을 상세히 설명하면 다음과 같다.Hereinafter, the sulfur oxide adsorbent manufacturing method of the present invention will be described in detail.
소석회Ca(OH2),생석회(CaO) 또는 소성 돌로마이트(CaOㆍMgO) 중에서 선택된 일종이상 15∼80중량부, 활성탄 5∼30중량부, 백토 5∼20중량부를 혼합하고 여기에 촉매로서 KMnO4, NaOH, KOH 중에서 하나 이상을 선택하여 0.1∼15중량부 첨가시켜서 된 혼합물을 50∼200중량부의 물중에서 투입하여 분산시킨다. 이렇게 하여 얻어진 슬러리를 90∼150℃의 온도에서 건조하여 혼합물의 함수율을 10∼30%로 조정한 후 압출 성형하에 펠렛트(Pellet) 형태의 황산화물 흡착제를 제조한다.15 to 80 parts by weight of at least one selected from calcined lime Ca (OH 2 ), quicklime (CaO) or calcined dolomite (CaO.MgO), 5 to 30 parts by weight of activated carbon, 5 to 20 parts by weight of clay, and KMnO 4 as a catalyst. , At least one selected from NaOH and KOH, and 0.1 to 15 parts by weight of the mixture is added and dispersed in 50 to 200 parts by weight of water. The slurry thus obtained is dried at a temperature of 90 to 150 ° C. to adjust the water content of the mixture to 10 to 30%, and then pelletized sulfur oxide adsorbent is prepared under extrusion.
이 황산화물 흡착제에 사용되는 석회와 소성 돌로마이트는 가격이 저렴하여 쉽게 구입할 수 있을 뿐만 아니라 성형성이 양호하여 처리 방법에 따라 기공 및 비표면적을 향상시킬 수 있어서 보다 용이하게 황산화물을 흡착할 수 있다.Lime and calcined dolomite used in the sulfur oxide adsorbent are low in price and can be easily purchased. In addition, the moldability is good and the porosity and specific surface area can be improved depending on the treatment method, so that sulfur oxide can be more easily adsorbed. .
본 발명의 흡착제를 사용후 매립할 경우, 소석회는 특정상 중금속과 반응하여 수산화물을 형성하므로 중금속이 수용액 중에서 침출되지 않아 침출수 내의 중금속을 효과적으로 제거할 수 있다. 생석회는 수분과 반응하여 함수율을 낮추며 매립지 내부에 존재하는 병원균을 사멸시키는 역활을 하기 때문에 쓰레기의 분해에 의한 매립지의 조기 안정화 및 매립지의 지반 강화에 도움을 준다.When the adsorbent of the present invention is used and landfilled, hydrated lime reacts with the heavy metal to form a hydroxide, so that the heavy metal is not leached in the aqueous solution, thereby effectively removing the heavy metal in the leachate. Quicklime reacts with moisture to lower the moisture content and kills pathogens present in the landfill, thus helping to stabilize the landfill and strengthen the ground.
활성탄은 입상 및 분말 활성탄으로 구분되는데 보통 비표면적이 700∼1600㎡/g 이며 유기 물질 및 중성 화합물의 탈취 성능이 우수하고 폐수 처리시 중금속 제거하는데 널리 이용된다. 본 발명에서는 가격이 비교적 저렴하고 흡착 속도가 빠른 분말 활성탄을 사용하였다.Activated carbon is divided into granular and powdered activated carbon. Its specific surface area is 700-1600 m2 / g, and it is excellent in deodorizing performance of organic materials and neutral compounds and is widely used to remove heavy metals in wastewater treatment. In the present invention, powdered activated carbon having a relatively low price and a high adsorption rate was used.
백토는 보통 탈색 및 탈취제로 사용되는데 분체를 성형할 때 첨가하면 낮은 압력에서도 성형 강도를 높일 수 있는 특성이 있어서 흡착제의 충진시 압력강하의 방지에 도움을 준다.White clay is commonly used as a decolorizing and deodorizing agent. When it is added in molding powder, it can improve the molding strength even at low pressure, which helps to prevent the pressure drop during the filling of the adsorbent.
촉매로 사용되는 KMnO4는 일반적으로 산화제로 이용되고 있으며 흡착시에 황산화물 SO2를 SO3형태로 산화시켜 흡착 가스의 반응성을 높이므로서 황산화물의 제거 효율을 상승시킬 수 있다.KMnO 4, which is used as a catalyst, is generally used as an oxidizing agent, and the sulfur oxide SO 2 is oxidized to SO 3 in adsorption to increase the reactivity of the adsorbent gas, thereby increasing the removal efficiency of the sulfur oxide.
한편, NaOH, KOH는 황산화물과 중화반응에 의해 흡착성능을 향상시킬 수 있다.On the other hand, NaOH, KOH can improve the adsorption performance by the neutralization reaction with sulfur oxides.
KOH, NaOH는 흡수성이 있고 화학적으로 유사한 성질을 갖는 화합물로써 SO2와 다음 반응식에 따라 반응하며KOH and NaOH are absorbent and chemically similar compounds and react with SO 2 according to the following reaction formula.
2NaOH + SO2→ Na2SO3+ H2O2NaOH + SO 2 → Na 2 SO 3 + H 2 O
2KOH + SO2→ K2SO3+ H2O2KOH + SO 2 → K 2 SO 3 + H 2 O
Na2SO3+ SO2+ H2O → 2NaHSO3 Na 2 SO 3 + SO 2 + H 2 O → 2 NaHSO 3
K2SO3+ SO2+ H2O → 2KHSO3 K 2 SO 3 + SO 2 + H 2 O → 2 KHSO 3
발생된 NaHSO3, KHSO3는 회수 또는 폐기한다.The generated NaHSO 3 and KHSO 3 are recovered or discarded.
위의 반응에서 처럼 NaOH와 KOH는 So2와 반응함으로써 최종 생성물은 중화반응의 결과 각각 NaHSO3, KHSO3가 생성된다. 그러므로 SO2를 흡착 제거하기 때문에 흡착능력이 향상된다.As in the above reaction, NaOH and KOH react with So 2 so that the final product is NaHSO 3 and KHSO 3 as a result of neutralization. Therefore, the adsorption capacity is improved because SO 2 is adsorbed and removed.
촉매로 사용되는 KMnO4는 일반적으로 산화제로 이용되고 있으며 흡착시에 황산화물 SO2를 SO3형태로 신속히 산화시켜 흡착 가스의 반응성을 높이고 반응속도가 빠르게 일어나도록 함으로써 황산화물의 제거 효율을 상승시킬 수 있다.KMnO 4, which is used as a catalyst, is generally used as an oxidizing agent. Upon adsorption, sulfur oxides SO 2 are rapidly oxidized in the form of SO 3 to increase the reactivity of adsorption gas and increase the reaction rate, thereby increasing the efficiency of removing sulfur oxides. Can be.
활성탄 및 백토는 현재 가장 널리 사용되는 흡착제로서 비표면적이 크므로 물리 흡착의 개념으로 사용하였다. 또한 백토는 원료 중의 소석회 등이 수분 흡수력이 뛰어나므로 수분을 흡수한 펠렛트 성형체의 강도가 약해져 충진탑의 충진 시 쉽게 부서지게 된다. 이러한 문제점을 보완하기 위해 성형후 강도를 향상시킬 목적으로 사용하였다.Activated carbon and clay are currently the most widely used adsorbents and have a large specific surface area, which is used as a concept of physical adsorption. In addition, since the lime and the like in the raw material has excellent water absorption ability, the strength of the pellet molded body which absorbed moisture is weakened, so that it is easily broken during filling of the filling tower. In order to compensate this problem, it was used for the purpose of improving the strength after molding.
[실시예 1]Example 1
소석회 60중량부, 생석회 15중량부, 활성탄 10중량부, 백토 10중량부를 균일하게 혼합한다. 여기에 KOH 4중량부와 KMnO41중량부를 첨가, 혼합하여서 된 혼합물을 얻는다.60 parts by weight of slaked lime, 15 parts by weight of quicklime, 10 parts by weight of activated carbon, and 10 parts by weight of clay are mixed uniformly. To this, 4 parts by weight of KOH and 1 part by weight of KMnO 4 are added and mixed to obtain a mixture.
이 혼합물을 100중량부의 물 중에 투입, 분산시켜 슬러리를 얻는다. 상기의 슬러리를 100℃의 온도에서 열풍건조시켜 합수율을 20%로 조정한후, 압출기로 압출하여 펠렛트(pellet)로 성형한 황산화물 흡착제를 제조하였다.This mixture is charged and dispersed in 100 parts by weight of water to obtain a slurry. The slurry was hot air dried at a temperature of 100 ° C. to adjust the yield to 20%, and then extruded with an extruder to prepare a sulfur oxide adsorbent molded into pellets.
상기의 흡착제 600g을 칼럼에 충진하여 입구 황산화물 농도를 10,000ppm(희석 가스 : N2), 공간 속도 200hr-1, 온도는 각각 실온, 70℃, 120℃의 조건에서 흡착제거 실험을 실시하고 그 결과를 다음 표 1, 실시예 1-1에 기재하였다. 황산화물 흡착능은 출구 가스에서 황산화물 1 ppm이 검출될 때까지의 흡착 지속 시간으로 나타내었다.600 g of the above-mentioned adsorbent was packed into a column, and the adsorption-removal experiment was carried out at the inlet sulfur oxide concentration of 10,000 ppm (diluent gas: N 2 ), the space velocity 200hr -1 , and the temperature at room temperature, 70 ° C, and 120 ° C, respectively. The results are shown in the following Table 1, Example 1-1. The sulfur oxide adsorption capacity was expressed as the adsorption duration until 1 ppm of sulfur oxide was detected in the outlet gas.
다음 표 1에서 실시예 1-2, 1-3, 1-4는 원료의 조성비율만 일부 변경한 것을 제외하고는 실시예 1의 방법으로는 제조된 황산화물 흡착제의 황산화물 흡착능을 나타낸 것이다.In Table 1, Examples 1-2, 1-3, and 1-4 show sulfur oxide adsorption capacity of the sulfur oxide adsorbent prepared by the method of Example 1, except that only a partial composition ratio of the raw material was changed.
표 1에는 본 실시예에서 제조한 황산화물 흡착제의 원료비와 황산화물 흡착제거 결과를 나타내었다.Table 1 shows the raw material cost and the sulfur oxide adsorption removal results of the sulfur oxide adsorbent prepared in this example.
본 발명의 흡착제는 특히 다음 표 1, 2 및 3에서 나타내고 있는 바와같이 실온∼120℃에서 우수한 흡착제거 성능을 나타냈다.In particular, the adsorbent of the present invention exhibited excellent adsorption and removal performance at room temperature to 120 ° C, as shown in the following Tables 1, 2 and 3.
표 2는 본 발명의 실시예 1의 방법으로 제조한 본 발명의 흡착제와 비교제로서 활성탄의 황산화물 흡착제거 능력을 비교한 것이다.Table 2 compares the sulfur oxide adsorption and removal capacity of activated carbon as a comparative agent and an adsorbent of the present invention prepared by the method of Example 1 of the present invention.
[실시예 2]Example 2
실시예 1에서 사용한 원료 중에서 표 3에 나타낸 바와같이 소석회를 소성 돌로마이트(CaOㆍMgO)로 대체하여 실시예 1과 같은 방법으로 제조한 황산화물 흡착제의 흡착 제거 결과를 표 3에 나타내었다. 표 3에서 실시예 2-1, 2-2, 2-3, 2-4는 원료의 조성비만을 표 3에 기재한 비율로 변경시켜서 제조된 황산화물 흡착제의 흡착능을 나타낸 것이다.As shown in Table 3 among the raw materials used in Example 1, the results of adsorption removal of the sulfur oxide adsorbent prepared in the same manner as in Example 1 by replacing calcined lime with calcined dolomite (CaO.MgO) are shown in Table 3. In Table 3, Examples 2-1, 2-2, 2-3, and 2-4 show the adsorption capacity of the sulfur oxide adsorbent prepared by changing only the composition ratio of the raw materials to the ratios shown in Table 3.
[실시예 3]Example 3
생석회 및 기타 여러 첨가물을 혼합하기 전에 소석회를 600℃에서 1시간 동안 소성하였다. 이 때 얻어진 생석회를 물과 반응시켜 재 수화한 소석회를 주원료로 하여 실시예 1과 동일한 방법으로 황산화물 흡착제를 제조하였다. 표 3에 본 실시예에서 제조한 흡착제의 원료비와 황산화물 흡착 제거 결과를 나타내었다. 표 3에 의하며 상기의 방법으로 처리한 소석회를 사용한 흡착제가 처리하지 않은 소석회를 사용한 흡착제보다 높은 황산화물 제거율을 나타내고 있는데 이것은 소성 및 재 수화 과정에서 소석회의 입도가 미세해지고 입도분포가 균일해져서 비표면적이발달함에 따라 황산화물과의 반응성이 향상되었기 때문으로 추정된다.The calcined lime was calcined at 600 ° C. for 1 hour before the quicklime and various other additives were mixed. The sulfur oxide adsorbent was prepared in the same manner as in Example 1 using the quicklime lime obtained by reacting with the water and the rehydrated limestone as a main raw material. Table 3 shows the raw material cost and sulfur oxide adsorption removal results of the adsorbent prepared in this example. According to Table 3, the adsorbents using slaked lime treated by the above method showed higher removal rate of sulfur oxides than the adsorbents using untreated slaked lime, which showed fine grain size and uniform particle size distribution during firing and rehydration. It is presumably due to the improved reactivity with sulfur oxides.
비교제로서는 야자 껍질로부터 제조된 그래뉼(granule) 형태의 활성탄을 사용하였다. 시료량은 실시예 1-1에서와 같이 600g이며 온도는 70℃에서 실시하였다.As a comparative agent, granule-type activated carbon prepared from palm husk was used. The sample amount was 600 g as in Example 1-1 and the temperature was performed at 70 ° C.
본 발명은 소석회, 생석회 및 소성 돌로마이트 등 칼슘화합물을 주성분으로 하는 건식 탈황공정용 황산화물 흡착제의 제조방법에 관한 것이다.The present invention relates to a method for producing a sulfur oxide adsorbent for a dry desulfurization process mainly containing calcium compounds such as slaked lime, quicklime and calcined dolomite.
상기의 칼슘화합물들만으로 제조된 흡착제는 SO2와 반응후 형성되는CaSO4ㆍ2H2O의 입자가 서로 밀착되면서 SO2가 흡착제 내부까지 유입되는 경로를 차단시켜 주기 때문에 SO2흡착 효율이 떨어지게 되는 문제가 따른다.Problems because it shuts off the path as the adsorbent prepared only of the calcium compound in the particles of the CaSO 4 and 2H 2 O which is formed after the SO 2 and the reaction brought into close contact with each other SO 2 is introduced to the inside adsorbent is SO 2 absorption efficiency drops Follows.
본 발명에서는 SO2가 흡착제 내부까지 유입될 수 있는 경로를 제공하기 위하여 활성탄을 사용한 것이다. 활성탄의 첨가비율을 높여줄수록 흡착성능은 개선되지만 성형성이 떨어지게 되며 흡착제 전체 중량에 대하여 30중량부를 초과하게 되는 경우 성형성이 떨어지고 성형후 강도도 떨어지기 때문에 적합하지 않다.In the present invention, activated carbon is used to provide a path through which SO 2 can be introduced into the adsorbent. As the addition ratio of activated carbon is increased, the adsorption performance is improved, but the moldability is deteriorated. If it exceeds 30 parts by weight based on the total weight of the adsorbent, the moldability is poor and the strength after molding is not suitable.
NaOH나 KOH의 첨가량도 흡착제 전체 중량에 대하여 15중량부 이하에서는 흡착능력이 비례적으로 향상되었으나 그 이상에서는 흡착능력 향상에 영향을 주지 않았다.The amount of NaOH or KOH added was also proportionally improved at 15 parts by weight or less relative to the total weight of the adsorbent.
KMnO4는 SO2를 SO3형태로 산화시켜 흡착 가스의 반응성을 높이는 촉매로서 경제성의 측면에서 그 조성범위를 제한하였다.KMnO 4 is a catalyst that oxidizes SO 2 to SO 3 to increase the reactivity of the adsorbed gas, thereby limiting its composition range in terms of economy.
백토는 성형성이 우수하여 흡착제 전체 중량에 대하여 5∼20중량부 첨가하면 흡착제의 성형 강도를 향상시키지만 첨가량이 증가함에 따라 흡착능력이 감소된다는 특성이 있다.The clay is excellent in formability, and when 5 to 20 parts by weight of the total weight of the adsorbent is added, the molding strength of the adsorbent is improved, but the adsorbing ability decreases as the amount added increases.
본 발명의 흡착제를 이용한 탈황 공정은 종래의 습식처리 공정에 비해 장치가 간단하면서도 슬러지나 폐수가 발생되지 않으며 건식처리 공정에 비하여 저가의 원료를 이용하여 흡착제를 제조할 수 있으며 SO2제거 효율이 높다는 이점을 갖는다. 또한 사용 후 매립처리할 경우 중금속 등과 반응, 수산화물을 형성하므로 침출수내의 중금속을 효과적으로 제거시킬 수 있으며, 수분과 반응하여 함수율을 낮추어 주므로서 매립지의 조기안정화와 매립지의 지반 강화에도 도움을 줄 수 있는 이점이 있다.The desulfurization process using the adsorbent of the present invention is simpler than the conventional wet treatment process, but does not generate sludge or waste water, and it is possible to manufacture the adsorbent using low cost raw materials and have high SO 2 removal efficiency than the dry treatment process. Has an advantage. In addition, when the landfill treatment is used, it reacts with heavy metals and forms hydroxides, which effectively removes heavy metals in leachate and lowers water content by reacting with moisture, thereby helping to stabilize the landfill and strengthen the ground of the landfill. There is this.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980036632A KR100333184B1 (en) | 1998-09-05 | 1998-09-05 | Preparing method of an absorbent for sulfur oxide in low temperature. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019980036632A KR100333184B1 (en) | 1998-09-05 | 1998-09-05 | Preparing method of an absorbent for sulfur oxide in low temperature. |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000018843A KR20000018843A (en) | 2000-04-06 |
KR100333184B1 true KR100333184B1 (en) | 2002-11-23 |
Family
ID=19549703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019980036632A KR100333184B1 (en) | 1998-09-05 | 1998-09-05 | Preparing method of an absorbent for sulfur oxide in low temperature. |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100333184B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101400327B1 (en) | 2012-03-29 | 2014-05-27 | 현대제철 주식회사 | Apparatus for recycleing activated carbon |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010107094A (en) * | 2000-05-25 | 2001-12-07 | 유선택 | Pellet type catalysts for air pollutants control |
KR100835531B1 (en) * | 2007-07-13 | 2008-06-09 | 허재수 | Manufacturing method of mild road mite slurry for acid waste water neutralizer and harmful gas adsorbent |
WO2016010223A2 (en) * | 2014-07-17 | 2016-01-21 | 한국세라믹기술원 | Desulfurizing agent for flue-gas desulfurization equipment |
KR101663218B1 (en) | 2015-03-17 | 2016-10-06 | 홍승재 | A cargo box equipped with the guard rail of the cargo truck |
-
1998
- 1998-09-05 KR KR1019980036632A patent/KR100333184B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101400327B1 (en) | 2012-03-29 | 2014-05-27 | 현대제철 주식회사 | Apparatus for recycleing activated carbon |
Also Published As
Publication number | Publication date |
---|---|
KR20000018843A (en) | 2000-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0487913B1 (en) | Highly reactive reagents and compositions for the purification of waste gas and waste water, their preparation and their use | |
US4859438A (en) | Method for separation of impurities from flowing gas | |
JP2602085B2 (en) | Reactive calcium hydroxide based purifying agent for purifying gas and waste gas and method for purifying gas and waste gas | |
US5635150A (en) | Sorption of acidic gases by solid residue from sugar refining | |
US20070092418A1 (en) | Sorbents for Removal of Mercury from Flue Gas | |
US4786484A (en) | Process for absorbing toxic gas | |
US9409046B2 (en) | Method for stabilization and/or fixation of leachable metals | |
US20100145130A1 (en) | Treatment Method for Stabilizing Selenium in Coal Combustion Ash | |
KR101099073B1 (en) | Composition for removing sox in exhausted gas | |
KR100333184B1 (en) | Preparing method of an absorbent for sulfur oxide in low temperature. | |
KR100888336B1 (en) | Desulfurization absorber for removing sulfur dioxide and its manufacturing method | |
JP3684410B2 (en) | Sewage sludge treatment method and treated sewage sludge | |
KR100342696B1 (en) | Ca-based absorbent for acid gas treatment and method for preparing the same | |
JP4029443B2 (en) | Incinerator flue blowing agent and exhaust gas treatment method | |
KR101139017B1 (en) | Absorbent for treatment of hazardous gas and preparing method thereof and treating method of hazardous gas using thereof | |
JP2000051645A (en) | Method for treating exhaust gas and fly ash | |
KR101787418B1 (en) | A Composite of low grade lime with CO2 emission reducing and removal of sulfur oxides in exhausted gas and improvement of high basicity efficiency in smelting process and manufacturing method thereof | |
KR101833775B1 (en) | Method for preparing porous sorbent for sewagne sludge incineration gas | |
JP2000051658A (en) | Incinerator flue blown agent and exhaust gas treatment method | |
Zhang et al. | Preparation and characterization of a new desulfurizer and its performance on removal of SO2 | |
KR101661468B1 (en) | Absorbent of acid substances and heavy metal, and the preparation thereof | |
KR100587667B1 (en) | Hazardous Gas Purifier | |
JPH11197445A (en) | Exhaust gas treatment agent and its preparation | |
JPH0615033B2 (en) | Exhaust gas purification agent | |
JPS5644023A (en) | Exhaust gas purifying method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19980905 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19980905 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20000729 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20010326 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20011127 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20020308 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20020408 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20020409 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20050314 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20060307 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20070312 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20080317 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20090223 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20100402 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20110408 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20120229 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20130404 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20130404 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20140407 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20140407 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20160406 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20160406 Start annual number: 15 End annual number: 15 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20180119 |