NO124752B - - Google Patents

Download PDF

Info

Publication number
NO124752B
NO124752B NO5057/69A NO505769A NO124752B NO 124752 B NO124752 B NO 124752B NO 5057/69 A NO5057/69 A NO 5057/69A NO 505769 A NO505769 A NO 505769A NO 124752 B NO124752 B NO 124752B
Authority
NO
Norway
Prior art keywords
titanium
electrode
tib
electrodes
arc
Prior art date
Application number
NO5057/69A
Other languages
Norwegian (no)
Inventor
B Reichelt
W Lippert
D Zoellner
K Koziol
Original Assignee
Conradty Fa C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conradty Fa C filed Critical Conradty Fa C
Publication of NO124752B publication Critical patent/NO124752B/no

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Discharge Heating (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Furnace Details (AREA)

Description

Høyeffektelektrode av elektrografitt for lysbueovner for stålfremstilling. High power electrographite electrode for arc furnaces for steelmaking.

Høyeffektdriften av elektriske lysbuer ved hvilke brukes transformatorytelser på ca. 400 - 500 kVA/t, krever grafittelektroder med stor effektoverføringsevne. Den elektriske ledningsevne av grafittmaterialet samt dets varmesjokk- og oksydasjonsfasthet må tilpasses de økende strømtettheter og tempera-turbelastninger. Man oppnår dette ved å bruke en mer og mer høy-verdig petroleumkoks med meget god grafitteringsoppførsel, høyere grafitteringstemperaturer og en tilleggs-bekimpregnering, som gjør det nødvendig å bruke i tillegg til dennormale fremstillingspro-sess én ytterligere ovnsprosess for å oppnå en etterfølgende for-koksning. Alle disse trinn er kostbare og de gjør fremstillingen av elektroder dyrere. Ved siden derav forårsaker nettopp den for senkning av den spesifikke elektriske motstand av grafittmaterialet nødvendige elektrodeimpregnering, ofte en øket riss-henholdsvis brudd-dannelse i grafittelektroden. The high-power operation of electric arcs in which transformer outputs of approx. 400 - 500 kVA/h, requires graphite electrodes with high power transfer capability. The electrical conductivity of the graphite material as well as its thermal shock and oxidation resistance must be adapted to the increasing current densities and temperature loads. This is achieved by using a more and more high-quality petroleum coke with very good graphitization behavior, higher graphitization temperatures and an additional cement impregnation, which makes it necessary to use, in addition to the normal manufacturing process, an additional furnace process to achieve a subsequent coking. All these steps are expensive and they make the manufacture of electrodes more expensive. In addition to this, the electrode impregnation necessary to lower the specific electrical resistance of the graphite material often causes an increased crack or fracture formation in the graphite electrode.

Av stor betydning for en økonomisk gunstig drift av høyeffekt-lysbueovner er dessuten at man kan ta strømmen meget jevnt ut fra strømnettet uten særlige nett-tilbakevirkninger. Ved denne driftsmåte med forholdsvis korte lysbuer var man i stand til å minske, men ikke helt eliminere disse forstyrrende "blafringsfenomener". Dessuten opptrer, når man driver lysbuen med mindre spenning og høyere strømstyrke, en større spiss-forbrenning av elektroden enn i det motsatte tilfelle. Man forsøkte derfor å forbedre brennstabiliteten av lysbuen ved hjelp av hulelektroder med eller uten tilførsel av lysbue-stabiliserende gasser, og dette har også lykkes. En ulempe av denne metode er imidlertid at det trenges en hul, eventuelt meget tett elektrode, som i alle tilfelle er dyrere enn de hittil vanlige massive elektroder.. Ved driften med gasser opptrer ytterligere omkostninger som ikke kan kompenseres av de metallurgiske fordeler av fremgangsmåten. It is also of great importance for the economically favorable operation of high-power electric arc furnaces that the power can be taken very evenly from the mains without any particular network feedback. With this mode of operation with relatively short arcs, it was possible to reduce, but not completely eliminate, these disturbing "flapping phenomena". Moreover, when operating the arc with less voltage and higher amperage, a greater tip burning of the electrode occurs than in the opposite case. An attempt was therefore made to improve the burning stability of the arc by means of hollow electrodes with or without the supply of arc-stabilizing gases, and this has also been successful. A disadvantage of this method, however, is that a hollow, possibly very dense electrode is needed, which is in any case more expensive than the hitherto common solid electrodes. When operating with gases, additional costs arise that cannot be compensated by the metallurgical advantages of the method.

Ifølge tysk utlegningsskrift nr. 1.209.478 er det kjent en kullelektrode for elektrotermiske prosesser. Kullelektrodene ifølge dette utlegningsskrift skal eksempelvis an-vendes for karbidfremstilling, mens elektrografittelektrodene ifølge oppfinnelsen skal benyttes for stålfremstilling i høy-ytelses lysbueovner. According to German specification no. 1,209,478, a carbon electrode for electrothermal processes is known. The carbon electrodes according to this specification are to be used, for example, for carbide production, while the electrographite electrodes according to the invention are to be used for steel production in high-performance electric arc furnaces.

Foreliggende oppfinnelse viser hvordan The present invention shows how

man på en side kan øke den elektriske belastningsevne av elektroden, senke oksydasjonstilbøyeligheten, bibeholde motstanden mot rissdannelse og stabilisere lysbuen, så at man vidtgående eliminerer blafringsfenomener. on the one hand, the electrical load capacity of the electrode can be increased, the oxidation tendency reduced, resistance to cracking maintained and the arc stabilized, so that flapping phenomena are largely eliminated.

Oppfinnelsen vedrører altså en høyeffekt-elektrode av elektrografitt for lysbueovner for stålfremstilling idet elektroden er karakterisert ved at den for å øke den elektriske belastningsevne, oksydasjonsfasthet og lysbuestabiliteten inneholder titan-bor-kombinasjoner, såsom TiB, Til^ i mengder opp til 20%, fortrinnsvis mellom 1 og 8% med eller uten karbid-forurensninger. Titanborider kan også tilsettes direkte til rå-stoffblandingen som konvensjonelt består av petroleumkoks med forskjellige kornstørrelser samt av tjære og bek, og uforandret under fremstillingsprosessen bringes først til virksomhet under The invention thus relates to a high-power electrode of electrographite for arc furnaces for steelmaking, the electrode being characterized in that, in order to increase the electrical load capacity, oxidation resistance and arc stability, it contains titanium-boron combinations, such as TiB, Til^ in quantities of up to 20%, preferably between 1 and 8% with or without carbide impurities. Titanium borides can also be added directly to the raw material mixture, which conventionally consists of petroleum coke with different grain sizes as well as tar and pitch, and unchanged during the manufacturing process is first brought into operation under

bruken i lysbueovnen. the use in the electric arc furnace.

Man kjenner to borider av titan, nemlig titanmonoboridet TiB og titandiboridet TiB2. Dessuten kan titan oppta betydelige mengder bor i fast oppløsning, så at også denne type gir fordeler ifølge oppfinnelsen. En viss andel av titan-karbid som kan danne seg under grafitteringsprosessen ved grense-flate-reaksjoner av de tilsatte partikler med karbon henholdsvis med grafitt, virker ikke forstyrrende. Totalinnholdet av titan/ bor-forbindelser kan utgjøre opp til 20%, ligger imidlertid fortrinnsvis mellom 1 og 8?. Two borides of titanium are known, namely the titanium monoboride TiB and the titanium diboride TiB2. In addition, titanium can absorb significant amounts of boron in solid solution, so that this type also provides advantages according to the invention. A certain proportion of titanium carbide, which can form during the graphitization process by interface reactions of the added particles with carbon or with graphite, does not have a disturbing effect. The total content of titanium/boron compounds can be up to 20%, but is preferably between 1 and 8%.

Innføringen av borider i grafittelektroden kan skje på forskjellige måter: 1. Ved tilblanding av titanboridene til utgangsstoffene under fremstillingsprosessen. 2. Ved impregnering med titanboridene i den brente elektrode før grafitteringen. Titan-borforbindeleer danner seg da fra 1300°C av under grafitteringsprosessen. 3. Ved tilblanding av titanborider i ut-gangsblandingen. Denne innføringsmetode kan også skje ved elektroder som ennå skal grafitteres. Særlig fordelaktig er denne metode imidlertid ved karbonelektroder som ikke skal grafitteres, f.eks. av den art som brukes ved fugesveiseprosesser. Også her opptrer de samme problemer som ved storelektroder i lysbueovner. De ekstremt høye strømstyrker som brukes ved disse gass-kutte-prosesser krever økende elektriske ledningsevner og en høyere oksydasjonsfasthet. Ved å stabilisere den elektriske lysbue oppnår man en gunstigere arbeidsmåte. The introduction of borides into the graphite electrode can take place in different ways: 1. By mixing the titanium borides with the starting materials during the manufacturing process. 2. By impregnation with the titanium borides in the burned electrode before the graphitization. Titanium-boron compounds then form from 1300°C onwards during the graphitization process. 3. By adding titanium borides to the starting mixture. This introduction method can also be used for electrodes that have yet to be graphitized. However, this method is particularly advantageous for carbon electrodes that are not to be graphitized, e.g. of the kind used in joint welding processes. Here, too, the same problems occur as with large electrodes in electric arc furnaces. The extremely high currents used in these gas-cutting processes require increasing electrical conductivity and a higher oxidation resistance. By stabilizing the electric arc, a more favorable way of working is achieved.

Ved tilblanding i ferdig form kan benyttes titan-bor-legeringer, titanmonoborid og titandiborid. When mixing in finished form, titanium-boron alloys, titanium monoboride and titanium diboride can be used.

Ved tilblanding av reaksjonskomponenter består den mulighet å variere tilblandingen etter forskjellige ventede reaksjonsveier. Man kan f.eks. tilsette til elektrode-råblandingen Ti02 og E^O^ og erholder da ved grafitteringsprosessen: When mixing reaction components, it is possible to vary the mixture according to different expected reaction pathways. One can e.g. add to the electrode raw mixture Ti02 and E^O^ and then obtain in the graphitization process:

Ti02 + BgO + 5 C TiB2 + 5 CO Ti02 + BgO + 5 C TiB2 + 5 CO

eller tilsette B^C, titan og B20^ og erholder ved grafitteringsprosessen: 7 Ti + 3 BjjC + B203 ---- 7 TiB + 3 CO Disse veier kan tjene som eksempel. or add B^C, titanium and B2O^ and obtain by the graphitization process: 7 Ti + 3 BjjC + B2O3 ---- 7 TiB + 3 CO These roads can serve as an example.

Innføringen av titan og bor-komponenten i en allerede brent elektrode kan også skje ved impregnering med titansilikonforbindelser og bororganiske forbindelser i organiske oppløsningsmidler med etterfølgende oppiøsningsmiddel-fortynning, eventuelt over fuktighetstilførsel, så at det skjer en spalting av disse organiske forbindelser. Spaltingen kan imidlertid også gjennomføres rent termisk. The introduction of the titanium and boron component into an already burned electrode can also take place by impregnation with titanium silicone compounds and organoboron compounds in organic solvents with subsequent solvent dilution, possibly via moisture supply, so that a cleavage of these organic compounds occurs. However, the cleavage can also be carried out purely thermally.

De ifølge oppfinnelsen erholdte elektroder utmerker seg ved en vesentlig høyere elektrisk belastningsevne, høyere oksydasjonsfasthet og høy lysbuestabilitet sammenlignet med normale karbon- eller grafitt-elektroder. The electrodes obtained according to the invention are distinguished by a significantly higher electrical load capacity, higher oxidation resistance and high arc stability compared to normal carbon or graphite electrodes.

Claims (2)

1. Høyeffektelektrode av elektrografitt for lysbueovner for stålfremstilling, karakterisert ved at den for å øke den elektriske belastningsevne, oksydasjons-fastheten og lysbuestabiliteten inneholder titan-bor-kombinasjoner, såsom TiB, TiB„ . , ... ~no/ „ ..1. High-power electrode of electrographite for arc furnaces for steelmaking, characterized in that it contains titanium-boron combinations, such as TiB, TiB„, in order to increase the electrical load capacity, oxidation resistance and arc stability. , ... ~no/ „ .. 01 såsom > 2 i mengder opp til 20%, fortrinnsvis mellom 1 og 8% med eller uten karbid-forurensninger.01 such as > 2 in amounts up to 20%, preferably between 1 and 8% with or without carbide impurities. 2. Høyeffektelektrode ifølge krav 1, karakterisert ved at den inneholder TiB og TiB2.2. High power electrode according to claim 1, characterized in that it contains TiB and TiB2.
NO5057/69A 1969-01-30 1969-12-20 NO124752B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19691904408 DE1904408A1 (en) 1969-01-30 1969-01-30 High performance electrode with stabilized arc

Publications (1)

Publication Number Publication Date
NO124752B true NO124752B (en) 1972-05-29

Family

ID=5723716

Family Applications (1)

Application Number Title Priority Date Filing Date
NO5057/69A NO124752B (en) 1969-01-30 1969-12-20

Country Status (13)

Country Link
US (1) US3676371A (en)
AT (1) AT298087B (en)
BE (1) BE745161A (en)
CA (1) CA922384A (en)
CH (1) CH544474A (en)
DE (1) DE1904408A1 (en)
ES (1) ES374541A1 (en)
FI (1) FI50577C (en)
FR (1) FR2029694A1 (en)
GB (1) GB1283562A (en)
LU (1) LU60219A1 (en)
NO (1) NO124752B (en)
SE (1) SE346197B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1113803B (en) * 1977-12-05 1986-01-27 Oronzio De Nora Impianti NEW CATALYTIC MATERIALS FOR THE DECOMPOSITION OF AMALGAMS OF ALKALINE METALS
US4376029A (en) * 1980-09-11 1983-03-08 Great Lakes Carbon Corporation Titanium diboride-graphite composits
US4465581A (en) * 1981-07-27 1984-08-14 Great Lakes Carbon Corporation Composite of TiB2 -graphite
EP0084059A4 (en) * 1981-07-27 1984-05-17 Great Lakes Carbon Corp Composite of tib2-graphite.
BR8207805A (en) * 1981-07-27 1983-07-19 Great Lakes Carbon Corp SINTERIZED REFRACTORY HARD METALS
US4439382A (en) * 1981-07-27 1984-03-27 Great Lakes Carbon Corporation Titanium diboride-graphite composites
US4377463A (en) 1981-07-27 1983-03-22 Great Lakes Carbon Corporation Controlled atmosphere processing of TiB2 /carbon composites
JPS59108294A (en) * 1982-11-19 1984-06-22 ユニオン,カ−バイド,コ−ポレ−シヨン Carbon boride for electrode
JP3744726B2 (en) * 1999-06-08 2006-02-15 信越化学工業株式会社 Silicon electrode plate
WO2004046262A2 (en) * 2002-11-15 2004-06-03 University Of Utah Integral titanium boride coatings on titanium surfaces and associated methods
DE10343687A1 (en) * 2003-09-20 2005-04-21 Sachtleben Chemie Gmbh Process for improving the durability of carbon or graphite electrodes by using products containing TiO 2 O 2
US7459105B2 (en) * 2005-05-10 2008-12-02 University Of Utah Research Foundation Nanostructured titanium monoboride monolithic material and associated methods
US20100176339A1 (en) * 2009-01-12 2010-07-15 Chandran K S Ravi Jewelry having titanium boride compounds and methods of making the same
RU2540953C2 (en) 2009-07-28 2015-02-10 Алкоа Инк. Composition for obtaining wetted cathode at aluminium melting
JP5554117B2 (en) * 2010-03-30 2014-07-23 日本電極株式会社 Cathode carbon block for aluminum refining and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1024257A (en) * 1905-04-27 1912-04-23 Gen Electric Electrode.
US3065088A (en) * 1959-09-30 1962-11-20 Union Carbide Corp Oxidation-resistant graphite article and method
US3174872A (en) * 1963-01-08 1965-03-23 Union Carbide Corp Oxidation resistant carbon refractory articles

Also Published As

Publication number Publication date
DE1904408A1 (en) 1970-08-06
GB1283562A (en) 1972-07-26
ES374541A1 (en) 1972-01-01
FI50577B (en) 1975-12-31
AT298087B (en) 1972-04-25
LU60219A1 (en) 1970-03-23
FR2029694A1 (en) 1970-10-23
US3676371A (en) 1972-07-11
DE1904408B2 (en) 1975-02-13
SE346197B (en) 1972-06-26
CH544474A (en) 1973-11-15
CA922384A (en) 1973-03-06
FI50577C (en) 1976-04-12
BE745161A (en) 1970-07-01

Similar Documents

Publication Publication Date Title
NO124752B (en)
US10253264B2 (en) Method of producing needle coke for low CTE graphite electrodes
US4376029A (en) Titanium diboride-graphite composits
JP5735533B2 (en) Electrode paste for electrode in graphite with hydrocarbon main component, without binder
KR20230163484A (en) Improved pitch products, processes for manufacturing them, and uses
CN101092711A (en) Method for baking scorched particles in aluminum electrolytic cell
US4465581A (en) Composite of TiB2 -graphite
WO2012163597A1 (en) Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising c and si
EP2554715B1 (en) Cathode carbon block for aluminum smelting and process for production thereof
JP2024514538A (en) Improved pitch products and processes for their preparation and use
JP7252208B2 (en) Raw material oil for needle coke and needle coke
GB837330A (en) A process for the protection of carbon electrodes for electric furnaces
Frohs et al. Expansion of carbon artifacts during graphitization—An industrial issue—
CN104661337A (en) Resistance material and use method thereof
US4726892A (en) Carbon anodes
ES2445031T3 (en) Procedure to improve the durability of carbon or graphite electrodes using tio2 / products containing TiO2
US3303119A (en) Metal shathed carbon electrode
CN113658740A (en) Novel carbon composite material and preparation method of electrode paste
EP0084059A1 (en) Composite of tib2-graphite
US3624231A (en) Method for producing a useful carbon aggregate from a puffing petroleum coke
CS261881B2 (en) Process for preparing binder for electrodes
AU2017242646B2 (en) Electrode material
CN109179399A (en) A kind of combination graphitization processing technique of negative electrode material and carburant
SU737387A1 (en) Charge for producing refractory articles
RU2352524C1 (en) Method of technological silicon receiving