NO124752B - - Google Patents
Download PDFInfo
- Publication number
- NO124752B NO124752B NO5057/69A NO505769A NO124752B NO 124752 B NO124752 B NO 124752B NO 5057/69 A NO5057/69 A NO 5057/69A NO 505769 A NO505769 A NO 505769A NO 124752 B NO124752 B NO 124752B
- Authority
- NO
- Norway
- Prior art keywords
- titanium
- electrode
- tib
- electrodes
- arc
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- QDMRQDKMCNPQQH-UHFFFAOYSA-N boranylidynetitanium Chemical compound [B].[Ti] QDMRQDKMCNPQQH-UHFFFAOYSA-N 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 claims description 5
- 229910033181 TiB2 Inorganic materials 0.000 claims description 5
- 238000009628 steelmaking Methods 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 11
- 239000010936 titanium Substances 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 238000005087 graphitization Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010891 electric arc Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002006 petroleum coke Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B7/00—Heating by electric discharge
- H05B7/02—Details
- H05B7/06—Electrodes
- H05B7/08—Electrodes non-consumable
- H05B7/085—Electrodes non-consumable mainly consisting of carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Discharge Heating (AREA)
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
- Furnace Details (AREA)
Description
Høyeffektelektrode av elektrografitt for lysbueovner for stålfremstilling. High power electrographite electrode for arc furnaces for steelmaking.
Høyeffektdriften av elektriske lysbuer ved hvilke brukes transformatorytelser på ca. 400 - 500 kVA/t, krever grafittelektroder med stor effektoverføringsevne. Den elektriske ledningsevne av grafittmaterialet samt dets varmesjokk- og oksydasjonsfasthet må tilpasses de økende strømtettheter og tempera-turbelastninger. Man oppnår dette ved å bruke en mer og mer høy-verdig petroleumkoks med meget god grafitteringsoppførsel, høyere grafitteringstemperaturer og en tilleggs-bekimpregnering, som gjør det nødvendig å bruke i tillegg til dennormale fremstillingspro-sess én ytterligere ovnsprosess for å oppnå en etterfølgende for-koksning. Alle disse trinn er kostbare og de gjør fremstillingen av elektroder dyrere. Ved siden derav forårsaker nettopp den for senkning av den spesifikke elektriske motstand av grafittmaterialet nødvendige elektrodeimpregnering, ofte en øket riss-henholdsvis brudd-dannelse i grafittelektroden. The high-power operation of electric arcs in which transformer outputs of approx. 400 - 500 kVA/h, requires graphite electrodes with high power transfer capability. The electrical conductivity of the graphite material as well as its thermal shock and oxidation resistance must be adapted to the increasing current densities and temperature loads. This is achieved by using a more and more high-quality petroleum coke with very good graphitization behavior, higher graphitization temperatures and an additional cement impregnation, which makes it necessary to use, in addition to the normal manufacturing process, an additional furnace process to achieve a subsequent coking. All these steps are expensive and they make the manufacture of electrodes more expensive. In addition to this, the electrode impregnation necessary to lower the specific electrical resistance of the graphite material often causes an increased crack or fracture formation in the graphite electrode.
Av stor betydning for en økonomisk gunstig drift av høyeffekt-lysbueovner er dessuten at man kan ta strømmen meget jevnt ut fra strømnettet uten særlige nett-tilbakevirkninger. Ved denne driftsmåte med forholdsvis korte lysbuer var man i stand til å minske, men ikke helt eliminere disse forstyrrende "blafringsfenomener". Dessuten opptrer, når man driver lysbuen med mindre spenning og høyere strømstyrke, en større spiss-forbrenning av elektroden enn i det motsatte tilfelle. Man forsøkte derfor å forbedre brennstabiliteten av lysbuen ved hjelp av hulelektroder med eller uten tilførsel av lysbue-stabiliserende gasser, og dette har også lykkes. En ulempe av denne metode er imidlertid at det trenges en hul, eventuelt meget tett elektrode, som i alle tilfelle er dyrere enn de hittil vanlige massive elektroder.. Ved driften med gasser opptrer ytterligere omkostninger som ikke kan kompenseres av de metallurgiske fordeler av fremgangsmåten. It is also of great importance for the economically favorable operation of high-power electric arc furnaces that the power can be taken very evenly from the mains without any particular network feedback. With this mode of operation with relatively short arcs, it was possible to reduce, but not completely eliminate, these disturbing "flapping phenomena". Moreover, when operating the arc with less voltage and higher amperage, a greater tip burning of the electrode occurs than in the opposite case. An attempt was therefore made to improve the burning stability of the arc by means of hollow electrodes with or without the supply of arc-stabilizing gases, and this has also been successful. A disadvantage of this method, however, is that a hollow, possibly very dense electrode is needed, which is in any case more expensive than the hitherto common solid electrodes. When operating with gases, additional costs arise that cannot be compensated by the metallurgical advantages of the method.
Ifølge tysk utlegningsskrift nr. 1.209.478 er det kjent en kullelektrode for elektrotermiske prosesser. Kullelektrodene ifølge dette utlegningsskrift skal eksempelvis an-vendes for karbidfremstilling, mens elektrografittelektrodene ifølge oppfinnelsen skal benyttes for stålfremstilling i høy-ytelses lysbueovner. According to German specification no. 1,209,478, a carbon electrode for electrothermal processes is known. The carbon electrodes according to this specification are to be used, for example, for carbide production, while the electrographite electrodes according to the invention are to be used for steel production in high-performance electric arc furnaces.
Foreliggende oppfinnelse viser hvordan The present invention shows how
man på en side kan øke den elektriske belastningsevne av elektroden, senke oksydasjonstilbøyeligheten, bibeholde motstanden mot rissdannelse og stabilisere lysbuen, så at man vidtgående eliminerer blafringsfenomener. on the one hand, the electrical load capacity of the electrode can be increased, the oxidation tendency reduced, resistance to cracking maintained and the arc stabilized, so that flapping phenomena are largely eliminated.
Oppfinnelsen vedrører altså en høyeffekt-elektrode av elektrografitt for lysbueovner for stålfremstilling idet elektroden er karakterisert ved at den for å øke den elektriske belastningsevne, oksydasjonsfasthet og lysbuestabiliteten inneholder titan-bor-kombinasjoner, såsom TiB, Til^ i mengder opp til 20%, fortrinnsvis mellom 1 og 8% med eller uten karbid-forurensninger. Titanborider kan også tilsettes direkte til rå-stoffblandingen som konvensjonelt består av petroleumkoks med forskjellige kornstørrelser samt av tjære og bek, og uforandret under fremstillingsprosessen bringes først til virksomhet under The invention thus relates to a high-power electrode of electrographite for arc furnaces for steelmaking, the electrode being characterized in that, in order to increase the electrical load capacity, oxidation resistance and arc stability, it contains titanium-boron combinations, such as TiB, Til^ in quantities of up to 20%, preferably between 1 and 8% with or without carbide impurities. Titanium borides can also be added directly to the raw material mixture, which conventionally consists of petroleum coke with different grain sizes as well as tar and pitch, and unchanged during the manufacturing process is first brought into operation under
bruken i lysbueovnen. the use in the electric arc furnace.
Man kjenner to borider av titan, nemlig titanmonoboridet TiB og titandiboridet TiB2. Dessuten kan titan oppta betydelige mengder bor i fast oppløsning, så at også denne type gir fordeler ifølge oppfinnelsen. En viss andel av titan-karbid som kan danne seg under grafitteringsprosessen ved grense-flate-reaksjoner av de tilsatte partikler med karbon henholdsvis med grafitt, virker ikke forstyrrende. Totalinnholdet av titan/ bor-forbindelser kan utgjøre opp til 20%, ligger imidlertid fortrinnsvis mellom 1 og 8?. Two borides of titanium are known, namely the titanium monoboride TiB and the titanium diboride TiB2. In addition, titanium can absorb significant amounts of boron in solid solution, so that this type also provides advantages according to the invention. A certain proportion of titanium carbide, which can form during the graphitization process by interface reactions of the added particles with carbon or with graphite, does not have a disturbing effect. The total content of titanium/boron compounds can be up to 20%, but is preferably between 1 and 8%.
Innføringen av borider i grafittelektroden kan skje på forskjellige måter: 1. Ved tilblanding av titanboridene til utgangsstoffene under fremstillingsprosessen. 2. Ved impregnering med titanboridene i den brente elektrode før grafitteringen. Titan-borforbindeleer danner seg da fra 1300°C av under grafitteringsprosessen. 3. Ved tilblanding av titanborider i ut-gangsblandingen. Denne innføringsmetode kan også skje ved elektroder som ennå skal grafitteres. Særlig fordelaktig er denne metode imidlertid ved karbonelektroder som ikke skal grafitteres, f.eks. av den art som brukes ved fugesveiseprosesser. Også her opptrer de samme problemer som ved storelektroder i lysbueovner. De ekstremt høye strømstyrker som brukes ved disse gass-kutte-prosesser krever økende elektriske ledningsevner og en høyere oksydasjonsfasthet. Ved å stabilisere den elektriske lysbue oppnår man en gunstigere arbeidsmåte. The introduction of borides into the graphite electrode can take place in different ways: 1. By mixing the titanium borides with the starting materials during the manufacturing process. 2. By impregnation with the titanium borides in the burned electrode before the graphitization. Titanium-boron compounds then form from 1300°C onwards during the graphitization process. 3. By adding titanium borides to the starting mixture. This introduction method can also be used for electrodes that have yet to be graphitized. However, this method is particularly advantageous for carbon electrodes that are not to be graphitized, e.g. of the kind used in joint welding processes. Here, too, the same problems occur as with large electrodes in electric arc furnaces. The extremely high currents used in these gas-cutting processes require increasing electrical conductivity and a higher oxidation resistance. By stabilizing the electric arc, a more favorable way of working is achieved.
Ved tilblanding i ferdig form kan benyttes titan-bor-legeringer, titanmonoborid og titandiborid. When mixing in finished form, titanium-boron alloys, titanium monoboride and titanium diboride can be used.
Ved tilblanding av reaksjonskomponenter består den mulighet å variere tilblandingen etter forskjellige ventede reaksjonsveier. Man kan f.eks. tilsette til elektrode-råblandingen Ti02 og E^O^ og erholder da ved grafitteringsprosessen: When mixing reaction components, it is possible to vary the mixture according to different expected reaction pathways. One can e.g. add to the electrode raw mixture Ti02 and E^O^ and then obtain in the graphitization process:
Ti02 + BgO + 5 C TiB2 + 5 CO Ti02 + BgO + 5 C TiB2 + 5 CO
eller tilsette B^C, titan og B20^ og erholder ved grafitteringsprosessen: 7 Ti + 3 BjjC + B203 ---- 7 TiB + 3 CO Disse veier kan tjene som eksempel. or add B^C, titanium and B2O^ and obtain by the graphitization process: 7 Ti + 3 BjjC + B2O3 ---- 7 TiB + 3 CO These roads can serve as an example.
Innføringen av titan og bor-komponenten i en allerede brent elektrode kan også skje ved impregnering med titansilikonforbindelser og bororganiske forbindelser i organiske oppløsningsmidler med etterfølgende oppiøsningsmiddel-fortynning, eventuelt over fuktighetstilførsel, så at det skjer en spalting av disse organiske forbindelser. Spaltingen kan imidlertid også gjennomføres rent termisk. The introduction of the titanium and boron component into an already burned electrode can also take place by impregnation with titanium silicone compounds and organoboron compounds in organic solvents with subsequent solvent dilution, possibly via moisture supply, so that a cleavage of these organic compounds occurs. However, the cleavage can also be carried out purely thermally.
De ifølge oppfinnelsen erholdte elektroder utmerker seg ved en vesentlig høyere elektrisk belastningsevne, høyere oksydasjonsfasthet og høy lysbuestabilitet sammenlignet med normale karbon- eller grafitt-elektroder. The electrodes obtained according to the invention are distinguished by a significantly higher electrical load capacity, higher oxidation resistance and high arc stability compared to normal carbon or graphite electrodes.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691904408 DE1904408A1 (en) | 1969-01-30 | 1969-01-30 | High performance electrode with stabilized arc |
Publications (1)
Publication Number | Publication Date |
---|---|
NO124752B true NO124752B (en) | 1972-05-29 |
Family
ID=5723716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO5057/69A NO124752B (en) | 1969-01-30 | 1969-12-20 |
Country Status (13)
Country | Link |
---|---|
US (1) | US3676371A (en) |
AT (1) | AT298087B (en) |
BE (1) | BE745161A (en) |
CA (1) | CA922384A (en) |
CH (1) | CH544474A (en) |
DE (1) | DE1904408A1 (en) |
ES (1) | ES374541A1 (en) |
FI (1) | FI50577C (en) |
FR (1) | FR2029694A1 (en) |
GB (1) | GB1283562A (en) |
LU (1) | LU60219A1 (en) |
NO (1) | NO124752B (en) |
SE (1) | SE346197B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1113803B (en) * | 1977-12-05 | 1986-01-27 | Oronzio De Nora Impianti | NEW CATALYTIC MATERIALS FOR THE DECOMPOSITION OF AMALGAMS OF ALKALINE METALS |
US4376029A (en) * | 1980-09-11 | 1983-03-08 | Great Lakes Carbon Corporation | Titanium diboride-graphite composits |
US4465581A (en) * | 1981-07-27 | 1984-08-14 | Great Lakes Carbon Corporation | Composite of TiB2 -graphite |
EP0084059A4 (en) * | 1981-07-27 | 1984-05-17 | Great Lakes Carbon Corp | Composite of tib2-graphite. |
BR8207805A (en) * | 1981-07-27 | 1983-07-19 | Great Lakes Carbon Corp | SINTERIZED REFRACTORY HARD METALS |
US4439382A (en) * | 1981-07-27 | 1984-03-27 | Great Lakes Carbon Corporation | Titanium diboride-graphite composites |
US4377463A (en) | 1981-07-27 | 1983-03-22 | Great Lakes Carbon Corporation | Controlled atmosphere processing of TiB2 /carbon composites |
JPS59108294A (en) * | 1982-11-19 | 1984-06-22 | ユニオン,カ−バイド,コ−ポレ−シヨン | Carbon boride for electrode |
JP3744726B2 (en) * | 1999-06-08 | 2006-02-15 | 信越化学工業株式会社 | Silicon electrode plate |
WO2004046262A2 (en) * | 2002-11-15 | 2004-06-03 | University Of Utah | Integral titanium boride coatings on titanium surfaces and associated methods |
DE10343687A1 (en) * | 2003-09-20 | 2005-04-21 | Sachtleben Chemie Gmbh | Process for improving the durability of carbon or graphite electrodes by using products containing TiO 2 O 2 |
US7459105B2 (en) * | 2005-05-10 | 2008-12-02 | University Of Utah Research Foundation | Nanostructured titanium monoboride monolithic material and associated methods |
US20100176339A1 (en) * | 2009-01-12 | 2010-07-15 | Chandran K S Ravi | Jewelry having titanium boride compounds and methods of making the same |
RU2540953C2 (en) | 2009-07-28 | 2015-02-10 | Алкоа Инк. | Composition for obtaining wetted cathode at aluminium melting |
JP5554117B2 (en) * | 2010-03-30 | 2014-07-23 | 日本電極株式会社 | Cathode carbon block for aluminum refining and method for producing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1024257A (en) * | 1905-04-27 | 1912-04-23 | Gen Electric | Electrode. |
US3065088A (en) * | 1959-09-30 | 1962-11-20 | Union Carbide Corp | Oxidation-resistant graphite article and method |
US3174872A (en) * | 1963-01-08 | 1965-03-23 | Union Carbide Corp | Oxidation resistant carbon refractory articles |
-
1969
- 1969-01-30 DE DE19691904408 patent/DE1904408A1/en active Pending
- 1969-10-21 CH CH1571869A patent/CH544474A/en not_active IP Right Cessation
- 1969-11-19 SE SE15903/69A patent/SE346197B/xx unknown
- 1969-12-03 FI FI693499A patent/FI50577C/en active
- 1969-12-12 GB GB60666/69A patent/GB1283562A/en not_active Expired
- 1969-12-13 ES ES374541A patent/ES374541A1/en not_active Expired
- 1969-12-20 NO NO5057/69A patent/NO124752B/no unknown
-
1970
- 1970-01-20 AT AT49470A patent/AT298087B/en active
- 1970-01-22 LU LU60219D patent/LU60219A1/xx unknown
- 1970-01-29 BE BE745161D patent/BE745161A/en unknown
- 1970-01-29 FR FR7003069A patent/FR2029694A1/fr not_active Withdrawn
- 1970-01-30 US US7235A patent/US3676371A/en not_active Expired - Lifetime
- 1970-01-30 CA CA073509A patent/CA922384A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE1904408A1 (en) | 1970-08-06 |
GB1283562A (en) | 1972-07-26 |
ES374541A1 (en) | 1972-01-01 |
FI50577B (en) | 1975-12-31 |
AT298087B (en) | 1972-04-25 |
LU60219A1 (en) | 1970-03-23 |
FR2029694A1 (en) | 1970-10-23 |
US3676371A (en) | 1972-07-11 |
DE1904408B2 (en) | 1975-02-13 |
SE346197B (en) | 1972-06-26 |
CH544474A (en) | 1973-11-15 |
CA922384A (en) | 1973-03-06 |
FI50577C (en) | 1976-04-12 |
BE745161A (en) | 1970-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO124752B (en) | ||
US10253264B2 (en) | Method of producing needle coke for low CTE graphite electrodes | |
US4376029A (en) | Titanium diboride-graphite composits | |
JP5735533B2 (en) | Electrode paste for electrode in graphite with hydrocarbon main component, without binder | |
KR20230163484A (en) | Improved pitch products, processes for manufacturing them, and uses | |
CN101092711A (en) | Method for baking scorched particles in aluminum electrolytic cell | |
US4465581A (en) | Composite of TiB2 -graphite | |
WO2012163597A1 (en) | Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising c and si | |
EP2554715B1 (en) | Cathode carbon block for aluminum smelting and process for production thereof | |
JP2024514538A (en) | Improved pitch products and processes for their preparation and use | |
JP7252208B2 (en) | Raw material oil for needle coke and needle coke | |
GB837330A (en) | A process for the protection of carbon electrodes for electric furnaces | |
Frohs et al. | Expansion of carbon artifacts during graphitization—An industrial issue— | |
CN104661337A (en) | Resistance material and use method thereof | |
US4726892A (en) | Carbon anodes | |
ES2445031T3 (en) | Procedure to improve the durability of carbon or graphite electrodes using tio2 / products containing TiO2 | |
US3303119A (en) | Metal shathed carbon electrode | |
CN113658740A (en) | Novel carbon composite material and preparation method of electrode paste | |
EP0084059A1 (en) | Composite of tib2-graphite | |
US3624231A (en) | Method for producing a useful carbon aggregate from a puffing petroleum coke | |
CS261881B2 (en) | Process for preparing binder for electrodes | |
AU2017242646B2 (en) | Electrode material | |
CN109179399A (en) | A kind of combination graphitization processing technique of negative electrode material and carburant | |
SU737387A1 (en) | Charge for producing refractory articles | |
RU2352524C1 (en) | Method of technological silicon receiving |