本發明因此係基於提供適合用於電子裝置(諸如,OLED,更特別地作為用於螢光發光體之主體材料或作為螢光發光體)之化合物的技術目的,其適合於真空處理或適合於溶液處理。本發明亦基於提供用於製造OLED材料之方法和中間化合物的技術目的。
在對使用於電子裝置之新穎化合物的研究中,現已發現如下定義之式(1)化合物非常適合使用於電子裝置。特別地,彼等達成上述技術目的中之一或多者,較佳為全部。
本發明因此關於化合物式(1),
其中下列適用於所使用的符號和標號:
E 代表O或S,較佳為O;
X 在每次出現時相同或不同地代表CR
X或N;
Y 在每次出現時相同或不同地代表CR
Y或N;或若Y鍵結至Ar
S、Ar
1或Ar
2,Y為C或當Ar
S不存在時,Y為式(1)中所表示的雜環;
Ar
1、Ar
2在每次出現時相同或不同地代表具有5至60個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代;
Ar
S在每次出現時相同或不同地為具有5至30個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代;
R
X、R
Y在每次出現時相同或不同地代表H、D、F、Cl、Br、I、CHO、CN、C(=O)Ar、P(=O)(Ar)
2、S(=O)Ar、S(=O)
2Ar、N(R)
2、N(Ar)
2、NO
2、Si(R)
3、B(OR)
2、OSO
2R、具有1至40個C原子之直鏈烷基、烷氧基或烷硫基(thioalkyl)或具有3至40個C原子之支鏈或環狀烷基、烷氧基或烷硫基,彼等各自可經一或多個基團R取代,其中在各情況下一或多個非相鄰的CH
2基團可經RC=CR、C≡C、Si(R)
2、Ge(R)
2、Sn(R)
2、C=O、C=S、C=Se、P(=O)(R)、SO、SO
2、O、S或CONR置換和其中一或多個H原子可經D、F、Cl、Br、I、CN或NO
2置換、具有5至60個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代、或具有5至60個芳族環原子之芳氧基,其可經一或多個基團R取代;
其中兩個基團R
X可一起形成脂族、芳族或雜芳族環系統,其可經一或多個基團R取代;及其中兩個基團R
Y可一起形成脂族、芳族或雜芳族環系統,其可經一或多個基團R取代;
R 在每次出現時相同或不同地代表H、D、F、Cl、Br、I、CHO、CN、C(=O)Ar、P(=O)(Ar)
2、S(=O)Ar、S(=O)
2Ar、N(R´)
2、N(Ar)
2、NO
2、Si(R´)
3、B(OR´)
2、OSO
2R´、具有1至40個C原子之直鏈烷基、烷氧基或烷硫基(thioalkyl)或具有3至40個C原子之支鏈或環狀烷基、烷氧基或烷硫基,彼等各自可經一或多個基團R´取代,其中在各情況下一或多個非相鄰的CH
2基團可經R´C=CR´、C≡C、Si(R´)
2、Ge(R´)
2、Sn(R´)
2、C=O、C=S、C=Se、P(=O)(R´)、SO、SO
2、O、S或CONR
´置換和其中一或多個H原子可經D、F、Cl、Br、I、CN或NO
2置換、具有5至60個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R´取代、或具有5至60個芳族環原子之芳氧基,彼等可經一或多個R´基團取代;其中兩個基團R可一起形成脂族或芳族環系統,彼等可經一或多個R´基團取代;
Ar 在每次出現時相同或不同地為具有5至60個芳族環原子之芳族或雜芳族環系統,彼等在各情況下亦可經一或多個R´基團取代;
R´ 在每次出現時相同或不同地代表H、D、F、Cl、Br、I、CN、具有1至20個C原子之直鏈烷基、烷氧基或烷硫基(thioalkoxy)或具有3至20個C原子之支鏈或環狀烷基、烷氧基或烷硫基,其中在各情況下一或多個非相鄰的CH
2基團可經SO、SO
2、O、S置換和其中一或多個H原子可經D、F、Cl、Br或I置換、或具有5至24個芳族環原子之芳族或雜芳族環系統;
n、m 代表選自0、1和2的整數;其先決條件為n=m;
p、q 相同或不同地代表1、2或3,較佳代表1。
相鄰基團就本發明之意義而言為鍵結至彼此直接連接的原子或鍵結至同一原子上的基團。
此外,下列化學基團的定義適用於本申請案之目的:
芳基就本發明之意義而言含有6至60個芳族環原子,較佳6至40個芳族環原子,更佳6至20個芳族環原子;雜芳基就本發明之意義而言含有5至60個芳族環原子,較佳5至40個芳族環原子,更佳5至20個芳族環原子,其中至少一者為雜原子。雜原子較佳地係選自N、O和S。此表示基本定義。若在本發明說明中指示其他較佳選擇,例如有關所存在之芳族環原子或雜原子的數目,則這些適用。
芳基或雜芳基在此意指簡單芳族環(即苯),或簡單雜芳族環(例如吡啶、嘧啶或噻吩),或縮合(稠合(annellated))芳族或雜芳族多環(例如萘、菲、喹啉或咔唑)。縮合(稠合)芳族或雜芳族多環就本申請案的意義而言由二或更多個彼此縮合之簡單芳族或雜芳族環組成。
在各情況下可經上述基團取代且可經由任何所欲位置連接至芳族或雜芳族環系統之芳基或雜芳基特別意指衍生自下列之基團:苯、萘、蒽、菲、芘、二氫芘、(chrysene)、苝、丙二烯合茀(fluoranthene)、苯并蒽、苯并菲、稠四苯、稠五苯、苯并芘、呋喃、苯并呋喃、異苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、異苯并噻吩、二苯并噻吩、吡咯、吲哚、異吲哚、咔唑、吡啶、喹啉、異喹啉、吖啶、啡啶、苯并-5,6-喹啉、苯并-6,7-喹啉、苯并-7,8-喹啉、啡噻𠯤、啡㗁𠯤、吡唑、吲唑、咪唑、苯并咪唑、萘并咪唑(naphthimidazole)、菲并咪唑(phenanthrimidazole)、吡啶并咪唑(pyridimidazole)、吡𠯤并咪唑(pyrazinimidazole)、喹㗁啉并咪唑(quinoxalinimidazole)、㗁唑、苯并㗁唑、萘并㗁唑(naphthoxazole)、蒽并㗁唑(anthroxazole)、菲并㗁唑(phenanthroxazole)、異㗁唑、1,2-噻唑、1,3-噻唑、苯并噻唑、嗒𠯤、苯并嗒𠯤、嘧啶、苯并嘧啶、喹㗁啉、吡𠯤、啡𠯤、㖠啶、氮雜咔唑、苯并咔啉、啡啉、1,2,3-三唑、1,2,4-三唑、苯并三唑、1,2,3-㗁二唑、1,2,4-㗁二唑、1,2,5-㗁二唑、1,3,4-㗁二唑、1,2,3-噻二唑、1,2,4-噻二唑、1,2,5-噻二唑、1,3,4-噻二唑、1,3,5-三𠯤、1,2,4-三𠯤、1,2,3-三𠯤、四唑、1,2,4,5-四𠯤、1,2,3,4-四𠯤、1,2,3,5-四𠯤、嘌呤、蝶啶、吲和苯并噻二唑。
根據本發明之定義的芳氧基意指如上述所定義之芳基,其經由氧原子鍵結。類似定義適用於雜芳氧基。
芳族環系統就本發明之意義而言在環系統中含有6至60個C原子,較佳地6至40個C原子,更佳地6至20個C原子。雜芳族環系統就本發明之意義而言含有5至60個芳族環原子,較佳地5至40個芳族環原子,更佳地5至20個芳族環原子,其中至少一個為雜原子。雜原子較佳選自N、O及/或S。芳族或雜芳族環系統就本發明之意義而言意指不一定只含有芳基或雜芳基,而是其中此外多個芳基或雜芳基可藉由非芳族單元(較佳為少於10%之非H的原子)(諸如,例如sp
3-混成之C、Si、N或O原子、sp
2-混成之C或N原子或sp-混成之C原子)連接的系統。因此,例如,系統諸如9,9’-螺二茀、9,9’-二芳基茀、三芳基胺、二芳基醚、二苯乙烯、等等亦意欲為就本發明之意義而言的芳族環系統,如為其中二或多個芳基例如藉由直鏈或環狀烷基、烯基或炔基或藉由矽基連接之系統。此外,其中二或多個芳基或雜芳基係經由單鍵彼此連結之系統亦為就本發明之意義而言的芳族或雜芳族環系統,諸如,例如系統諸如聯苯、聯三苯或二苯基三𠯤。
在各情況下亦可經如上述所定義之基團取代且可經由任何所欲位置連接至芳族或雜芳族基團之具有5-60個芳族環原子的芳族或雜芳族環系統特別意指衍生自下列之基團:苯、萘、蒽、苯并蒽、菲、苯并菲、芘、(chrysene)、苝、丙二烯合茀(fluoranthene)、稠四苯、稠五苯、苯并芘、聯苯、伸聯苯(biphenylene)、聯三苯(terphenyl)、伸聯三苯(terphenylene)、聯四苯(quaterphenyl)、茀、螺二茀、二氫菲、二氫芘、四氫芘、順-或反-茚并茀、三聚茚(truxene)、異三聚茚(isotruxene)、螺三聚茚、螺異三聚茚、呋喃、苯并呋喃、異苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、異苯并噻吩、二苯并噻吩、吡咯、吲哚、異吲哚、咔唑、吲哚并咔唑、茚并咔唑、吡啶、喹啉、異喹啉、吖啶、啡啶、苯并-5,6-喹啉、苯并-6,7-喹啉、苯并-7,8-喹啉、啡噻𠯤、啡㗁𠯤、吡唑、吲唑、咪唑、苯并咪唑、萘并咪唑(naphthimidazole)、菲并咪唑(phenanthrimidazole)、吡啶并咪唑(pyridimidazole)、吡𠯤并咪唑(pyrazinimidazole)、喹㗁啉并咪唑(quinoxalinimidazole)、㗁唑、苯并㗁唑、萘并㗁唑(naphthoxazole)、蒽并㗁唑(anthroxazole)、菲并㗁唑(phenanthroxazole)、異㗁唑、1,2-噻唑、1,3-噻唑、苯并噻唑、嗒𠯤、苯并嗒𠯤、嘧啶、苯并嘧啶、喹㗁啉、1,5-二氮雜蒽、2,7-二氮雜芘、2,3-二氮雜芘、1,6-二氮雜芘、1,8-二氮雜芘、4,5-二氮雜芘、4,5,9,10-四氮雜苝、吡𠯤、啡𠯤、啡㗁𠯤、啡噻𠯤、螢紅環(fluorubin)、㖠啶、氮雜咔唑、苯并咔啉、啡啉、1,2,3-三唑、1,2,4-三唑、苯并三唑、1,2,3-㗁二唑、1,2,4-㗁二唑、1,2,5-㗁二唑、1,3,4-㗁二唑、1,2,3-噻二唑、1,2,4-噻二唑、1,2,5-噻二唑、1,3,4-噻二唑、1,3,5-三𠯤、1,2,4-三𠯤、1,2,3-三𠯤、四唑、1,2,4,5-四𠯤、1,2,3,4-四𠯤、1,2,3,5-四𠯤、嘌呤、喋啶、吲和苯并噻二唑、或這些基團的組合。
就本發明的目的而言,具有1至40個C原子之直鏈烷基或具有3至40個C原子之支鏈或環狀烷基或具有2至40個C原子之烯基或炔基,其中,此外,個別H原子或CH
2基團可經在上述該等基團定義下之基團取代,較佳意指基團甲基、乙基、正丙基、異丙基、正丁基、異丁基、二級丁基、三級丁基、2-甲基丁基、正戊基、二級戊基、環戊基、新戊基、正己基、環己基、新己基、正庚基、環庚基、正辛基、環辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、環戊烯基、己烯基、環己烯基、庚烯基、環庚烯基、辛烯基、環辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基或辛炔基。具有1至40個C原子之烷氧基或烷硫基較佳意指甲氧基、三氟甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、異丁氧基、二級丁氧基、三級丁氧基、正戊氧基、二級戊氧基、2-甲基丁氧基、正己氧基、環己氧基、正庚氧基、環庚氧基、正辛氧基、環辛氧基、2-乙基己氧基、五氟乙氧基、2,2,2-三氟乙氧基、甲硫基、乙硫基、正丙硫基、異丙硫基、正丁硫基、異丁硫基、二級丁硫基、三級丁硫基、正戊硫基、二級戊硫基、正己硫基、環己硫基、正庚硫基、環庚硫基、正辛硫基、環辛硫基、2-乙基己硫基、三氟甲硫基、五氟乙硫基、2,2,2-三氟乙硫基、乙烯硫基、丙烯硫基、丁烯硫基、戊烯硫基、環戊烯硫基、己烯硫基、環己烯硫基、庚烯硫基、環庚烯硫基、辛烯硫基、環辛烯硫基、乙炔硫基、丙炔硫基、丁炔硫基、戊炔硫基、己炔硫基、庚炔硫基或辛炔硫基。
就本申請案之目的而言,二或更多個基團彼此可形成環之規劃特別意指:二個基團彼此以一化學鍵鍵聯。此以下列圖解說明:
然而,此外,上述規劃也意指:在其中二基團之一表示氫的情況中,第二基團鍵結於氫原子所鍵結之位置,且形成環。此以下列圖解說明:
當兩個基團彼此形成環時,較佳的是兩個基團為相鄰的基團。如上所述,相鄰基團就本發明之意義而言為鍵結至彼此直接連接的原子或鍵結至同一原子上的基團。
根據一較佳實施態樣,式(1)化合物係選自式(2)、(3)、(4)或(5)之化合物,
其中該等符號和標號具有與上述相同的意義。
根據一更佳實施態樣,化合物式(1)係選自式(2-1)、(3-1)、(4-1)或(5-1)之化合物,
其中該等符號和標號具有與上述相同的意義。
根據一非常更佳的實施態樣,化合物式(1)係選自式(2-1-1)至(2-1-5)之化合物,
其中該等符號和標號具有與上述相同的意義。
根據一較佳實施態樣,n=m=0。
根據另一較佳實施態樣,n=m=1。
根據一較佳實施態樣,Ar
1和Ar
2在每次出現時相同或不同地代表具有5至40個,更佳5至30個,非常較佳5至25個,特佳6至18個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代。根據一非常較佳的實施態樣,Ar
1和Ar
2在每次出現時相同或不同地代表苯基、聯苯、聯三苯、茀、螺二茀、萘、蒽、菲、稠四苯、、苯并菲、苯并蒽、芘、苝、伸聯三苯、苯并芘、丙二烯合茀(fluoranthene)、二苯并呋喃、二苯并噻吩、咔唑或此等基團中之二或三者的組合,彼等各自可經一或多個基團R取代。根據一特佳實施態樣,Ar
1和Ar
2在每次出現時相同或不同地代表苯基、聯苯、聯三苯、茀、螺二茀、二苯并呋喃、二苯并噻吩、咔唑或此等基團中之二或三者的組合,彼等各自可經一或多個基團R取代。
適當基團Ar
1和Ar
2之實例為式(Ar-1)至(Ar-9)之基團:
其中
- E
1在每次出現時相同或不同地代表C(R
0)
2、NR
N、O或S,
- R
0、R
N在每次出現時相同或不同地為 H、D、F、Cl、Br、I、CN、Si(R)
3、具有1至40個,較佳1至20個,更佳1至10個C原子之直鏈烷基、烷氧基或烷硫基或具有3至40個,較佳3至20個,更佳3至10個C原子之支鏈或環狀烷基、烷氧基或烷硫基,彼等各自可經一或多個基團R取代,其中在各情況下一或多個非相鄰的CH
2基團可經RC=CR、C≡C、Si(R)
2、Ge(R)
2、Sn(R)
2、C=O、C=S、C=Se、P(=O)(R)、SO、SO
2、O、S或CONR置換和其中一或多個H原子可經D、F、Cl、Br、I、CN或NO
2置換、具有5至60個,較佳5至40個,更佳5至30個,特佳5至24個,非常特佳5至18個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代、或具有5至60個,較佳5至40個,更佳5至30個,特佳5至24個,非常特佳5至18個芳族環原子之芳氧基,其可經一或多個基團R取代,其中兩個基團R
0可一起形成脂族、芳族或雜芳族環系統,其可經一或多個基團R取代;
- 虛線代表至相鄰蒽部分的鍵結;及
- 式(Ar-1)至(Ar-9)之基團可在各自由位置經基團R取代,其中R具有與上述相同之意義。
式(Ar-1)至(Ar-3)之基團為特佳。
基團Ar
1和Ar
2之非常適合的實例為式(Ar1-1)至(Ar1-27)之基團:
其中
- E
1、R
0、R
N具有與上述相同的意義;
- 虛線代表至相鄰蒽部分的鍵結;及
- 式(Ar-1)至(Ar-27)之基團可在各自由位置經基團R取代,其中R具有與上述相同之意義。
較佳地,基團Ar
S在每次出現時相同或不同地代表具有5至25個,較佳6至18個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代。
更佳地,基團Ar
S在每次出現時相同或不同地代表苯基、聯苯、茀、螺二茀、萘、菲、蒽、二苯并呋喃、二苯并噻吩、咔唑、吡啶、嘧啶、吡𠯤、嗒𠯤、三𠯤、苯并吡啶、苯并嗒𠯤、苯并嘧啶和喹唑啉,彼等各自可經一或多個基團R取代。
適當基團Ar
S之實例為如下表中所表示的式(ArS-1)至(ArS-27)之基團:
其中虛線鍵指示至式(1)中之相鄰基團的鍵結;
其中式(ArS-1)至(ArS-27)之基團可在各自由位置經基團R取代,基團R具有與上述定義相同的意義;及
其中基團E
3每次出現時相同或不同地選自–BR
0-、-C(R
0)
2-、-Si(R
0)
2-、-C(=O)-、-O-、-S-、-S(=O)-、-SO
2-、-N(R
0)-、和-P(R
0)-,
其中R
0係如上述所定義。較佳地,基團E
3係相同或不同地選自-C(R
0)
2-、-O-、-S-和-N(R
0)-,其中R
0係如上述所定義。
在式(ArS-1)至(ArS-27)之基團中,式(ArS-1)、(ArS-2)、(ArS-3)、(ArS-11)、(ArS-12)和(ArS-27)之基團為較佳。式(ArS-1)、(ArS-2)、(ArS-3)之基團為非常較佳。式(ArS-1)之基團為特佳。
較佳地,R
X、R
Y在每次出現時相同或不同地代表H、D、F、CN、N(Ar)
2、具有1至40個,較佳1至20個,更佳1至10個C原子之直鏈烷基、烷氧基或烷硫基或具有3至40個,較佳3至20個,更佳3至10個C原子之支鏈或環狀烷基、烷氧基或烷硫基,彼等各自可經一或多個基團R取代,其中在各情況下一或多個非相鄰的CH
2基團可經RC=CR、C≡C、O或S置換及其中一或多個H原子可經D或F置換、或具有5至60個,較佳5至40個,更佳5至30個、特佳6至18個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代,其中兩個相鄰基團R
X可一起形成脂族、芳族或雜芳族環系統,其可經一或多個基團R取代;及其中兩個相鄰基團R
Y可一起形成脂族、芳族或雜芳族環系統,其可經一或多個基團R取代。更佳地,R
X、R
Y在每次出現時相同或不同地代表H、D、F、具有1至10個C原子之直鏈烷基或具有3至10個C原子之支鏈或環狀烷基,彼等各自可經一或多個基團R取代,其中在各情況下一或多個H原子可經D或F置換、具有5至30個,較佳6至18個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R取代,其中兩個相鄰基團R
X可一起形成脂族、芳族或雜芳族環系統,其可經一或多個基團R取代;及其中兩個相鄰基團R
Y可一起形成脂族、芳族或雜芳族環系統,其可經一或多個基團R取代。
較佳地,R在每次出現時相同或不同地代表H、D、F、CN、N(Ar)
2、具有1至40個,較佳1至20個,更佳1至10個C原子之直鏈烷基、烷氧基或烷硫基或具有3至40個,較佳3至20個,更佳3至10個C原子之支鏈或環狀烷基、烷氧基或烷硫基,彼等各自可經一或多個基團R´取代,其中在各情況下一或多個非相鄰的CH
2基團可經R´C=CR´、C≡C、O或S置換及其中一或多個H原子可經D或F置換、或具有5至60個,較佳5至40個,更佳5至30個,特佳6至18個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R´取代。
較佳地,Ar在每次出現時相同或不同地為具有5至40個,較佳5至30個,更佳6至18個芳族環原子之芳族或雜芳族環系統,其在各情況下可經一或多個基團R´取代。
較佳地,R´在每次出現時相同或不同地代表H、D、F、Cl、Br、I、CN、具有1至10個C原子之直鏈烷基或具有3至10個C原子之支鏈或環狀烷基,其中在各情況下一或多個H原子可經D或F置換、或具有5至18個C原子之芳族或雜芳族環系統。
下列化合物為式(1)化合物之實例:
根據本發明之化合物可藉由熟習該項技術人員已知的合成步驟(諸如,例如溴化、Suzuki偶合、Ullmann偶合、Hartwig-Buchwald偶合、等等)製備。適合的合成方法之實例籠統地描述於下述流程1和2中。
流程1
其中,在流程1中:
X
1和X
2為相同或不同的脫離基,較佳選自由鹵素原子、三氟甲磺酸根和硼酸衍生物所組成的群組。
Anth對應於蒽基;
Ar
1和Ar
2具有與上述相同的定義。
流程2
其中,在流程中2:
X
1和X
2為不同的脫離基,較佳選自由鹵素原子、三氟甲磺酸根和硼酸衍生物所組成的群組。更佳地,X
1為三氟甲磺酸根和X
2為鹵素;
Anth對應於蒽基;
Ar
1和Ar
2具有與上述相同的定義。
流程1和2中所描述的結構可在任何自由位置進一步經取代。
本申請案之另一目的因此為製備一種根據式(1)化合物之方法,其特徵在於其包含具有兩個反應基團的二苯并呋喃與蒽衍生物之偶合反應(較佳Suzuki偶合反應)。
為了從液相處理根據本發明之化合物(例如藉旋轉塗布或藉由印刷方法),需要根據本發明之化合物的調配物。此等調配物可為例如溶液、分散液或乳液。為此目的,較佳可為使用二或更多種溶劑之混合物。溶劑較佳地選自有機和無機溶劑,更佳地為有機溶劑。溶劑非常佳地選自烴、醇、酯、醚、酮和胺。適合且較佳的溶劑為(例如)甲苯、苯甲醚、鄰-、間-或對-二甲苯、苯甲酸甲酯、對稱三甲苯、四氫萘、藜蘆醚、THF、甲基-THF、THP、氯苯、二㗁烷、苯氧基甲苯(特別是3-苯氧基甲苯)、(-)-葑酮、1,2,3,5-四甲基苯、1,2,4,5-四甲基苯、1-甲基萘、1-乙基萘、癸基苯、苯基萘、異戊酸薄荷酯、異丁酸對甲苯基酯、己酸環己酯(cyclohexal hexanoate)、對甲苯甲酸乙酯、鄰甲苯甲酸乙酯、間甲苯甲酸乙酯、十氫萘、2-甲氧基苯甲酸乙酯、二丁基苯胺、二環己基酮、異山梨醇二甲基醚、十氫萘、2-甲基聯苯、辛酸乙酯、辛酸辛酯、癸二酸二乙酯、3,3-二甲基聯苯、1,4-二甲基萘、2,2´-二甲基聯苯、2-甲基苯并噻唑、2-苯氧基乙醇、2-吡咯啶酮、3-甲基苯甲醚、4-甲基苯甲醚、3,4-二甲基苯甲醚、3,5-二甲基苯甲醚、苯乙酮、α-萜品醇、苯并噻唑、苯甲酸丁酯、異丙苯、環己醇、環己酮、環己基苯、十氫萘、十二烷基苯、苯甲酸乙酯、茚烷、NMP、對-異丙基甲苯、苯基乙基醚、1,4-二異丙基苯、二苯甲基醚、二乙二醇丁基甲基醚、三乙二醇丁基甲基醚、二乙二醇二丁基醚、三乙二醇二甲基醚、二乙二醇單丁基醚、三丙二醇二甲基醚、四乙二醇二甲基醚、2-異丙基萘、戊基苯、己基苯、庚基苯、辛基苯、1,1-雙(3,4-二甲基苯基)乙烷或此等溶劑之混合物。
本發明因此另外關於一種調配物,其包含根據本發明之化合物及至少一種其他化合物。其他化合物可為例如溶劑,特別是上述溶劑中之一者或此等溶劑的混合物。然而,其他化合物也可為同樣使用於電子裝置中的至少一種其他有機或無機化合物,例如磷光摻雜劑、螢光摻雜劑、TADF摻雜劑及/或主體材料。適當化合物就有機電發光裝置指示於下。此其他化合物也可為聚合物。較佳地,調配物包含式(1)化合物及至少一種溶劑。更佳地,調配物包含式(1)化合物、選自螢光發光體、TADF 發光體和磷光發光體之發光材料及至少一種溶劑。甚至更佳地,調配物包含式(1)化合物、選自螢光發光體、TADF 發光體和磷光發光體之發光材料、其他主體材料及至少一種溶劑。
根據本發明之化合物和混合物係適合用於電子裝置。電子裝置在本文中意指一種包含至少一層的裝置,該層包含至少一種有機化合物。然而,組件(component)在本文中亦可包含無機材料或完全由無機材料構成的層。
本發明因此另外關於根據本發明之化合物或混合物於電子裝置之用途,特別是於有機電發光裝置之用途。
本發明此外又關於一種電子裝置,其包含至少一種上述根據本發明之化合物或混合物。上述關於化合物的較佳選擇也適用於電子裝置。
電子裝置較佳係選自由下列組成的群組:有機電發光裝置(OLED、PLED)、有機積體電路(O-IC)、有機場效電晶體(O-FET)、有機薄膜電晶體(O-TFT)、有機發光電晶體(O-LET)、有機太陽能電池(O-SC)、有機染料敏化太陽能電池、有機光學檢測器、有機感光器(photoreceptor)、有機場淬滅裝置(O-FQD)、發光電化學電池(LEC)、有機雷射二極體(O-雷射)和“有機電漿子發射裝置”(D. M. Koller等人,Nature Photonics 2008, 1-4),較佳為有機電發光裝置(OLED、PLED),特別是磷光OLED。
有機電發光裝置包含陰極、陽極和至少一個發光層。除了此等層以外,有機電發光裝置亦可包含其它層,例如在各情況下一或多個電洞注入層、電洞傳輸層、電洞阻擋層、電子傳輸層、電子注入層、激子阻擋層、電子阻擋層、及/或電荷產生層。同樣可能在二個發光層之間引入具有例如激子阻擋功能之中間層。然而,應指出的是此等層各者不一定必須存在。有機電發光裝置在此可包含一個發光層或多個發光層。若存在多個發光層,則此等較佳地具有總計在380nm和750nm之間的多個發光最大值,整體導致白色發光,亦即將能夠發螢光或磷光的各種發光化合物使用於發光層中。特佳者為具有三個發光層之系統,其中該三層呈現藍色、綠色及橙色或紅色發光(基本結構參見例如WO 2005/011013)。此等可為螢光或磷光發光層或其中螢光和磷光發光層彼此組合的混合系統。
根據上示實施態樣的根據本發明之化合物取決於精確的結構和取代而可使用於各種層中。較佳者為包含式(1)或根據較佳實施態樣之化合物作為螢光發光體、作為顯示TADF(熱活化延遲螢光)之發光體、或作為用於選自發光材料的摻雜劑之主體材料的有機電發光裝置。
特佳的是一種有機電發光裝置,其包含式(1)或根據較佳實施態樣之化合物作為用於螢光發光體(更特別是用於藍色螢光發光體)之主體材料。式(1)化合物也可用於電子傳輸層及/或電子阻擋層或激子阻擋層及/或電洞傳輸層中,取決於精確的取代。上述較佳實施態樣也適用於材料於有機電子裝置之用途。
根據本發明之化合物特別適合用作為用於螢光發光體化合物之主體材料。術語主體材料和基質材料可同義地使用。
主體材料在本文中意指存在於發光層中的材料,較佳地作為主要成分,且其在裝置操作時不發光。
在發光層的混合物中發光化合物之比例係介於0.1和50.0%之間,較佳介於0.5和20.0%之間,特佳介於1.0和10.0%之間。對應地,主體材料或主體材料等之比例係介於50.0和99.9%之間,較佳介於80.0和99.5%之間,特佳介於90.0和99.0%之間。
就本申請案之目的而言,以%表示之比例的規格,若化合物是從氣相施加的話,則意指體積%及若化合物是從溶液中施加的話,則意指重量%。若根據本發明之化合物係用作為發光層中的螢光發光化合物之主體材料,則其可與一或多種螢光發光化合物組合使用。
較佳螢光發光體為芳族蒽胺、芳族蒽二胺、芳族芘胺、芳族芘二胺、芳族胺(chrysenamine)或芳族二胺。芳族蒽胺意指其中一個二芳胺基直接鍵結至蒽基(較佳在9位置)的化合物。芳族蒽二胺意指其中兩個二芳胺基直接鍵結至蒽基(較佳在9,10-位置)的化合物。芳族芘胺、芘二胺、胺及二胺係與其類似地定義,其中二芳胺基較佳地鍵結至芘之1-位置或1,6-位置。其他較佳發光體為茚并茀胺或茚并茀二胺(例如根據WO 2006/108497或WO 2006/122630)、苯并茚并茀胺或苯并茚并茀二胺(例如根據WO 2008/006449)、及二苯并茚并茀胺或二苯并茚并茀二胺(例如根據WO 2007/140847)、和WO 2010/012328中所揭示之含有縮合芳基之茚并茀衍生物。又其他較佳發光體為如WO 2015/158409中所揭示之苯并蒽衍生物、如WO 2017/036573中所揭示之蒽衍生物、如WO 2016/150544中之經由雜芳基連接的茀二聚物或如WO 2017/028940和WO 2017/028941中所揭示之啡㗁𠯤衍生物。同樣較佳者為WO 2012/048780和WO 2013/185871中所揭示之芘芳基胺(pyrenarylamine)。同樣較佳者為WO 2014/037077中所揭示之苯并茚并茀胺(benzoindenofluorenamine)、WO 2014/106522中所揭示之苯并茀胺和WO 2014/111269或WO 2017/036574、WO 2018/007421中所揭示之茚并茀。較佳亦為如WO 2018/095888、WO 2018/095940、WO 2019/076789、WO 2019/170572以及未公開申請案PCT/EP2019/072697、PCT/EP2019/072670和PCT/EP2019/ 072662中所揭示之包含二苯并呋喃或茚并二苯并呋喃部分之發光體。同樣較佳者為如例如WO 2015/102118、CN108409769、CN107266484、WO2017195669、US2018069182中以及未公開申請案EP 19168728.4、EP 19199326.0和EP 19208643.7中所揭示之硼衍生物。
與式(1)化合物組合使用的適當螢光發光體之實例係描述於下表中:
有關的電子裝置可包含一種包含據本發明之化合物的單一發光層,或其可包含二或更多個發光層。其他發光層在此可包含一或多種根據本發明之化合物或者其他化合物。
若根據本發明之化合物係用作為發光層中的螢光發光化合物之主體材料,則其可與一或多種其他主體材料組合使用。
與式(1)化合物或其較佳實施態樣組合使用之較佳主體材料係選自下列之類別:寡聚伸芳基(oligoarylene)(例如根據EP 676461之2,2’,7,7’-四苯基螺二茀或二萘基蒽),特別是含有縮合芳族基團之寡聚伸芳基、寡聚伸芳基伸乙烯基(oligoarylenevinylene)(例如根據EP 676461之DPVBi或螺-DPVBi)、多牙(polypodal)金屬錯合物(例如根據WO 2004/081017)、電洞傳導化合物(例如根據WO 2004/058911)、電子傳導化合物,特別是酮、氧化膦、亞碸、等等(例如根據WO 2005/084081和WO 2005/084082)、阻轉異構物(例如根據WO 2006/048268)、硼酸衍生物(例如根據WO 2006/117052)、苯并蒽(例如根據WO 2008/145239)或菲(例如根據WO2009/100925)。特佳主體材料係選自下列之類別:包含萘、蒽、苯并蒽及/或芘或這些化合物的阻轉異構物之寡聚伸芳基、寡聚伸芳基伸乙烯基、酮、氧化膦和亞碸。非常特佳的主體材料係選自下列之類別:包含蒽、苯并蒽、苯并菲及/或芘或這些化合物的阻轉異構物之寡聚伸芳基。寡聚伸芳基就本發明的意義而言意指一種其中至少三個芳基或伸芳基彼此鍵結之化合物。
與式(1)化合物組合使用於發光層之特佳主體材料係描述於下表中:
另一方面,根據本發明之化合物也可用作為螢光發光化合物。在此情況下,用作為螢光發光化合物之式(1)化合物的適當主體材料對應於其他式(1)化合物或上述較佳主體材料。
根據本發明之化合物也可用於其他層中,例如作為電洞注入或電洞傳輸層或電子阻擋層中之電洞傳輸材料或作為發光層中的主體材料,較佳作為磷光發光體的主體材料。
若式(1)化合物係用作為電洞傳輸層、電洞注入層或電子阻擋層中的電洞傳輸材料,則該化合物可以純材料(亦即100%之比例)使用於電洞傳輸層中,或其可與一或多種其他化合物組合使用。根據一較佳實施態樣,包含式(I)化合物之有機層則另外包含一或多種p-摻雜劑。根據本發明所使用的p-摻雜劑較佳為能夠氧化混合物的其他化合物中之一或多者的有機電子受體化合物。
p-摻雜劑之特佳實施態樣為WO 2011/073149、EP 1968131、EP 2276085、EP 2213662、EP 1722602、EP 2045848、DE 102007031220、US 8044390、US 8057712、WO 2009/003455、WO 2010/094378、WO 2011/120709、US 2010/0096600和WO 2012/095143中所揭示之化合物。
式(1)化合物較佳與螢光材料組合用作為主體材料。然而,式(1)化合物亦可與發光層中之磷光材料組合用作為主體材料。在此情況下,磷光發光體較佳係選自下示磷光發光體之類別和實施態樣。此外,在此情況下一或多種其他主體材料較佳係存在於發光層中。此類型之所謂的混合型基質系統或混合型主體系統較佳地包含二或三種不同的主體材料,特佳二種不同的主體材料。在此較佳的是二種材料中之一者為具有電洞傳輸性質之材料且另一材料為具有電子傳輸性質之材料。式(1)化合物較佳為具有電洞傳輸性質之材料。然而,混合-主體成分之所要電子傳輸和電洞傳輸性質也可主要或完全組合於單一混合-主體成分中,其中其他混合-主體成分或成分等滿足其他功能。二種不同主體材料在此可以1:50至1:1,較佳1:20至1:1,特佳1:10至1:1及非常特佳1:4至1:1的比率存在。對於混合-主體系統之更多詳細說明(尤其是)給予於申請案WO 2010/108579中。
可與根據本發明之化合物組合用作混合-主體系統之主體成分的特別適合之主體材料係選自用於下示磷光摻雜劑之較佳主體材料或用於螢光發光體之較佳主體材料,取決於混合主體系統中所使用之發光體化合物的類型。
適當磷光發光體特別為在適當激發時發光(較佳在可見光區域內)且另外含有至少一種具有原子序大於20,較佳為大於38且少於84,特佳為大於56且少於80的原子之化合物。所使用之磷光發光體較佳為含有銅、鉬、鎢、錸、釕、鋨、銠、銥、鈀、鉑、銀、金或銪的化合物,特別為含有銥、鉑或銅的化合物。
就本發明之目的而言,所有的發光銥、鉑或銅錯合物被視為磷光化合物。
上述磷光發光體之實例係由申請案WO 2000/70655、WO 2001/41512、WO 2002/02714、WO 2002/15645、EP 1191613、EP 1191612、EP 1191614、WO 2005/033244、WO 2005/019373和US 2005/0258742揭示。通常,根據先前技術用於磷光OLED且為熟習有機電發光裝置領域之技術者已知的所有磷光錯合物皆適合使用於根據本發明的裝置。熟習該項技術者也將能夠在無進步性下將其他磷光錯合物與根據本發明之化合物組合使用於OLED中。
用於磷光發光體之較佳基質材料為芳族酮、芳族氧化膦或芳族亞碸或碸(例如根據WO 2004/013080、WO 2004/093207、WO 2006/005627或WO 2010/006680)、三芳基胺、咔唑衍生物(例如CBP(N,N-雙咔唑基聯苯)或WO 2005/039246、US 2005/0069729、JP 2004/288381、EP 1205527或WO 2008/086851中所揭示之咔唑衍生物)、吲哚并咔唑衍生物(例如根據WO 2007/063754或 WO 2008/ 056746)、茚并咔唑衍生物(例如根據WO 2010/136109、WO 2011/000455或WO 2013/041176)、氮雜咔唑衍生物(例如根據EP 1617710、EP 1617711、EP 1731584、JP 2005/347160)、雙極性基質材料(例如根據WO 2007/ 137725)、矽烷(例如根據WO 2005/111172)、氮硼雜環戊烯(azaborole)或硼酸酯(例如根據WO 2006/117052)、三𠯤衍生物(例如根據WO 2010/015306、WO 2007/063754或WO 2008/056746)、鋅錯合物(例如根據EP 652273或WO 2009/062578)、二氮雜矽雜環戊二烯(diazasilole)和四氮雜矽雜環戊二烯衍生物(例如根據WO 2010/054729)、二氮磷雜環戊二烯(diazaphosphole)衍生物(例如根據WO 2010/054730)、橋聯咔唑衍生物(例如根據US 2009/ 0136779、WO 2010/050778、WO 2011/042107、WO 2011/ 088877或WO 2012/143080)、伸聯三苯衍生物(例如,根據WO 2012/048781)或內醯胺(例如,根據WO 2011/116865或WO 2011/137951)。
除了根據本發明之化合物外,適當電荷傳輸材料,如可使用於根據本發明之電子裝置的電洞注入或電洞傳輸層或電子阻擋層或於電子傳輸層中,為(例如) Y. Shirota et al., Chem. Rev. 2007, 107(4), 953-1010中所揭示之化合物或根據先前技術使用於此等層中之其他材料。
可使用於電子傳輸層之材料為根據先前技術用作為電子傳輸層中之電子傳輸材料的所有材料。特別適合的是鋁錯合物(例如,Alq
3)、鋯錯合物(例如,Zrq
4)、鋰錯合物(例如LiQ)、苯并咪唑衍生物、三𠯤衍生物、嘧啶衍生物、吡啶衍生物、吡𠯤衍生物、喹㗁啉衍生物、喹啉衍生物、㗁二唑衍生物、芳族酮、內醯胺、硼烷、二氮磷雜環戊二烯(diazaphosphole)衍生物和氧化膦衍生物。此外,適當材料為上述化合物之衍生物,如JP 2000/053957、WO 2003/060956、WO 2004/028217、WO 2004/080975和WO 2010/072300中所揭示。
可用於根據本發明之電發光裝置中的電洞傳輸層、電洞注入層或電子阻擋層中之較佳電洞傳輸材料為茚并茀胺衍生物(例如根據WO 06/122630或WO 06/100896)、EP 1661888中所揭示之胺衍生物、六氮雜伸聯三苯衍生物(例如根據WO 01/049806)、含有縮合芳族環之胺衍生物(例如根據US 5,061,569)、WO 95/09147中所揭示之胺衍生物、單苯并茚并茀胺(例如根據WO 08/006449)、二苯并茚并茀胺(例如根據WO 07/140847)、螺二茀胺(例如根據WO 2012/034627或WO 2013/120577)、茀胺(例如根據申請案EP 2875092、EP 2875699和EP 2875004)、螺二苯并哌喃胺(例如根據WO 2013/083216)和二氫吖啶衍生物(例如根據WO 2012/150001)。根據本發明之化合物也可用作為電洞傳輸材料。
有機電發光裝置之陰極較佳包含具有低功函數之金屬、金屬合金或包含各種金屬之多層結構,諸如,例如鹼土金屬、鹼金屬、主族金屬或鑭系元素(例如Ca、Ba、Mg、Al、In、Mg、Yb、Sm、等等)。亦適合的是包含鹼金屬或鹼土金屬和銀之合金,例如包含鎂和銀之合金。在多層結構之情況中,除該等金屬外,也可使用具有較高功函數之其他金屬,諸如(例如)Ag或Al,在該情況中通常使用金屬之組合,諸如(例如)Ca/Ag、Mg/Ag或Ag/Ag。較佳亦可於金屬陰極與有機半導體之間引入具有高介電常數之材料的薄中間層。適合於此目的者為(例如)鹼金屬氟化物或鹼土金屬氟化物,但對應氧化物或碳酸鹽(例如LiF、Li
2O、BaF
2、MgO、NaF、CsF、Cs
2CO
3、等等)亦適合。此外,喹啉酸鋰(LiQ)可使用此目的。此層之層厚度較佳係介於0.5和5nm之間。
陽極較佳包含具有高功函數之材料。陽極較佳具有相對於真空為大於4.5 eV之功函數。適合於此目的者一方面為具有高氧化還原電位之金屬,諸如(例如)Ag、Pt或Au。另一方面,金屬/金屬氧化物電極(例如Al/Ni/NiO
x、Al/ PtO
x)亦可為較佳的。就一些應用而言,至少一個電極必須為透明或部分透明,以便促進有機材料之照射(有機太陽能電池)或光之耦合輸出(OLED、O-雷射)。較佳陽極材料在此為導電性混合金屬氧化物。特佳者為氧化銦錫(ITO)或氧化銦鋅(IZO)。此外較佳者為導電性摻雜型有機材料,特別是導電性摻雜型聚合物。
將裝置適當地(視應用而定)結構化,配備接點且最後密封,因為根據本發明之裝置的壽命在水及/或空氣存在下被縮短。
在一較佳實施態樣中,根據本發明之有機電發光裝置特徵在於一或多層係利用昇華方法塗布,其中該等材料係於真空昇華單元中在低於10
‑5毫巴,較佳低於10
‑6毫巴之初壓力下藉由氣相沈積施加。然而,初壓力在此也可能甚至更低,例如低於10
‑7毫巴。
同樣較佳者為一種有機電發光裝置,其特徵在於利用OVPD(有機氣相沈積)方法或輔以載體-氣體昇華法塗布一或多層,其中該等材料係在介於10
-5毫巴和1巴之間的壓力下施加。此方法的一特殊例子為OVJP(有機氣相噴墨印刷)方法,其中該等材料係透過噴嘴直接施加且因此結構化(例如,M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301)。
此外較佳者為一種有機電發光裝置,其特徵在於一或多層係諸如(例如)以旋轉塗布或利用任何所欲印刷方法(諸如,例如網版印刷、快乾印刷、噴嘴印刷或平版印刷,但特佳為LITI(光誘導熱成像、熱轉移印刷)或噴墨印刷)從溶液製造。為此目的需要可溶性式(I)化合物。高溶解度可透過該等化合物之適當取代而達成。
亦可能者為混合方法,其中,例如,一或多層係從溶液施加且一或多個其他層係藉由氣相沈積施加。因此,例如,可能從溶液施加發光層且可能藉由氣相沈積施加電子傳輸層。此等方法通常為熟習此項技術者已知且可由熟習此項技術者可在無進步性(inventive step)下應用於包含根據本發明之化合物的有機電發光裝置。
根據本發明,包含一或多種根據本發明之化合物的電子裝置可使用於顯示器中、作為照明應用中之光源及作為醫學及/或美容應用(例如光療法)中之光源。
現將以下列實施例更詳細地解釋本發明,而不希望因此限制本發明。
The invention is therefore based on the technical object of providing compounds suitable for use in electronic devices, such as OLEDs, more particularly as host materials for fluorescent emitters or as fluorescent emitters, which are suitable for vacuum processing or suitable for Solution processing. The present invention is also based on the technical object of providing methods and intermediate compounds for the manufacture of OLED materials. In the study of novel compounds for use in electronic devices, it has now been found that the compounds of formula (1) as defined below are very suitable for use in electronic devices. In particular, they achieve one or more, preferably all, of the above technical objectives. The present invention therefore relates to compounds of formula (1),
Wherein the following apply to the symbols and signs used: E stands for O or S, preferably O; X stands for CR identically or differently at each occurrence X or N; Y stands for CR identically or differently at each occurrence Y or N; or if Y is bonded to Ar S , Ar 1 or Ar 2 , Y is C or when Ar S is absent, Y is a heterocyclic ring represented in formula (1); Ar 1 , Ar 2 are in each represents identically or differently in the next occurrence an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, which in each case may be substituted by one or more radicals R; Ar S in each occurrence identically or differently an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, which in each case may be substituted with one or more groups R; R X , R Y in each occurrence stands identically or differently for H, D, F, Cl, Br, I, CHO, CN, C(=O)Ar, P(=O)(Ar) 2 , S(=O)Ar, S(=O) 2 Ar, N(R) 2 , N(Ar) 2 , NO 2 , Si(R) 3 , B(OR) 2 , OSO 2 R, straight-chain alkyl having 1 to 40 C atoms, alkoxy or thioalkyl or branched or cyclic alkyl, alkoxy or alkylthio groups having 3 to 40 C atoms, each of which may be substituted by one or more groups R, wherein in each case The next or more non-adjacent CH2 groups may be via RC=CR, C≡C, Si(R) 2 , Ge(R) 2 , Sn(R) 2 , C=O, C=S, C =Se, P(=O)(R ) , SO, SO2, O, S or CONR replacement and where one or more H atoms may be replaced by D, F, Cl, Br, I, CN or NO2, with Aromatic or heteroaromatic ring systems of 5 to 60 aromatic ring atoms, which in each case may be substituted by one or more radicals R, or aryloxy groups of 5 to 60 aromatic ring atoms, which may be substituted with one or more groups R; wherein two groups R X may be taken together to form an aliphatic, aromatic or heteroaromatic ring system, which may be substituted with one or more groups R; and wherein two groups The groups R Y may together form an aliphatic, aromatic or heteroaromatic ring system, which may be substituted with one or more groups R; R represents H, D, F, Cl, Br identically or differently at each occurrence , I, CHO, CN, C(=O)Ar, P(=O)(Ar) 2 , S(=O)Ar, S(=O) 2 Ar, N(R´) 2 , N(Ar) 2 , NO 2 , Si(R´) 3 , B(OR´) 2 , OSO 2 R´, straight-chain alkyl, alkoxy or thioalkyl having 1 to 40 C atoms or 3 Branched or cyclic alkyl, alkoxy or alkylthio groups of up to 40 C atoms, each of which may be substituted by one or more groups R', wherein in each case or more non-adjacent The CH 2 group is accessible through R´C= CR´, C≡C, Si(R´) 2 , Ge(R´) 2 , Sn(R´) 2 , C=O, C=S, C=Se, P(=O)(R´), SO, SO2 , O, S or CONR ' substitution and where one or more H atoms can be replaced by D, F, Cl, Br, I, CN or NO2, aromatics having 5 to 60 aromatic ring atoms or heteroaromatic ring systems, which in each case may be substituted with one or more groups R´, or aryloxy groups having 5 to 60 aromatic ring atoms, which may be substituted with one or more R´ groups group substitution; wherein two groups R may together form an aliphatic or aromatic ring system, which may be substituted by one or more R'groups; Ar is identical or different at each occurrence with 5 to 60 Aromatic or heteroaromatic ring systems of aromatic ring atoms, which in each case may also be substituted by one or more R´ groups; R´ at each occurrence identically or differently represents H, D, F , Cl, Br, I, CN, straight-chain alkyl, alkoxy or thioalkoxy with 1 to 20 C atoms or branched or cyclic alkyl, alkane with 3 to 20 C atoms oxy or alkylthio, wherein in each case one or more non-adjacent CH 2 groups can be replaced by SO, SO 2 , O, S and one or more H atoms can be replaced by D, F, Cl , Br or I substitution, or an aromatic or heteroaromatic ring system having 5 to 24 aromatic ring atoms; n, m represent an integer selected from 0, 1 and 2; the prerequisite is n=m; p, q represents 1, 2 or 3 identically or differently, preferably 1. Adjacent groups in the sense of the present invention are groups that are bonded to atoms directly connected to each other or to the same atom. Furthermore, the following definitions of chemical groups apply for the purposes of this application: Aryl in the sense of the present invention contains 6 to 60 aromatic ring atoms, preferably 6 to 40 aromatic ring atoms, more preferably 6 to 60 aromatic ring atoms. 20 aromatic ring atoms; heteroaryl in the sense of the present invention contains 5 to 60 aromatic ring atoms, preferably 5 to 40 aromatic ring atoms, more preferably 5 to 20 aromatic ring atoms, wherein At least one of them is a heteroatom. The heteroatoms are preferably selected from N, O and S. This represents the basic definition. These apply if other preferred choices are indicated in the description of the present invention, eg with regard to the number of aromatic ring atoms or heteroatoms present. Aryl or heteroaryl here means a simple aromatic ring (ie, benzene), or a simple heteroaromatic ring (eg, pyridine, pyrimidine, or thiophene), or a condensed (annellated) aromatic or heteroaromatic polycyclic Ring (eg naphthalene, phenanthrene, quinoline or carbazole). A condensed (fused) aromatic or heteroaromatic polycyclic ring in the sense of the present application consists of two or more simple aromatic or heteroaromatic rings condensed with each other. Aryl or heteroaryl radicals which in each case may be substituted by the abovementioned radicals and which may be attached to an aromatic or heteroaromatic ring system via any desired position means in particular radicals derived from: benzene, naphthalene, anthracene, phenanthrene, pyrene, dihydropyrene, (chrysene), perylene, fluoranthene, benzanthracene, triphenylene, fused tetraphenyl, fused pentaphenyl, benzopyrene, furan, benzofuran, isobenzofuran, dibenzofuran , thiophene, benzothiophene, isobenzothiophene, dibenzothiophene, pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthrene, benzo-5,6 - Quinoline, benzo-6,7-quinoline, benzo-7,8-quinoline, phenothia, phenothia, pyrazole, indazole, imidazole, benzimidazole, naphthimidazole , phenanthrimidazole, pyridimidazole, pyrazinimidazole, quinoxalinimidazole, oxazole, benzoxazole, naphthoxazole, anthra Anthroxazole, phenanthroxazole, isoxazole, 1,2-thiazole, 1,3-thiazole, benzothiazole, pyridoxine, benzothiazol, pyrimidine, benzopyrimidine, quino Linen, pyridine, phenanthrene, pyridine, azacarbazole, benzocarboline, phenanthroline, 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1,2 ,3-㗁adiazole, 1,2,4-㗁adiazole, 1,2,5-㗁adiazole, 1,3,4-㗁adiazole, 1,2,3-thiadiazole, 1,2 ,4-Thiadiazole, 1,2,5-Thiadiazole, 1,3,4-Thiadiazole, 1,3,5-Tris 𠯤, 1,2,4-Tris 𠯤, 1,2,3 -Tris𠯤, tetrazole, 1,2,4,5-tetrakis, 1,2,3,4-tetrakis, 1,2,3,5-tetrakis, purine, pteridine, indium and benzothiadiazoles. Aryloxy as defined in the present invention means an aryl group as defined above, which is bound via an oxygen atom. Similar definitions apply to heteroaryloxy. Aromatic ring systems in the sense of the present invention contain 6 to 60 C atoms, preferably 6 to 40 C atoms, more preferably 6 to 20 C atoms in the ring system. Heteroaromatic ring systems in the sense of the present invention contain 5 to 60 aromatic ring atoms, preferably 5 to 40 aromatic ring atoms, more preferably 5 to 20 aromatic ring atoms, at least one of which is heteroatoms. The heteroatoms are preferably selected from N, O and/or S. Aromatic or heteroaromatic ring systems in the sense of the present invention do not necessarily have to contain only aryl or heteroaryl groups, but in which additionally a plurality of aryl or heteroaryl groups can be separated by non-aromatic units (preferably A system that is linked with less than 10% of atoms other than H, such as, for example, sp3 -mixed C, Si, N or O atoms, sp2 -mixed C or N atoms, or sp-mixed C atoms. Thus, for example, systems such as 9,9'-spirobispyridine, 9,9'-diarylpyridinium, triarylamines, diaryl ethers, stilbenes, and the like are also intended to be used within the meaning of the present invention Aromatic ring systems such as those in which two or more aryl groups are linked, for example, by straight-chain or cyclic alkyl, alkenyl or alkynyl groups, or by silicon groups. Furthermore, systems in which two or more aryl or heteroaryl groups are linked to each other via single bonds are also aromatic or heteroaromatic ring systems in the sense of the present invention, such as, for example, systems such as biphenyl, bitriphenylene Benzene or diphenyl tris. An aromatic or heteroaromatic ring having 5 to 60 aromatic ring atoms which may also be substituted in each case by a group as defined above and which may be attached to the aromatic or heteroaromatic group via any desired position System means in particular groups derived from: benzene, naphthalene, anthracene, benzanthracene, phenanthrene, triphenylene, pyrene, (chrysene), perylene, fluoranthene, condensed tetraphenyl, condensed pentabenzene, benzopyrene, biphenyl, biphenylene, terphenyl, terphenylene ), bitetraphenyl (quaterphenyl), pyridine, spirobiphenyl, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans-indenoprene, truxene, isotruxene , Spirotrimeric indene, Spiroheterotrimeric indene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene, pyrrole, indole, iso Indole, carbazole, indolocarbazole, indenocarbazole, pyridine, quinoline, isoquinoline, acridine, phenanthrene, benzo-5,6-quinoline, benzo-6,7-quinoline Linen, benzo-7,8-quinoline, phenanthrimidazole, phenanthrene, pyrazole, indazole, imidazole, benzimidazole, naphthimidazole, phenanthrimidazole, pyridimidazole ( pyridimidazole), pyrazinimidazole (pyrazinimidazole), quinoxalinimidazole (quinoxalinimidazole), oxazole, benzoxazole, naphthoxazole (naphthoxazole), anthroxazole (anthroxazole), phenanthroxazole (phenanthroxazole) ), isoxazole, 1,2-thiazole, 1,3-thiazole, benzothiazole, pyrimidine, benzopyrimidine, quinoline, 1,5-diazathene, 2 ,7-diazapyrene, 2,3-diazapyrene, 1,6-diazapyrene, 1,8-diazapyrene, 4,5-diazapyrene, 4,5,9, 10-Tetraazaperylene, pyridine, phenanthrene, phenanthrene, phenothiae, fluorubin, pyridine, azacarbazole, benzocarboline, phenanthrene, 1,2,3- Triazole, 1,2,4-triazole, benzotriazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3 ,4-thiadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1,3 ,5-three𠯤, 1,2,4-three𠯤, 1,2,3-three𠯤, tetrazole, 1,2,4,5-four𠯤, 1,2,3,4-four𠯤, 1 ,2,3,5-tetrakis, purine, pteridine, indium and benzothiadiazole, or a combination of these groups. For the purposes of the present invention, a straight-chain alkyl group having 1 to 40 C atoms or a branched or cyclic alkyl group having 3 to 40 C atoms or an alkenyl or alkynyl group having 2 to 40 C atoms , wherein, in addition, individual H atoms or CH 2 groups may be substituted by groups under the definitions of these groups above, preferably meaning the groups methyl, ethyl, n-propyl, isopropyl, n-butyl Base, isobutyl, secondary butyl, tertiary butyl, 2-methylbutyl, n-pentyl, secondary pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, neohexyl, n- Heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, vinyl, propenyl, butene base, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl, ethynyl, propynyl, butynyl, pentynyl Alkynyl, hexynyl or octynyl. The alkoxy or alkylthio group having 1 to 40 C atoms preferably means methoxy, trifluoromethoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy base, secondary butoxy, tertiary butoxy, n-pentyloxy, secondary pentoxy, 2-methylbutoxy, n-hexyloxy, cyclohexyloxy, n-heptyloxy, cycloheptyloxy base, n-octyloxy, cyclooctyloxy, 2-ethylhexyloxy, pentafluoroethoxy, 2,2,2-trifluoroethoxy, methylthio, ethylthio, n-propylthio , isopropylthio, n-butylthio, isobutylthio, secondary butylthio, tertiary butylthio, n-pentylthio, secondary pentylthio, n-hexylthio, cyclohexylthio, n-heptyl Thio, cycloheptylthio, n-octylthio, cyclooctylthio, 2-ethylhexylthio, trifluoromethylthio, pentafluoroethylthio, 2,2,2-trifluoroethylthio, Vinylthio, propylenethio, butenylthio, pentenylthio, cyclopentenylthio, hexenylthio, cyclohexenylthio, heptenylthio, cycloheptenylthio, octenylthio , cyclooctenylthio, ethynylthio, propynylthio, butynylthio, pentynylthio, hexynylthio, heptynylthio or octynylthio. For the purposes of this application, the designation that two or more groups can form a ring with each other specifically means that the two groups are linked to each other by a chemical bond. This is illustrated in the following diagram: In addition, however, the above scheme also means that in the case where one of the two groups represents hydrogen, the second group is bonded to the position where the hydrogen atom is bonded, and a ring is formed. This is illustrated in the following diagram: When two groups form a ring with each other, it is preferable that the two groups are adjacent groups. As mentioned above, adjacent groups in the sense of the present invention are groups that are bonded to atoms directly connected to each other or to the same atom. According to a preferred embodiment, the compound of formula (1) is selected from compounds of formula (2), (3), (4) or (5), Herein, the symbols and reference numerals have the same meanings as above. According to a more preferred embodiment, the compound of formula (1) is selected from the compounds of formula (2-1), (3-1), (4-1) or (5-1), Herein, the symbols and reference numerals have the same meanings as above. According to a very preferred embodiment, the compound of formula (1) is selected from the compounds of formulae (2-1-1) to (2-1-5), Herein, the symbols and reference numerals have the same meanings as above. According to a preferred embodiment, n=m=0. According to another preferred embodiment, n=m=1. According to a preferred embodiment, Ar 1 and Ar 2 represent, identically or differently, 5 to 40, more preferably 5 to 30, very preferably 5 to 25, particularly preferably 6 to 18 at each occurrence. Aromatic or heteroaromatic ring systems of aromatic ring atoms, which in each case may be substituted with one or more groups R. According to a very preferred embodiment, Ar 1 and Ar 2 represent phenyl, biphenyl, terphenyl, phenyl, spirobiphenyl, naphthalene, anthracene, phenanthrene, fused tetraphenyl, identically or differently at each occurrence , , triphenylene, benzanthracene, pyrene, perylene, triphenylene, benzopyrene, fluoranthene, dibenzofuran, dibenzothiophene, carbazole or any of these groups Combinations of two or three, each of which may be substituted with one or more groups R. According to a particularly preferred embodiment, Ar 1 and Ar 2 represent, identically or differently at each occurrence, phenyl, biphenyl, triphenyl, phenyl, spirobiphenyl, dibenzofuran, dibenzothiophene, carbohydrate azole or a combination of two or three of these groups, each of which may be substituted with one or more groups R. Examples of suitable groups Ar 1 and Ar 2 are the groups of formulae (Ar-1) to (Ar-9): where - E 1 represents C(R 0 ) 2 , NR N , O or S, identically or differently at each occurrence, and - R 0 , R N are identically or differently at each occurrence H, D, F, Cl, Br, I, CN, Si(R) 3 , straight-chain alkyl, alkoxy or alkylthio having 1 to 40, preferably 1 to 20, more preferably 1 to 10 C atoms or have 3 to 40, preferably 3 to 20, more preferably 3 to 10 branched or cyclic alkyl, alkoxy or alkylthio groups of C atoms, each of which may be substituted with one or more groups R , where in each case one or more non-adjacent CH 2 groups can be modified via RC=CR, C≡C, Si(R) 2 , Ge(R) 2 , Sn(R) 2 , C=O, C=S, C=Se, P(=O)(R ) , SO, SO2, O, S or CONR substitution and one or more of the H atoms may be replaced by D, F, Cl, Br, I, CN or NO 2 substitution, aromatic or heteroaromatic rings having 5 to 60, preferably 5 to 40, more preferably 5 to 30, particularly preferably 5 to 24, very particularly preferably 5 to 18 aromatic ring atoms systems, which in each case may be substituted by one or more groups R, or have 5 to 60, preferably 5 to 40, more preferably 5 to 30, particularly preferably 5 to 24, very particularly preferably 5 Aryloxy to 18 aromatic ring atoms, which may be substituted by one or more radicals R, wherein two radicals R may together form an aliphatic, aromatic or heteroaromatic ring system, which may be substituted by a or groups substituted with R; - the dashed line represents a bond to the adjacent anthracene moiety; and - the groups of formulae (Ar-1) to (Ar-9) may be substituted at each free position with a group R, wherein R has the same meaning as above. Groups of formulae (Ar-1) to (Ar-3) are particularly preferred. Very suitable examples of the groups Ar 1 and Ar 2 are the groups of formulae (Ar1-1) to (Ar1-27): wherein - E 1 , R 0 , R N have the same meanings as above; - the dashed line represents the bond to the adjacent anthracene moiety; and - the groups of formulae (Ar-1) to (Ar-27) may be free in each Positions are substituted with groups R, wherein R has the same meaning as above. Preferably, the groups Ar S represent identically or differently at each occurrence an aromatic or heteroaromatic ring system having 5 to 25, preferably 6 to 18, aromatic ring atoms, which in each case can be Substituted with one or more groups R. More preferably, the group Ar S represents, identically or differently at each occurrence, phenyl, biphenyl, phenyl, spirobiphenyl, naphthalene, phenanthrene, anthracene, dibenzofuran, dibenzothiophene, carbazole, pyridine , pyrimidine, pyridine, pyridoxine, tripyridine, benzopyridine, benzopyridine, and quinazoline, each of which may be substituted with one or more groups R. Examples of suitable groups Ar S are the groups of formulae (ArS-1) to (ArS-27) as represented in the following table: wherein the dashed bond indicates a bond to an adjacent group in formula (1); wherein the groups of formulae (ArS-1) to (ArS-27) may be substituted at each free position with a group R, which has have the same meaning as defined above; and wherein each occurrence of the group E 3 is identically or differently selected from -BR 0 -, -C(R 0 ) 2 -, -Si(R 0 ) 2 -, -C(= O)-, -O-, -S-, -S(=O)-, -SO 2 -, -N(R 0 )-, and -P(R 0 )-, where R 0 is as defined above . Preferably, the group E 3 is identically or differently selected from -C(R 0 ) 2 -, -O-, -S- and -N(R 0 )-, wherein R 0 is as defined above. In the groups of the formulae (ArS-1) to (ArS-27), the formulae (ArS-1), (ArS-2), (ArS-3), (ArS-11), (ArS-12) and ( ArS-27) groups are preferred. Groups of formula (ArS-1), (ArS-2), (ArS-3) are very preferred. Groups of formula (ArS-1) are particularly preferred. Preferably, R X , R Y represent H, D, F, CN, N(Ar) 2 identically or differently at each occurrence, with 1 to 40, preferably 1 to 20, more preferably 1 to A straight-chain alkyl, alkoxy or alkylthio group of 10 C atoms or a branched or cyclic alkyl, alkoxy group having 3 to 40, preferably 3 to 20, more preferably 3 to 10 C atoms or alkylthio, each of which may be substituted with one or more groups R, wherein in each case or more non-adjacent CH2 groups may be substituted with RC=CR, C≡C, O or S Substitution and one or more H atoms may be replaced by D or F, or aromatic having 5 to 60, preferably 5 to 40, more preferably 5 to 30, particularly preferably 6 to 18 aromatic ring atoms or a heteroaromatic ring system, which in each case may be substituted by one or more groups R, wherein two adjacent groups R may together form an aliphatic, aromatic or heteroaromatic ring system, which may be and wherein two adjacent groups R Y may together form an aliphatic, aromatic or heteroaromatic ring system, which may be substituted with one or more groups R. More preferably, R X , R Y represent, identically or differently at each occurrence, H, D, F, straight-chain alkyl having 1 to 10 C atoms or branched or cyclic having 3 to 10 C atoms Alkyl, each of which may be substituted by one or more groups R, wherein in each case or more H atoms may be replaced by D or F, having 5 to 30, preferably 6 to 18 aromatic Aromatic or heteroaromatic ring systems of ring atoms, which in each case may be substituted with one or more radicals R, wherein two adjacent radicals R may together form an aliphatic, aromatic or heteroaromatic ring system, which may be substituted with one or more groups R; and wherein two adjacent groups R Y may together form an aliphatic, aromatic or heteroaromatic ring system, which may be substituted with one or more groups R . Preferably, R represents H, D, F, CN, N(Ar) 2 identically or differently at each occurrence, having 1 to 40, preferably 1 to 20, more preferably 1 to 10 C atoms straight-chain alkyl, alkoxy or alkylthio or branched or cyclic alkyl, alkoxy or alkylthio having 3 to 40, preferably 3 to 20, more preferably 3 to 10 C atoms radicals, each of which may be substituted with one or more groups R´, wherein in each case or more non-adjacent CH 2 groups may be substituted with R´C=CR´, C≡C, O or S Substitution and one or more of the H atoms may be replaced by D or F, or aromatic having 5 to 60, preferably 5 to 40, more preferably 5 to 30, particularly preferably 6 to 18 aromatic ring atoms or heteroaromatic ring systems, which in each case may be substituted by one or more groups R´. Preferably, Ar, at each occurrence, is identically or differently an aromatic or heteroaromatic ring system having 5 to 40, preferably 5 to 30, more preferably 6 to 18 aromatic ring atoms, which is In each case may be substituted with one or more groups R'. Preferably, R' represents, identically or differently at each occurrence, H, D, F, Cl, Br, I, CN, straight-chain alkyl having 1 to 10 C atoms or 3 to 10 C atoms A branched or cyclic alkyl group in which in each case or more H atoms can be replaced by D or F, or an aromatic or heteroaromatic ring system having 5 to 18 C atoms. The following compounds are examples of compounds of formula (1): Compounds according to the invention can be prepared by synthetic procedures known to those skilled in the art, such as, for example, bromination, Suzuki coupling, Ullmann coupling, Hartwig-Buchwald coupling, and the like. Examples of suitable synthetic methods are generally described in Schemes 1 and 2 below. Process 1 Wherein, in Scheme 1: X 1 and X 2 are the same or different leaving groups, preferably selected from the group consisting of halogen atoms, triflate and boronic acid derivatives. Anth corresponds to anthracenyl; Ar 1 and Ar 2 have the same definitions as above. Process 2 Wherein, in the process 2: X 1 and X 2 are different leaving groups, preferably selected from the group consisting of halogen atoms, triflate and boronic acid derivatives. More preferably, X 1 is triflate and X 2 is halogen; Anth corresponds to anthracenyl; Ar 1 and Ar 2 have the same definitions as above. The structures described in Schemes 1 and 2 can be further substituted at any free position. Another object of the present application is therefore a process for the preparation of a compound according to formula (1), characterized in that it comprises a coupling reaction (preferably a Suzuki coupling reaction) of a dibenzofuran having two reactive groups with an anthracene derivative . In order to process the compounds according to the invention from the liquid phase, eg by spin coating or by printing methods, formulations of the compounds according to the invention are required. Such formulations can be, for example, solutions, dispersions or emulsions. For this purpose, it is preferable to use a mixture of two or more solvents. The solvent is preferably selected from organic and inorganic solvents, more preferably organic solvents. The solvent is very preferably selected from hydrocarbons, alcohols, esters, ethers, ketones and amines. Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, trimethylbenzene, tetralin, veratrole, THF, methyl-THF , THP, chlorobenzene, diethane, phenoxytoluene (especially 3-phenoxytoluene), (-)-fenone, 1,2,3,5-tetramethylbenzene, 1,2,4 ,5-tetramethylbenzene, 1-methylnaphthalene, 1-ethylnaphthalene, decylbenzene, phenylnaphthalene, menthyl isovalerate, p-tolyl isobutyrate, cyclohexal hexanoate ), ethyl p-toluate, ethyl o-toluate, ethyl m-toluate, decalin, ethyl 2-methoxybenzoate, dibutylaniline, dicyclohexyl ketone, dimethyl isosorbide Ether, decalin, 2-methylbiphenyl, ethyl octanoate, octyl octanoate, diethyl sebacate, 3,3-dimethylbiphenyl, 1,4-dimethylnaphthalene, 2,2 ´-dimethylbiphenyl, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidone, 3-methylanisole, 4-methylanisole, 3,4-bis Methyl anisole, 3,5-dimethylanisole, acetophenone, alpha-terpineol, benzothiazole, butyl benzoate, cumene, cyclohexanol, cyclohexanone, cyclohexyl Benzene, decalin, dodecylbenzene, ethyl benzoate, indane, NMP, p-isopropyltoluene, phenylethyl ether, 1,4-diisopropylbenzene, benzhydryl ether , Diethylene glycol butyl methyl ether, triethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, diethylene glycol monobutyl ether, tripropylene glycol dimethyl ether , tetraethylene glycol dimethyl ether, 2-isopropylnaphthalene, pentylbenzene, hexylbenzene, heptylbenzene, octylbenzene, 1,1-bis(3,4-dimethylphenyl)ethane or a mixture of these solvents. The present invention thus further relates to a formulation comprising a compound according to the invention and at least one further compound. The other compound may be, for example, a solvent, in particular one of the abovementioned solvents or a mixture of these solvents. However, other compounds may also be at least one other organic or inorganic compound that is also used in electronic devices, such as phosphorescent dopants, fluorescent dopants, TADF dopants and/or host materials. Suitable compounds are indicated below with electroluminescent devices. This other compound can also be a polymer. Preferably, the formulation comprises a compound of formula (1) and at least one solvent. More preferably, the formulation comprises a compound of formula (1), a luminescent material selected from fluorescent emitters, TADF emitters and phosphorescent emitters, and at least one solvent. Even more preferably, the formulation comprises a compound of formula (1), a luminescent material selected from fluorescent emitters, TADF emitters and phosphorescent emitters, other host materials and at least one solvent. The compounds and mixtures according to the invention are suitable for use in electronic devices. Electronic device means herein a device comprising at least one layer comprising at least one organic compound. However, a component may also in this context comprise inorganic materials or layers composed entirely of inorganic materials. The present invention therefore furthermore relates to the use of the compounds or mixtures according to the invention in electronic devices, in particular in organic electroluminescent devices. The present invention furthermore relates to an electronic device comprising at least one of the abovementioned compounds or mixtures according to the invention. The preferred selection of compounds described above also applies to electronic devices. The electronic device is preferably selected from the group consisting of organic electroluminescent devices (OLED, PLED), organic integrated circuit (O-IC), organic field effect transistor (O-FET), organic thin film transistor (O -TFT), organic light-emitting transistors (O-LET), organic solar cells (O-SC), organic dye-sensitized solar cells, organic optical detectors, organic photoreceptors, organic field quenching devices (O- FQDs), light emitting electrochemical cells (LECs), organic laser diodes (O-lasers), and "organic plasmon emitting devices" (DM Koller et al., Nature Photonics 2008, 1-4), preferably Organic electroluminescent devices (OLEDs, PLEDs), especially phosphorescent OLEDs. An organic electroluminescent device includes a cathode, an anode, and at least one light-emitting layer. In addition to these layers, the organic electroluminescent device may also comprise other layers, such as in each case one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, excitons Blocking layers, electron blocking layers, and/or charge generating layers. It is also possible to introduce an intermediate layer with, for example, an exciton blocking function between the two light-emitting layers. However, it should be noted that each of these layers does not necessarily have to be present. The organic electroluminescent device can here comprise one light-emitting layer or a plurality of light-emitting layers. If a plurality of light-emitting layers are present, these preferably have a plurality of light-emitting maxima totaling between 380 nm and 750 nm, resulting in white light emission as a whole, ie various light-emitting compounds capable of fluorescing or phosphorescence are used in the light-emitting layer . Particularly preferred are systems with three light-emitting layers, wherein the three layers exhibit blue, green and orange or red light emission (see eg WO 2005/011013 for the basic structure). These may be fluorescent or phosphorescent light-emitting layers or hybrid systems in which fluorescent and phosphorescent light-emitting layers are combined with each other. The compounds according to the invention according to the embodiments shown above can be used in various layers depending on the precise structure and substitution. Preferably, a compound comprising formula (1) or according to a preferred embodiment is used as a fluorescent emitter, as an emitter exhibiting TADF (thermally activated delayed fluorescence), or as a dopant for selected luminescent materials The organic electroluminescent device of the host material. Particularly preferred is an organic electroluminescent device comprising a compound of formula (1) or according to preferred embodiments as a host material for a fluorescent emitter, more particularly for a blue fluorescent emitter. The compounds of formula (1) can also be used in electron transport layers and/or electron blocking layers or in exciton blocking layers and/or hole transport layers, depending on the precise substitution. The above preferred embodiments are also applicable to the use of materials in organic electronic devices. The compounds according to the invention are particularly suitable as host materials for fluorescent emitter compounds. The terms host material and matrix material are used synonymously. Host material herein means a material that is present in the light-emitting layer, preferably as a main component, and which does not emit light when the device is operating. The proportion of light-emitting compound in the mixture of the light-emitting layer is between 0.1 and 50.0%, preferably between 0.5 and 20.0%, particularly preferably between 1.0 and 10.0%. Correspondingly, the proportion of the host material or the host material etc. is between 50.0 and 99.9%, preferably between 80.0 and 99.5%, particularly preferably between 90.0 and 99.0%. For the purposes of this application, the specification of ratios in % means % by volume if the compound is applied from the gas phase and % by weight if the compound is applied from solution. If the compounds according to the invention are used as host materials for fluorescent light-emitting compounds in the light-emitting layer, they can be used in combination with one or more fluorescent light-emitting compounds. Preferred fluorescent emitters are aromatic anthraceneamines, aromatic anthracene diamines, aromatic pyrene amines, aromatic pyrene diamines, aromatic Amine (chrysenamine) or aromatic Diamine. Aromatic anthracenamine means a compound in which one diarylamine group is directly bonded to an anthracene group (preferably at the 9 position). Aromatic anthracenediamine means a compound in which two diarylamine groups are directly bonded to an anthracene group (preferably at the 9,10-position). Aromatic pyreneamine, pyrenediamine, Amines and Diamines are defined analogously, wherein the diarylamine group is preferably bonded to the 1-position or the 1,6-position of the pyrene. Other preferred emitters are indenoindenamines or indenediamines (eg according to WO 2006/108497 or WO 2006/122630), benzoindenolidamines or benzoindenediamines (eg according to WO 2008/ 006449), and dibenzoindenoindenamine or dibenzoindenoindenadiamine (eg according to WO 2007/140847), and indenoindenine derivatives containing condensed aryl groups disclosed in WO 2010/012328. Still other preferred emitters are benzanthracene derivatives as disclosed in WO 2015/158409, anthracene derivatives as disclosed in WO 2017/036573, perylene diols linked via a heteroaryl group as in WO 2016/150544 polymers or derivatives of brownies as disclosed in WO 2017/028940 and WO 2017/028941. Also preferred are the pyrenarylamines disclosed in WO 2012/048780 and WO 2013/185871. Also preferred are benzoindenofluorenamines disclosed in WO 2014/037077, benzoindenofluorenamines disclosed in WO 2014/106522 and WO 2014/111269 or WO 2017/036574, WO 2018/007421 The indene disclosed in and fu. Preferably also as disclosed in WO 2018/095888, WO 2018/095940, WO 2019/076789, WO 2019/170572 and unpublished applications PCT/EP2019/072697, PCT/EP2019/072670 and PCT/EP2019/072662 Emitters containing dibenzofuran or indenodibenzofuran moieties. Also preferred are boron derivatives as disclosed for example in WO 2015/102118, CN108409769, CN107266484, WO2017195669, US2018069182 and in unpublished applications EP 19168728.4, EP 19199326.0 and EP 19208643.7. Examples of suitable fluorescent emitters for use in combination with compounds of formula (1) are described in the following table: The electronic device concerned may comprise a single light-emitting layer comprising a compound according to the present invention, or it may comprise two or more light-emitting layers. The other light-emitting layers can here contain one or more compounds according to the invention or other compounds. If the compounds according to the invention are used as host materials for fluorescent light-emitting compounds in the light-emitting layer, they can be used in combination with one or more other host materials. Preferred host materials for use in combination with compounds of formula (1) or preferred embodiments thereof are selected from the following classes: oligoarylene (eg according to EP 676461 2,2',7,7' - tetraphenylspirobispyridine or dinaphthylanthracene), especially oligoarylene, oligoarylenevinylene containing condensed aromatic groups (eg DPVBi or spiro-DPVBi according to EP 676461) ), polypodal metal complexes (eg according to WO 2004/081017), hole conducting compounds (eg according to WO 2004/058911 ), electron conducting compounds, especially ketones, phosphine oxides, selenium, etc. ( For example according to WO 2005/084081 and WO 2005/084082), atropisomers (for example according to WO 2006/048268), boronic acid derivatives (for example according to WO 2006/117052), benzanthracene (for example according to WO 2008/145239) or phenanthrene (eg according to WO2009/100925). Particularly preferred host materials are selected from the following classes: oligoarylenes, oligoarylenes, vinylenes, ketones, oxidized Phosphine and sulfite. Very particularly preferred host materials are selected from the class of oligoarylenes comprising anthracene, benzanthracene, triphenylene and/or pyrene or atropisomers of these compounds. Oligomeric arylidene in the sense of the present invention means a compound in which at least three aryl or arylidene groups are bonded to each other. Particularly preferred host materials for use in light-emitting layers in combination with compounds of formula (1) are described in the following table: On the other hand, the compounds according to the invention can also be used as fluorescent light-emitting compounds. In this case, suitable host materials for the compound of formula (1) used as the fluorescent light-emitting compound correspond to other compounds of formula (1) or the above-mentioned preferred host materials. The compounds according to the invention can also be used in other layers, for example as hole-transporting materials in hole-injecting or hole-transporting layers or electron-blocking layers or as host materials in light-emitting layers, preferably as host materials for phosphorescent emitters . If the compound of formula (1) is used as a hole transport material in a hole transport layer, hole injection layer or electron blocking layer, the compound can be used in the hole transport layer as pure material (ie in a proportion of 100%) , or in combination with one or more other compounds. According to a preferred embodiment, the organic layer comprising the compound of formula (I) additionally comprises one or more p-dopants. The p-dopants used according to the invention are preferably organic electron acceptor compounds capable of oxidizing one or more of the other compounds of the mixture. Particularly preferred embodiments of p-dopants are WO 2011/073149, EP 1968131, EP 2276085, EP 2213662, EP 1722602, EP 2045848, DE 102007031220, US 8044390, US 8057712, WO 2009/003455, WO 2010/043789 , WO 2011/120709, US 2010/0096600 and compounds disclosed in WO 2012/095143. The compound of formula (1) is preferably used in combination with a fluorescent material as a host material. However, the compound of formula (1) can also be used as a host material in combination with a phosphorescent material in the light-emitting layer. In this case, the phosphorescent emitter is preferably selected from the classes and embodiments of phosphorescent emitters shown below. Furthermore, in this case one or more other host materials are preferably present in the light emitting layer. So-called hybrid matrix systems or hybrid host systems of this type preferably comprise two or three different host materials, particularly preferably two different host materials. It is preferred here that one of the two materials is a material with hole transport properties and the other material is a material with electron transport properties. The compound of formula (1) is preferably a material having hole transport properties. However, the desired electron-transporting and hole-transporting properties of a mixed-host component may also be predominantly or completely combined in a single mixed-host component, where other mixed-host components or components, etc. fulfill other functions. The two different host materials can be present here in a ratio of 1:50 to 1:1, preferably 1:20 to 1:1, particularly preferably 1:10 to 1:1 and very particularly preferably 1:4 to 1:1. A more detailed description of the hybrid-body system is given, inter alia, in application WO 2010/108579. Particularly suitable host materials which can be used in combination with the compounds according to the invention as host components of a hybrid-host system are selected from the preferred host materials for the phosphorescent dopants shown below or the preferred host materials for the fluorescent emitters , depending on the type of emitter compound used in the mixed host system. Suitable phosphorescent emitters in particular emit light when properly excited (preferably in the visible region) and additionally contain at least one compound having an atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80 compound of atoms. The phosphorescent emitters used are preferably compounds containing copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium, in particular compounds containing iridium, platinum or copper. For the purposes of the present invention, all luminescent iridium, platinum or copper complexes are considered phosphorescent compounds. Examples of the aforementioned phosphorescent emitters are given by the applications WO 2000/70655, WO 2001/41512, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO 2005/033244, WO 2005/019373 and US Revealed 2005/0258742. In general, all phosphorescent complexes known according to the prior art for phosphorescent OLEDs and known to those skilled in the art of organic electroluminescent devices are suitable for use in the devices according to the invention. Those skilled in the art will also be able to use other phosphorescent complexes in combination with the compounds according to the invention in OLEDs without progress. Preferred host materials for phosphorescent emitters are aromatic ketones, aromatic phosphine oxides or aromatic arylenes or arborites (eg according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680), Triarylamines, carbazole derivatives such as CBP (N,N-biscarbazolylbiphenyl) or as disclosed in WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527 or WO 2008/086851 carbazole derivatives), indolocarbazole derivatives (eg according to WO 2007/063754 or WO 2008/056746), indenocarbazole derivatives (eg according to WO 2010/136109, WO 2011/000455 or WO 2013/041176 ), azacarbazole derivatives (eg according to EP 1617710, EP 1617711, EP 1731584, JP 2005/347160), bipolar matrix materials (eg according to WO 2007/137725), silanes (eg according to WO 2005/111172), nitrogen azaborole or boronate esters (eg according to WO 2006/117052), tris(2) derivatives (eg according to WO 2010/015306, WO 2007/063754 or WO 2008/056746), zinc complexes (eg According to EP 652273 or WO 2009/062578), diazasilole and tetraazasilole derivatives (eg according to WO 2010/054729), diazasilole diazaphosphole derivatives (eg according to WO 2010/054730), bridged carbazole derivatives (eg according to US 2009/0136779, WO 2010/050778, WO 2011/042107, WO 2011/088877 or WO 2012/143080), Triphenyl derivatives (eg according to WO 2012/048781) or lactamides (eg according to WO 2011/116865 or WO 2011/137951). In addition to the compounds according to the invention, suitable charge transport materials, such as can be used in hole injection or hole transport layers or electron blocking layers or in electron transport layers of electronic devices according to the invention, are, for example, Y. Shirota The compounds disclosed in et al., Chem. Rev. 2007, 107(4), 953-1010 or other materials used in these layers according to prior art. Materials that can be used in the electron transport layer are all materials used as electron transport materials in the electron transport layer according to the prior art. Particularly suitable are aluminum complexes (eg, Alq 3 ), zirconium complexes (eg, Zrq 4 ), lithium complexes (eg, LiQ), benzimidazole derivatives, triazole derivatives, pyrimidine derivatives, Pyridine derivatives, pyridine derivatives, quinoline derivatives, quinoline derivatives, oxadiazole derivatives, aromatic ketones, lactamides, boranes, diazaphosphole derivatives and phosphine oxide derivatives. Furthermore, suitable materials are derivatives of the above-mentioned compounds, as disclosed in JP 2000/053957, WO 2003/060956, WO 2004/028217, WO 2004/080975 and WO 2010/072300. Preferred hole transport materials that can be used in the hole transport layer, hole injection layer or electron blocking layer in electroluminescent devices according to the present invention are indenoindenamine derivatives (eg according to WO 06/122630 or WO 06/ 100896), amine derivatives disclosed in EP 1661888, hexaazatriphenyl derivatives (eg according to WO 01/049806), amine derivatives containing condensed aromatic rings (eg according to US 5,061,569), WO 95/ Amine derivatives disclosed in 09147, monobenzindenoindenamines (e.g. according to WO 08/006449), dibenzoindenoindenamines (e.g. according to WO 07/140847), spirobisindenamines (e.g. according to WO 2012) /034627 or WO 2013/120577), perylene amines (eg according to applications EP 2875092, EP 2875699 and EP 2875004), spirodibenzopyranamines (eg according to WO 2013/083216) and dihydroacridine derivatives (eg according to WO 2013/083216) According to WO 2012/150001). The compounds according to the invention can also be used as hole transport materials. The cathodes of organic electroluminescent devices preferably comprise metals with low work function, metal alloys or multilayer structures comprising various metals such as, for example, alkaline earth metals, alkali metals, main group metals or lanthanides (eg Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.). Also suitable are alloys comprising alkali metals or alkaline earth metals and silver, for example alloys comprising magnesium and silver. In the case of multi-layer structures, in addition to these metals other metals with higher work functions such as eg Ag or Al can be used, in which case a combination of metals such as eg Ca/Ag is often used , Mg/Ag or Ag/Ag. It is also preferred to introduce a thin interlayer of a material with a high dielectric constant between the metal cathode and the organic semiconductor. Suitable for this purpose are, for example, alkali metal fluorides or alkaline earth metal fluorides, but corresponding oxides or carbonates such as LiF, Li2O , BaF2, MgO, NaF , CsF , Cs2CO3 , etc. ) is also suitable. In addition, lithium quinolinate (LiQ) can be used for this purpose. The layer thickness of this layer is preferably between 0.5 and 5 nm. The anode preferably comprises a material with a high work function. The anode preferably has a work function greater than 4.5 eV with respect to vacuum. Suitable for this purpose are on the one hand metals with a high redox potential, such as, for example, Ag, Pt or Au. On the other hand, metal/metal oxide electrodes (eg, Al/Ni/NiO x , Al/PtO x ) may also be preferred. For some applications, at least one electrode must be transparent or partially transparent in order to facilitate the irradiation of organic materials (organic solar cells) or the outcoupling of light (OLEDs, O-lasers). The preferred anode material here is a conductive mixed metal oxide. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Also preferred are conductive doped organic materials, especially conductive doped polymers. The device is appropriately (depending on the application) structured, fitted with contacts and finally sealed, since the lifetime of the device according to the invention is shortened in the presence of water and/or air. In a preferred embodiment, the organic electroluminescent device according to the present invention is characterized in that one or more layers are coated by a sublimation method, wherein the materials are in a vacuum sublimation unit below 10-5 mbar, preferably low Applied by vapour deposition at an initial pressure of 10-6 mbar. However, the initial pressure here can also be even lower, eg below 10-7 mbar. Also preferred is an organic electroluminescent device, characterized in that one or more layers are coated by an OVPD (Organic Vapor Deposition) method or supplemented by a carrier-gas sublimation method, wherein the materials are between 10-5 mbar and A pressure between 1 bar is applied. A special example of this method is the OVJP (Organic Vapor Phase Inkjet Printing) method, in which the materials are applied directly through a nozzle and are thus structured (e.g. MS Arnold et al., Appl. Phys. Lett. 2008, 92, 053301). Also preferred is an organic electroluminescent device characterized in that one or more layers are formed such as, for example, by spin coating or using any desired printing method, such as, for example, screen printing, quick-drying, nozzle printing or lithography, But especially preferred is LITI (Light Induced Thermal Imaging, Thermal Transfer Printing) or Ink Jet Printing) manufactured from solution. Soluble compounds of formula (I) are required for this purpose. High solubility can be achieved by appropriate substitution of these compounds. Also possible are hybrid methods in which, for example, one or more layers are applied from solution and one or more other layers are applied by vapor deposition. Thus, for example, the light-emitting layer may be applied from solution and the electron transport layer may be applied by vapour deposition. Such methods are generally known to those skilled in the art and can be applied without inventive steps to organic electroluminescent devices comprising compounds according to the present invention by those skilled in the art. According to the invention, electronic devices comprising one or more compounds according to the invention can be used in displays, as light sources in lighting applications and as light sources in medical and/or cosmetic applications such as light therapy. The invention will now be explained in more detail by the following examples, without wishing to limit the invention thereby.