SE123138C1 - - Google Patents
Info
- Publication number
- SE123138C1 SE123138C1 SE123138DA SE123138C1 SE 123138 C1 SE123138 C1 SE 123138C1 SE 123138D A SE123138D A SE 123138DA SE 123138 C1 SE123138 C1 SE 123138C1
- Authority
- SE
- Sweden
- Prior art keywords
- rock
- slate
- gases
- shale
- gas
- Prior art date
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
KLASS 5 a:41 BEVIDAT DEN 9 SEPTEMBER 1948 PATENTTID FRAN DEN. 30 JAN. 1945 PUBLICERAT DEN. 9 NOVEMBER 1948 Hdrtill en ritning. CLASS 5 a: 41 PROVIDED ON SEPTEMBER 9, 1948 PATENT PERIOD. 30 JAN. 1945 PUBLISHED IT. NOVEMBER 9, 1948 In addition to a drawing.
SVENSKA SKIFFEROLJEAKTIEBOLAGET, OREBRO. satt vid forgasning av oljeforande skifferberg in situ under tillforande av väriiie genom I skifferberget upptagna kanaler. tippfianare: F. Ljungstrom. SVENSKA SKIFFEROLJEAKTIEBOLAGET, OREBRO. sat during gasification of oil-bearing slate rock in situ during the supply of various channels taken up in the slate rock. tippfianare: F. Ljungstrom.
Uppfinningen Union sig till ett salt all framstalla skifferolja, baserat pa uppvarmning av skifferberget utan foregaende utbrytning av skiffer, -varvid de genoin uppvarmningen framkallade oljeforande gaserna avlagsnas ur henget genom i detsamma anbragta kanaler. Ur gaserna franskiljas clarpa sadana delar av desamma, vilka utgora skifferoljan, under aykylning genom kondensation. The invention refers to a salt all producing shale oil, based on heating of the shale rock without prior shale mining, in which case the oil-producing gases produced by the heating are deposited from the hanger through ducts arranged therein. From the gases clarpa separates such parts of the same, which constitute the shale oil, during cooling by condensation.
Vid uppvarmningen av ett skifferberg sker yid avgasningen av dari befintliga gasbildande substanser en borttransport av en viss materialmangd, som alltsä i gasform avgar ur berget pa liknande si.tt som t. ex. vid avgasning av stenkol eller ved, och i samtliga dessa fall kvarstar en men eller mindre ponds stomme av det ursprungliga materialet. Det kvarblivande materialet, darest det bestar ay koks eller trdkol, liar genom sin porosa struktur utomordentligt stora for gasen atkomliga ytor. Det liar nu visat sig, att aven skifferkoksen, d. v. s. i detta fall det avgasade skifferberget, har en poras struktur med mycket stora ytor, atkomliga for gaser. Samtidigt liar skidferkoksen i motsats till den vanliga koksen eller trakolet en mycket star askhalt, d. v. s. rest av icke brannbara bestandsdelar och speciellt for svenska forhallanden uppgar till omkring 70 % av den ursprungliga skiffervikten. Skifferkoksen innehaller bl. a. t. ex. olika jarnfareningar och en hel del andra bestandsdelar, som i kontakt med olika gaser dro agnade att i egenskap av katalysator paverka reaktioner i gaserna. \rid direkt avgasning av skifferberget uppstar under fortgaende framstallning ay skifferolja mycket stora volymer av uppviirmt och avgasat skifferberg bestaende huvudsakligen ay skifferkoks, som ligger kvar orubbat i sina olika lager, men som genom avgasningen blivit ombildat till en enda poras inassa framslapplig for gaser i alla riktningar. Darest salunda far varje in3 olja agar omkring 15 bergmassa, bildas t. ex. under ett ars lid vid framstallning av 20000 m skifferolja ett porost skifferberg om 300000 in'. Under sjalva fongasningsproceduren av skifferoljan anordnas mom skifferberget en langsamt framatskridande varmefront, dar saval organ for uppvarmningen (elektriska varmeelement) som avloppskanaler for gasernas avledning successivt sattas i verksamhet. When a slate rock is heated, the degassing of existing gas-forming substances takes place in the removal of a certain amount of material, which thus exits the rock in gaseous form in a similar way as e.g. in the case of degassing of coal or wood, and in all these cases a body of one or less pounds of the original material remains. The remaining material, in that it consists of coke or charcoal, due to its porous structure is extremely large for areas accessible to the gas. It has now been found that even the shale coke, i.e. in this case the degassed shale rock, has a pore structure with very large surfaces, accessible to gases. At the same time, the ski coke, in contrast to the ordinary coke or trachol, has a very strong ash content, i.e. residues of non-combustible constituents and especially for Swedish conditions amount to about 70% of the original slate weight. The slate coke contains i.a. a. e.g. various iron experiences and a lot of other constituents, which in contact with different gases were baited as catalysts to influence reactions in the gases. During the continuous production of shale rock, very large volumes of heated and degassed shale rock are formed during continuous degassing of shale rock, consisting mainly of shale coke, which remains undisturbed in its various layers, but which through the degassing has been transformed into a single pore inassable for gases in all directions. Darest salunda far each in3 oil agar about 15 rock mass, formed e.g. during a year suffering in the production of 20,000 m of shale oil a porous shale mountain of 300,000 in '. During the actual gassing procedure of the shale oil, a slowly advancing heat front is arranged in the slate rock, where both means for the heating (electric heating elements) and drainage channels for the gas diversion are gradually put into operation.
Uppfinningen avser att anvanda den pa sa satt utbildade stora porosa skifferkoksmassan sasom en katalysator far inledandet av vissa Onskade kemiska reaktioner mom densamma, alit med avsikt att framstalla olika substanser under medverkan av katalysatorn ifraga. Harvid utnyttjas de namnda gaskanalerna, sedan de slutat att tjanstgOra som avlopp for skifferoljegaserna, Liven far tillforsel av gaser till skifferberget. Samtidigt kunna andra dylika kanaler anvandas for avlopp av syntesprodukter framstallda Mom skifferberget under medverkan ay den av skifferkoksen bildade katalysatorn. En del kanaler bildar tillopp till skifferkoksen och andra hanaler avlopp fran densamma, varvid gaser, som under tryck nedforas i berget pa ett le, kunna avfonas ur detsamma pa ett annat stalle. Gaser komma harunder i kontakt med katalysatorns ytor och piiverkas av desamma pa sadant salt, som betingas av farhanden varande kemiska och fysikaliska forhallanden. The invention intends to use the large porous shale coke mass thus formed as a catalyst for initiating certain desired chemical reactions, with the intention of producing various substances with the participation of the catalyst in question. In this case, the said gas channels are used, after they have ceased to serve as a drain for the shale oil gases, Liven receives a supply of gases to the shale rock. At the same time, other such channels can be used for sewage of synthetic products produced Mom slate rock with the participation of the catalyst formed by the shale coke. Some channels form inlets to the shale coke and other channels drain from it, whereby gases which are lowered under pressure into the rock on a shelter can be removed from it in another place. Gases come into contact with the surfaces of the catalyst and are actuated by the same salt, which is conditioned by the present chemical and physical conditions.
Uppfinningen shall nedan narmare beskrivas under hanvisning till a bifogade ritning som exempel visade utforingsform for sattets genomfiirande, varvid Liven ytterligare uppfinningen kannetecknande egenskaper shola an-a bivas• Fig. 1 %Isar men eller mindre schematiskt ett skifferberg, inrattat for framstallning av skifferolja, sett i vertikalsektion. The invention will be described in more detail below with reference to the accompanying drawing as an example of the embodiment of the set, in which the further invention may be characterized by the invention. Fig. 1% Is but or less schematically a shale mountain, designed for the production of shale oil, seen in vertical section.
Fig. 2 visar ett diagram angivande temperaturfordelningen Mom skifferberget. Fig. 2 shows a diagram indicating the temperature distribution Mom slate rock.
A ritningen betecknar 10 ett natal viirmeelement, som aro anbragta pa jamna mellanrum i skifferberget 12, pa vilket är overlagrat ett lager av kalksten 14 saint eventuellt ett jordlager 16. Ett antal avgaskanaler 18 sta I forbindelse med genom kalk och skiffer ned- 2— — borrade gasavlopp 20. Varmeelementen 10 och avgaskanalerna 18 aro samtidigt anordnade i rader efter varandra i vinkel med ritningsplanet. Gasavloppen 20 tillhorande en dylik rad iiro over forbindelseror 21 och avstangnings- resp. regleringsventiler 22, 23 anslutna till en sarnlingskanal 24. En storre samlingskanal 25 for ett flertal samlingskanaler 24 forenar dessa i sin tur med en kondensor 26 och ett tvattorn 27, van skifferoljegaserna pa kant salt nedkylas och i mOjligaste man befrias fran kondenserbara oljebestandsdelar. Kondensorn 26, vilken aven kan utgoras av resp. omfatta apparatur for annan kemisk behandling av skifferoljegaser t. ex. avskiljfling av svavel eller andra biprodukter I dessa, är genom en ledning 28 ansluten till en uppsamlingsbehallare 30 for oljan. I denna behallare mynnar aven en ledning 32 fran tvatttornet 27. Fran en grenledning 34 kunna en del av de icke kondenserade gaserna avforas genom en ledning 36, i vilken ãr insatt en yentil 38, for att anvandas som bransle eller for andra andamal. En annan del av gaserna genomstromma en koinpressoranordning 40. In the drawing, 10 denotes a natural heating element, which are arranged at regular intervals in the slate rock 12, on which a layer of limestone 14 is superimposed, possibly a ground layer 16. A number of exhaust ducts 18 stand in connection with through lime and slate drilled gas drains 20. The heating elements 10 and the exhaust ducts 18 are simultaneously arranged in rows one after the other at an angle to the plane of the drawing. The gas drains 20 belonging to such a row iiro over connecting pipes 21 and shut-off resp. control valves 22, 23 connected to a collecting duct 24. A larger collecting duct 25 for a plurality of collecting ducts 24 in turn combines these with a condenser 26 and a washing tower 27, the shale oil gases on the edge of salt are cooled and as far as possible freed of condensable oil constituents. The capacitor 26, which can also be constituted by resp. include equipment for other chemical treatment of shale oil gases e.g. separation of sulfur or other by-products therein, is connected through a line 28 to a collection container 30 for the oil. In this container also opens a line 32 from the water tower 27. From a branch line 34 some of the non-condensed gases can be discharged through a line 36, in which a yentil 38 is inserted, for use as a fuel or for other purposes. Another part of the gases flows through a compressor device 40.
I en sektion av skifferberget begransad yinkelratt mot ritningsplanet av plan genom linjerna 42, 44 antages pyrolysen, d. v. s. en under varmetillfOrsel forsiggaende nybildning av skiffergaser vara avslutad. VarmetillforseIn till elementen 10 har har alltsa aybrutits. I stallet utvinnes for ogonblicket en sektion av skifferberget, begransad av linjerna 44-46. Vasmevagen forutstittes alltst yandra i riktningen av pilarna 48. Linjen 50 i fig. 2 representerar temperaturfordelningen i de hada sektionerna. Vid linjen 44 kan temperaturen hava uppnatt ett yarde, mellan 3400° G foretradesvis omkring 380° C. Temperaturen faller genom processen enligt uppfinningen riktning mot linjen 42. In a section of the slate rock bounded by an angle steering wheel towards the drawing plane of planes through lines 42, 44, the pyrolysis, i.e. a new formation of shale gases during heat supply, is assumed to be completed. Heat supply to the elements 10 has thus been interrupted. In the stable, a section of the slate rock is currently being extracted, bounded by lines 44-46. The wash carriage is predominantly spaced apart in the direction of the arrows 48. The line 50 in Fig. 2 represents the temperature distribution in the hot sections. At line 44, the temperature may have reached a yard, between 3400 ° C, preferably about 380 ° C. The temperature drops through the process according to the invention towards line 42.
Medan kanalerna 20 i sektionen 44-46 tjanstgora som avlopp for de i derma sektion utvunna skiffergaserna, bar minst en rad dylika kanater, SOM Sr belagen vid sektionens 42-44 bakkant, sett i varmevagens riktning enligt pilarna 48, och som a ritningen givits beteckningen 52, anslutits till kompressorns 40 trycksida via en samlingskanal 54. I gaskanalerna 52 bringas salunda de frail ledningen 34 kommande gaserna att itterstromma lilt det redan avgasade skifferberget inom omrSdet Indian linjerna 42 och 44. En del ay dessa aterstrommande gaser kunna avledas genom gasavlopp 56 och en samlingskanal 58 fran gaskanalen 60 inom detta omrade, for att efter lamplig behandling genom kondensation eller tvattning eller andra processer nyttiggoras resp. aterledas till ledningen 34. Eventuellt kunna kanalerna 60 vara hopkopplade med samlingsledningen 24. Resten av gaserna kunna under fortsatt stromning inom skifferbergets porOsa lagringar i pilarnas 48 riktning komma i kontakt med skifferberg inom sek tionen 44--46, day uppvarniningen ay skifferberget pagfir och dar alltsa skiffergaser under pyrolys avledas genom gaskanalerna 20. Genom astadkommandet av tillrilekligt hog tryckstegring hos gaserna efter kompressorn 40 kunna dessa saledes bringas att stromma i ett kretslopp med tvS olika forgreningar, dels en krets ansluten till passagerna 56, 34 sand sektionen 42-44 i skifferberget och dels en krets innefattande passagerna 18, 34 och bagge sektionerna 42-44 och 44-46 inom skifferberget. Sadana gaser vilka genoin nedkylning, kondensation och tvattning befrias fran oljan bringas saledes enligt uppfinningen att genomstri5mma skifferberget, dar de hi. a. kunna bidraga till en livligare transport av oljegaser fran skifferberget till kondensoranlaggningen genom den spolyerkan, som dylika gaser komma att prestera. Vid sidan av denna spolverkan avses emellertid enligt uppfinningen aven en annan verkan. Vid all oljeframstallning med avgasning direkt i skifferberget uppkommer alltid pa grand av det Eivertryek, som rader i berget vid aygasningen en del for-luster genom gaslackage mom berget upp mot markytan. Spriekor finnas har och van inom berget och det overlagrade kalkberget Sr i sig sjalvt icke fullkomligt tiitt. En mindre del av de framstallda oljegaserna kommer darfor att sa smaningom lacka at genom lackage i spriekor i marken ovanpa skifferberget. Enligt uppfinningen fylles redan avgasat skifferberg med tillhjalp av en kompressor med wiser dSr oljan redan utyunnits. Det lOckage, som darvid alit forfarande uppstar kommer pa sit salt att besta av lackande gaser, som icke innehalla nagon olja. Harigenom -vinnes enligt uppfinningen den fordelen, att oljeforluster genom Ifickage i markytan minskas. While the ducts 20 in section 44-46 serve as drains for the shale gases extracted in this section, at least one row of such ducts, which are located at the trailing edge of section 42-44, seen in the direction of the heating path according to the arrows 48, and which in the drawing are designated 52, connected to the pressure side of the compressor 40 via a collection duct 54. In the gas ducts 52, the gases coming from the frail line 34 are thus caused to re-flow to the already degassed shale rock within the area of Indian lines 42 and 44. a collecting duct 58 from the gas duct 60 within this area, so that after suitable treatment by condensation or washing or other processes, resp. redirected to line 34. Possibly the channels 60 may be connected to the collection line 24. The rest of the gases may during continued flow within the slate rock porOsa deposits in the direction of the arrows 48 come into contact with slate rock within section 44--46, day warning ay slate mountain pagfir and dar thus shale gases during pyrolysis are diverted through the gas channels 20. By causing a sufficiently high pressure rise of the gases after the compressor 40, these can thus be caused to flow in a circuit with tvS different branches, partly a circuit connected to the passages 56, 34 sand section 42-44 in the shale mountain and on the other hand a circuit comprising the passages 18, 34 and ram sections 42-44 and 44-46 within the slate rock. Such gases which are genuinely cooled, condensed and washed are freed from the oil are thus brought according to the invention to flow through the shale rock, where they hi. a. be able to contribute to a more lively transport of oil gases from the shale rock to the condenser plant through the coil can, which such gases will perform. In addition to this flushing action, however, according to the invention another action is also meant. In all oil production with degassing directly in the slate rock, the Eivertryek always arises, which lines up in the rock during the gasification, some loss is lost through gas coating on the rock up to the ground surface. Spriekor are found and used within the rock and the superimposed limestone mountain Sr itself is not completely tiitt. A small part of the produced oil gases will therefore gradually varnish by varnishing in spray cores in the ground above the slate rock. According to the invention, already degassed slate rock is filled with the aid of a compressor with a wiser when the oil has already been diluted. The leakage which still arises in its salt will consist of leaching gases which do not contain any oil. As a result, according to the invention, the advantage is gained that oil losses through Ifickage in the ground surface are reduced.
Vid oljeutvinning ur skiffer kan det antagas, att beroende pa de temperaturer och tryck, varunder pyrolysen fortgar, avensom beroende pa den hastighet, med vilken uppvarniningen av skiffern genomfores, pyrolysen genoinfOres under av de fysikaliska och kemiska betingelserna reglerade forhallanden, sa att olika substanser uthildas i ett kvantitatiyt balansfOrhallande till varandra. Salunda kan som exempel antagas att tIV den ut- bildade pyrolysgasen utgores av vate, en viss del av densamma av inetan och andra narslakLade kolvaten for att slutligen de oljebildande kolvatena pa grund av sin storre inolekylarvikt komnm att uppga. till en rnindre del av den totala gasvolymen. In the case of oil extraction from shale, it can be assumed that depending on the temperatures and pressures at which the pyrolysis proceeds, as well as depending on the rate at which the heating of the shale is carried out, the pyrolysis is introduced under conditions regulated by the physical and chemical conditions. in a quantitative balance relationship to each other. Thus, for example, it can be assumed that the pyrolysis gas formed consists of hydrogen, a certain part of it consists of inethane and other slaked hydrocarbons, so that eventually the oil-forming hydrocarbons, due to their greater inolecular weight, will give up. to a lower part of the total gas volume.
Sjalva pyrolysprocessen Sr av en sa komplicerad natur, att den ej for narvarande kan tillfredsstallande klarlaggas, men det praktiska resultatet tyder pa, att en dylik viss proportion mellan de olika kolyiitena alltid foreligger. Den genom ledningen 34 till skifferberget aterinforda gasen ar, sasorn av ovanstaende framgar, proportionsvis rikare pa Hite och lattare kolvaten an den unsprung- — —a liga pyrolysgasen, fran vilken de tyngre kolvatena utvunnits. I narvaro av skifferbergets stora porosa massa som kontaktsubstans och dar pyrolys langsamt pagar inom myeket stora volymer, kommer enligt uppfinningen over- skottet av vatgas och lattare kolvaten i den aterinforda gasen att paverka pyrolysen i den riktning att en balans stravar att aterstallas mot den ursprungligen utvunna pyrolysgasens sammansattning. Detta forhallande torde narmast kunna liknas vid en hydrering, men en- ligt uppfinningen ersattes de mycket hoga tryck, under vilka sadan hydrering brukar genomforas, i detta fall med en ofantlig kontaktyta i katalysatorn, som mojliggor att Mom rimlig tid uppna ett narmande till ett balanserat Thrhallande mellan de olika reaktionerna vid pyrolysen. Darvid binder mera kol vid det genom aterinforingen tillforda vatet, varigenom i koksen kvarblivande kol minskas till forman for en kvantitativ okning av de oljebildande gaserna. The process of pyrolysis itself is of such a complex nature that it cannot at present be satisfactorily clarified, but the practical result indicates that such a certain proportion between the various colloids is always present. The gas re-introduced through line 34 to the slate rock is, as shown above, proportionately richer in Hite and lighter in hydrocarbons than in the original pyrolysis gas from which the heavier hydrocarbons were extracted. In the presence of the large porous mass of the shale rock as a contact substance and where pyrolysis slowly picks up in very large volumes, according to the invention the excess of hydrogen gas and lighter hydrocarbons in the reclaimed gas will affect the pyrolysis in the direction that a balance is restored to the originally recovered the composition of the pyrolysis gas. This condition can almost be likened to a hydrogenation, but according to the invention the very high pressures under which such hydrogenation is usually carried out are replaced, in this case with an enormous contact surface in the catalyst, which makes it possible for Mom to achieve a reasonable to a balanced time. Thralling between the different reactions in the pyrolysis. Thereby, more carbon binds to the water supplied by the re-introduction, whereby carbon remaining in the coke is reduced to form a quantitative increase in the oil-forming gases.
Enligt uppfinningen passerar de gaser, ur vilka oljan utvunnits forst genom en poros bergmassa, dar oljeavdrivning redan är fullbordad. Harunder forvarmes sagda gaser, sedan de under passagen genom kondensor och tvattorn nedkylts till en lag temperatur, som I praktiken hailer sig omkring 0° eller lagre. Det redan avgasade skifferberget och den spillvarme som i detta varma berg kvarlamflats efter pyrolysen, utnyttjas salunda delvis for forvarmning av den vid pyrolysen medverkande cirkulationsgasen. Emedan en sadan gas' varmeinnehall Or relativt lagt, kan enligt uppfinningen den kvantitet gas, som cirkuleras beroende p. onistiindigheterna vdl- jas sa., att dess volym uppgiir till en h flera ganger den vid pyrolysen nybildade gasens volyrn. Harigenom underlattas det reaktionsforlopp, som har ovan antytts pa sa salt, att ett balansforhallande Mom de olika reaktioner- na joke behover narmelsevis uppnas pa grund av det stora overskott av lattare kolvaten och vate, som yid pyrolysen finnas tillgangliga. Genom denna rikligare gascirkulation intrader Oven det fOrhallandet, att sadana kolvaten, som lifsga ph gransomradet for forgasningen, ladare kunna avfOras ur skifferberget med tillhj alp av den rikligare gascirkulationen. De tyngsta kolvatena, som utan cirkulerande gas kvarbliva och forkoksas i berget, torde darfor med tillhjalp av gascirkulation helt eller delvis bringas att medfolja den all-manna gasstromningen. Enligt uppfinningen skapas saledes genom inforande av en eirkulerande gas Mom redan uppviirmt skiff er- berg nya mojligheter att erhalla en rikare produktion av de genom pyrolysen eftertraktade flytande kolvatena. Slutligen kan det tankas, att den stora bergkropp av varm skifferkoks, genom vilken cirkulationsgasen strommar sin vag till pyrolysomradet i skifferberget, ph b urund av sina enorma dimensioner och darmed forknippad katalysatorverkan direkt i viss man medger en hydrering av med koksen narslaktade kolvaten, som kvarstannal i densamma, varigenom restforlusten i form av koks nedbringas. According to the invention, the gases from which the oil is extracted first pass through a porous rock mass, where oil stripping has already been completed. During this, said gases are preheated, after they have been cooled during the passage through the condenser and the washing tower to a low temperature, which in practice rises to about 0 ° or lower. The already degassed shale rock and the waste heat left in this hot rock after the pyrolysis are thus partly used for preheating of the circulating gas involved in the pyrolysis. Since such a gas' heat content Or is relatively low, according to the invention the quantity of gas which is circulated depending on the conditions can be adjusted so that its volume amounts to one h several times the volume of the gas newly formed during the pyrolysis. This facilitates the reaction process indicated above in such a salty way that a balancing Mom the various reaction jokes need to be achieved due to the large excess of lighter hydrocarbons and water that are available during the pyrolysis. Due to this more abundant gas circulation, the condition also arises that such hydrocarbons, which live in the vicinity of the gasification, can be discharged from the slate rock with the aid of the more abundant gas circulation. The heaviest hydrocarbons, which remain and are coked in the rock without circulating gas, should therefore, with the aid of gas circulation, be brought to follow the general gas flow in whole or in part. Thus, according to the invention, by introducing an circulating gas Mom already created shale, new possibilities are created to obtain a richer production of the liquid hydrocarbons coveted by the pyrolysis. Finally, it is conceivable that the large rock body of hot shale coke, through which the circulating gas flows its vague to the pyrolysis region of the shale rock, ph b round of its enormous dimensions and associated catalyst action directly in some way allows a hydration of coke butchered coke, which remains in the same, thereby reducing the residual loss in the form of coke.
I stallet for pyrolysgaserna enligt ovan kunna andra gaser, t. ex. generatorgas komma i fraga for astadkommandet av olika onskade kemiska reaktioner under medverkan av den porosa varma skiffern. Instead of the pyrolysis gases as above, other gases, e.g. generator gases come into question for the production of various desired chemical reactions with the participation of the porous hot shale.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE123138T |
Publications (1)
Publication Number | Publication Date |
---|---|
SE123138C1 true SE123138C1 (en) | 1948-01-01 |
Family
ID=41922257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE123138D SE123138C1 (en) |
Country Status (1)
Country | Link |
---|---|
SE (1) | SE123138C1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4886118A (en) | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6782947B2 (en) | 2001-04-24 | 2004-08-31 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
-
0
- SE SE123138D patent/SE123138C1/sv unknown
Cited By (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4886118A (en) | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732794B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US6782947B2 (en) | 2001-04-24 | 2004-08-31 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation to increase permeability of the formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7831133B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE123138C1 (en) | ||
CA2742565C (en) | Methods and systems for providing steam | |
DE2632996A1 (en) | METHOD OF MERGING A HARD COAL OR LIGNITE RESOURCE UNDERGROUND UNDER HIGH PRESSURE | |
CA2742563C (en) | Methods and systems for providing steam | |
US1497607A (en) | Separating of oil from sand | |
CN103131472B (en) | Process method for on-line salt washing of fractionating tower of delayed coking device | |
CN105567263A (en) | Method for carrying out dry quenching and gas making on coked red coke and coking wastewater treatment | |
CN103756704A (en) | System for producing modified coal tar pitch and preparation method thereof | |
CN101775309B (en) | Method for refining from oil sand by using high-temperature gas-cooled reactor and special equipment | |
CN204874401U (en) | Oil -water separation apparatus | |
US2164593A (en) | Method for distilling oils | |
US1922321A (en) | Method of extracting the volatile constituents from carbonaceous materials | |
CN202346980U (en) | Biomass comprehensive transformation device | |
US2808123A (en) | Method and means for treating oil well emulsion streams | |
US1842105A (en) | Method of making asphalt | |
CN103805226A (en) | Delayed coking method | |
US2067029A (en) | Elimination of poisonous waste liquors | |
US1478180A (en) | Process for extracting sulphur from spent oxide from gas plants | |
CN108148608A (en) | With the rapidly pre-warming series connection thermophilic pyrolysis hydrocarbon material method for pyrolysis of formula of Two-way Cycle powder | |
US1905028A (en) | Treatment of oil gas | |
RU2392431C1 (en) | Complex development method of coal field | |
US1514162A (en) | X x x a a p kel-sey | |
US1909335A (en) | Apparatus for treating hydrocarbon oils | |
US1986080A (en) | Recovery of by-products from distillation gases | |
US2136280A (en) | Method of recovering ozocerite |