TW553891B - MEMS and method of manufacturing - Google Patents

MEMS and method of manufacturing Download PDF

Info

Publication number
TW553891B
TW553891B TW091118447A TW91118447A TW553891B TW 553891 B TW553891 B TW 553891B TW 091118447 A TW091118447 A TW 091118447A TW 91118447 A TW91118447 A TW 91118447A TW 553891 B TW553891 B TW 553891B
Authority
TW
Taiwan
Prior art keywords
layer
bonding
micro
interface
mems
Prior art date
Application number
TW091118447A
Other languages
Chinese (zh)
Inventor
Sadeg M Faris
Original Assignee
Reveo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reveo Inc filed Critical Reveo Inc
Application granted granted Critical
Publication of TW553891B publication Critical patent/TW553891B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00238Joining a substrate with an electronic processing unit and a substrate with a micromechanical structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

The present invention relates to micro electro-mechanical systems (MEMS) and production methods thereof, and more particularly to vertically integrated MEMS systems. Manufacturing of MEMS and vertically integrated MEMS is facilitated by forming, preferably on a wafer level, plural MEMS on a MEMS layer selectively bonded to a substrate, and removing the MEMS layer intact.

Description

553891 玖、發明說明 (發明說明應敘明:發明所屬之技術領域、先前技術、内容、實施方式及圏式簡單說明) 【發明戶斤屬之技術領域】 發明領域 本發明是關於微機電系統(MEMS)與其製造方法,而 5 且更特別地,是關於垂直整合的微機電系統。 【先前技術3 發明背景 由於微機電系統之感測器應用的爆發,使微機電系統 領域進入一快速成長期。當大眾媒體的注意力都集中在強 10調晶片上的基因組實驗與微型機器人時,微機電系統技術 的最大優點可能不是來自於使工具與和感應器更小,而應 該是使它們更便宜。多數的微機電系統裝置仍然是獨立的 組件’此方法於普遍存在的整合成本之優點將會喪失。照 慣例該微機電系統裝置是使用適合製造電子微晶片的方法 15製造。整合可使微電子產生大變革。大型積體電路(LSI) 將數百萬的電晶體放在單一個晶片上,同時在市場上持續 不斷地有更大的能力穩定地降低成本。微電子已經轉移到 下一個層次到整合,在晶片上製造一系統或在封裝中製造 數個系統。在單一晶片上微機電系統裝置的整合仍然保有 20很多未被察覺的。微機電系統整合的那些挑戰是非常不同 於CMOS(互補型金屬氧化半導體)的挑戰。當CM〇s技術已 經到達一億個電晶體積體電路(IC)的里程碑的同時,微機 電系統世界大部分仍然是由個別的裝置構成。微機電系統 工業是非常片段的,只有非常少的整合。由於傳統微機電 5 553891 ^ 玖、發明說明 系統製造之高要求的程序,多數的微機電系統是分離的裝 置。 微機電系統裝置的整合,除了降低製造成本,將會大 大地擴展該些裝置的能力。隨著幾何尺寸縮小,多數微感 5 應器的敏感性會降低。舉例來說,由扭轉的電容加速度計 的輸出隨橫向尺寸的五次方減少1。線電容和訊號對雜訊 比的問題使沒有在基板上的電路之感應器對於收縮偵測與 減少訊號的程序是無用的。今天在工業上,微機電系統感 應器整合的主要焦點是提供一個在晶片上的控制電路。汽 10 車工業對於單一晶片上不同感應器的結合已經居於領導地 位。舉例來說,許多壓力感應器和加速度計藉由添加用於 溫度補償之在晶片上的溫度計,而滿足該響應曲線之溫度 敏感性。進一步的措施已經被完成。舉例來說,豐田 Nippondenso已經報導在相同晶片上結合引擎壓力和溫度 15 的感應器之汽車感應器套件作為一衝擊氣囊的觸發器2。 不過,感應器套件在非常特殊功能的市場與大量生產上仍 舊是有利基的,因為建構一套件需要複雜的設計與龐大的 資源。整合仍舊是一個困難的問題。多晶矽是用於微機械 加工的核心材料,而且微機電系統整合中不一致的一個優 20 良的實施例。沈積(大約630°C)和退火((>900°C)的高溫與 鋁和銅金屬化是不相容的。該程序流程必須被折衷或者必 1553891 发明 Description of the invention (The description of the invention should state: the technical field, the prior art, the content, the embodiments, and the simple description of the invention) MEMS) and its manufacturing methods, and 5 and more specifically, about vertically integrated micro-electro-mechanical systems. [Prior Art 3 Background of the Invention The field of micro-electro-mechanical systems has entered a rapid growth period due to the explosion of MEMS sensor applications. When the attention of the mass media is focused on genomic experiments and micro-robots on strong 10-tone chips, the biggest advantage of MEMS technology may not come from making tools and sensors smaller, but rather making them cheaper. Most MEMS devices are still independent components. The advantages of this approach to the ubiquitous integration costs will be lost. The MEMS device is conventionally manufactured using a method 15 suitable for the manufacture of electronic microchips. Integration can revolutionize microelectronics. Large-scale integrated circuits (LSIs) place millions of transistors on a single chip, while continuing to have greater capabilities in the market to steadily reduce costs. Microelectronics has moved to the next level to integration, manufacturing a system on a wafer or manufacturing several systems in a package. The integration of MEMS devices on a single chip still remains more than 20 undetected. Those challenges of MEMS integration are very different from those of CMOS (Complementary Metal Oxide Semiconductor). While the CMOS technology has reached the milestone of 100 million transistors, the world of microcomputer electrical systems is still largely composed of individual devices. The MEMS industry is very fragmented, with very little integration. Due to the traditional micro-electromechanical system 5 553891 ^ 说明, the description of the invention, the high requirements of the system manufacturing process, most micro-electro-mechanical systems are separate devices. The integration of MEMS devices, in addition to reducing manufacturing costs, will greatly expand the capabilities of these devices. As the geometry shrinks, the sensitivity of most microsensors decreases. For example, the output of a torsional capacitive accelerometer decreases by 1 to the fifth power of the lateral dimension. Problems with line capacitance and signal-to-noise ratio make sensors without circuits on the substrate useless for shrink detection and signal reduction procedures. In industry today, the main focus of MEMS sensor integration is to provide a control circuit on a chip. The automotive industry has led the way in combining different sensors on a single chip. For example, many pressure sensors and accelerometers meet the temperature sensitivity of the response curve by adding a thermometer on the chip for temperature compensation. Further measures have been completed. For example, Toyota Nippondenso has reported a car sensor kit that combines sensors for engine pressure and temperature 15 on the same chip as a trigger for an impact airbag2. However, the sensor kit is still a niche in very special-function markets and mass production, because building a kit requires complex designs and huge resources. Integration remains a difficult issue. Polycrystalline silicon is a core material for micromachining, and an inconsistent example of MEMS integration. The high temperatures of deposition (approximately 630 ° C) and annealing (> 900 ° C) are incompatible with aluminum and copper metallization. This process must be compromised or required.

Gabrielson,T.B. “用於微小化聲音與震動感應器的基本雜訊限制”,ASME會刊,· 震動與聲音學期刊(Journal ofVibration and Acoustics),第 17(4)卷第 405 頁(1995 年)。 2 T. Fujii,Y. Gotoh,和S. Kuroyanagi,“利用微機械加工於微薄膜式壓力感應器 的製造”,感應器與致動器(Sensors and Actuators),第A34卷第217頁(1992年)。 553891 玖、發明說明 須使用更昂貴、更有抵抗力的、耐火的金屬諸如鎢3。微 機電系統加工對於溫度敏感薄膜材料、非常深的蝕刻、陽 極的接合與需要的應變釋放的退火使得整合產生一連串獨 特的問題。在單一晶片±設計一整合的感應器套件在結合 使用於幵y成具有例如1C溫度感應器或一薄膜熱阻體之一般 的加速度計之步驟中會造成許多難鉅的事。而且產生的設 计會疋不可改變的,升級成一改良的感應器需要完全重新 設計以及購買新的光罩組。 垂直整合或將微機電堆疊在相同的封裝,是減少封裝 10體積、增加電路密度與保存基板空間與增進效能和功能性 的一種引人注意的方法。晶“延遲與電力祕的減少兩 者對堆疊整合都是有矛的。#果該些裝錢薄且堆疊在彼 此的頂端時,在成本與電路密度上的優點可能是非常大的 。對於積體電路和微機電系統程序而言,該矽晶圓的第三 15 維仍然保有大量未加利用處。 目前垂直堆疊2維裝置的商業化方法通常是晶片規模 而且是依賴晶圓研磨變薄。多數的方法仰賴通孔或線接合 、堆疊母子晶片的方式互相連接。目前全部的方法對於封 裝尺寸、成本、可靠性和產率衝擊都有限制。儘管有該些 2〇困難’堆疊裝置而達成3維整合可見到其應用存在,特= 疋在微機電系統與ASIC (應用特性積體電路)控制器結合 方面。利用堆叠個別晶片而製成的高密度記憶體封裝已^ 於整合的微纽之表面微機械加卫技術,,,博士論文,史丹福大學 553891 玖、發明說明 現具有特殊的應用。 加州歐文市(Irvine)歐文感應器公司(Irvine sensors)與 國際商務機器公司(IBM)已經著手一種3維封裝。分離的晶 粒已經利用邊緣昇降方法4(edge lift-off process)而被堆疊 5 並相互連接。已知良好的晶粒(Known-good-die (KGD))被 弄薄。在該晶粒邊緣的軟焊料凸塊被用來排列及交互連接 該些堆積的晶粒。該些晶粒被放在一環氧樹脂基材中。該 環氧樹脂有助於排列不同大小的晶粒,並且被用作交互連 接的表面。隨著KGD的需求,晶片之個別的堆疊與交互連 10 接會使這變成一非常昂貴的製造方法。古比克記憶體 (Cubic Memory)公司已經著手進行另一種3維的封裝,該 公司藉由應用沈積在整個晶圓上之聚醯亞胺絕緣層上方的 金交互連接圖形,製造高密度、堆疊記憶體模組。不過, 堆疊與垂直交互連接仍然是一個別的晶片規模。 15 加州聖荷西(San Jose)Tessera連同英代爾(Intel)已經著 手另外的3維封裝的進行,經由微球柵陣列接合,將晶片 貼在一柔軟的基材上,然後將帶有晶片的帶狀物對其本分 做Z字折疊,而發展出晶片規模堆疊封裝。Gabrielson, TB "Basic Noise Limits for Minimizing Sound and Vibration Sensors", ASME Journal, Journal of Vibration and Acoustics, Vol. 17 (4), p. 405 (1995) . 2 T. Fujii, Y. Gotoh, and S. Kuroyanagi, "Manufacture of micro-membrane pressure sensors by micromachining", Sensors and Actuators, Vol. A34, p. 217 (1992 year). 553891 玖, description of the invention More expensive, more resistant, refractory metals such as tungsten 3 must be used. The annealing of micro-electro-mechanical systems for temperature-sensitive film materials, very deep etching, anode bonding, and the required strain relief makes integration a unique series of problems. Designing an integrated sensor kit on a single chip can cause many difficult tasks in combination with a conventional accelerometer with, for example, a 1C temperature sensor or a thin film thermal resistor. And the resulting design will not be changed. Upgrading to an improved sensor requires a complete redesign and purchase of a new photomask set. Vertical integration or stacking MEMS in the same package is a compelling method to reduce package size, increase circuit density, save substrate space, and improve efficiency and functionality. Both the "delay and the reduction of power secrets are spearheads for stack integration. #If these are thin and stacked on top of each other, the advantages in cost and circuit density may be very large. For the product In terms of bulk circuits and MEMS programs, the third 15th dimension of the silicon wafer still retains a large amount of unused space. At present, the commercialization method of vertical stacked 2D devices is usually wafer scale and relies on wafer grinding to thin. Most methods rely on through-hole or wire bonding, stacking mother and child wafers to connect to each other. At present, all methods have restrictions on package size, cost, reliability, and yield impact. Despite these 20 difficult 'stacking devices to achieve Three-dimensional integration can be seen in its application, especially = 疋 in the combination of micro-electromechanical systems and ASIC (application characteristic integrated circuit) controller. High-density memory packages made by stacking individual chips have been integrated micro-buttons The surface micro-mechanical guarding technology, PhD dissertation, Stanford University 553891 玖, the invention description has special applications. Irvine, California (Irvine) Sensor company (Irvine sensors) and International Business Machines Corporation (IBM) have begun a three-dimensional package. The separated dies have been stacked 5 and connected to each other using the edge lift-off process 4. Known good The grains (Known-good-die (KGD)) are thinned. Soft solder bumps at the edges of the grains are used to arrange and interconnect the stacked grains. The grains are placed in an epoxy Resin substrate. The epoxy resin helps to arrange the grains of different sizes and is used as the surface of the interconnection. With the demand of KGD, the individual stacking and interconnection of the wafer will make this a very Expensive manufacturing method. Cubic Memory has already begun another 3D package. The company uses gold interconnect patterns over polyimide insulation layers deposited on the entire wafer. Manufacture of high-density, stacked memory modules. However, stacking and vertical interconnects are still another chip scale. 15 San Jose, California, Tessera, along with Intel, have already begun another 3-dimensional package Line, bonded via a micro ball grid array, the wafer is attached to a flexible substrate, and the wafer ribbon with its duty to do Z-folded, and the development of a wafer-scale package stack.

Ziptronix顯然是發展積體電路之晶圓規模堆疊。對於 20 校直、應力處理、散熱管理(thermal management)、高密度 互相連接以及產率上仍需要進行相當難鉅的工作。 可用的垂直整合有各種不同的缺陷。一個主要的缺陷 J. Minahan,A. Pepe,R. Some,和M. Suer,“短的型式之3維堆疊)記憶體晶片 封裝),”42屆電子組件與技術會議會議記錄,加州聖地牙哥( 1992年)。 553891 玖、發明說明 疋由於產率損失。目前所有在市場上使用的裝置堆疊方法 都是晶粒規模。個別的晶粒被製備、排列、堆疊和連接。 該加工是昂貴的,且該堆疊之產率損失是該層中每一裝置 的複合產率損失。增加的產率損失有時候對於便宜的裝置 5是可以谷忍的’諸如靜態隨機存取記憶體(SRAM)堆疊。 但疋當更昂貴的裝置正在被堆疊的時候,解決方法是使用 已知良好的晶粒(KGD)。對於KGD而言,每一個未封裝 的晶粒要進行燒入與測試。此外,該堆疊在每一層完成之 後需要做電子測試。此方法是非常昂貴而且該些應用已經 10被限制在高階的使用者,諸如軍事和衛星技術。 傳統垂直整合的另一個缺點是由於該技術被限制在晶 粒規模。除了 Ziptronix的遲早達到市場(yet七-reaeh_the market)方法之外,所有堆疊裝置的方法都是晶粒規模。這 些技術是70全無法獲得晶圓規模製造之重大經濟優點。處 15理與測試個別晶粒的高成本限制這些方法在高階的應用。 傳統垂直整合的再一個缺點是關於材料的不相容性。 有機接著劑和鑄封化合物被用來建造該堆疊。接著劑和鑄 封化合物的使用與許多有用的方法是不相容的。該接著劑 的熱膨脹係數(TCE)通常與晶圓的TCE不匹配。在隨後的 20處理中以及在裝置操作中,對溫度與熱循環必須被嚴格限 制,以避免晶粒爆裂和脫層。而且大部份接著劑是有機化 合物,因此與包含氧化的環境、高溫以及在侵略性化學品 的暴露之半導體程序是不相容的。 目前的 感應器整合仍是非常昂貴、設計密集的努力。 9 玖、發明說明 感應器整合主要是建立在汽車,該高設計成本被分攤 在非常大量的零件製造中。其需要新的整合系統與方法, 以使整合的微機電系統裝置在更廣泛的應用中有龐大的潛 力。 半導體和微機電系統裝置指在該晶圓厚度的一小部分 上被製作’·在_置製造期㈣大部分的晶圓厚度是 用於結構的支撑。的確,在封裝之前背面研磨—最後階段 的晶圓以改善熱轉移。非常薄的裝置之另外的特徵是它們 是柔軟的,其在管理線接合與封裝之機械應力是有利的。 非常薄之層雖有優點,變薄至小於100微米是非常昂責的 ,因此很少這樣做。為了避免衝擊穿透該晶圓的任一區域 ,研磨必須在低速率下進行並且必須小心反覆進行晶圓厚 度疋位。藉由背面的濕餘刻或電漿蝕刻可完成具有類似複 雜性、厚度均勻性與穿透之晶圓薄化。一層可以被併入該 晶圓中作為姓刻或拋光的終止層。舉例來說,氮化石夕層可 以被併入矽中作為硬拋光終止層,或一硼的植入層可以停 止選擇性滲雜物蝕刻。當這些方法起作用的同時,它們是 昂貴且難於實行。 被機電糸統感應器的應用已經快速地成長。對所有類 型的微系統而言,2000年估計其市場大小超過140億美元 ’且預測綜合年成長率(CAGR)為21 %。環境監視器在在 该市場中小於5 %的,但是在未來四年預估有3 5 % CAGR, 其遠高於市場的平均值5。改良的成本與可靠性是引起許 R.H· Grace,‘‘新的微機電系統與其迷人的應用”,感應器雜誌2〇〇〇年七月。 553891 玖、發明說明 多傳統的感應器被替換成微感應器的主要驅動力。微感應 器對測量加速度'振動、壓力、溫度、濕度、應變、鄰近 效應、旋轉、聲音的發射與其他許多的事是有效的。應用 的實例包括汽車氣囊安全系統、其他的汽車應用、安全系 5 統、震動感應器、生醫的應用。 汽車氣囊安全系統是藉由微機電系統加速度計觸發。 藉由微機電系統感應器,使得每年因為氣囊系統而被拯救 者超過1,000人。國道交通安全管理局(NHTSA)估計經 由具有可以調整撞擊之猛烈與位置,以及調整乘坐者的出 10現、位置、運動與重量的感應器陣列之智慧型空氣氣囊系 統,每年有超過數百條的生命被拯救6。用於氣囊配置的 感應器市場在前5年已經享有超過20-25%有CAGR的迅速 成長。 微機電系統在汽車應用有許多。微機電系統感應器測 15里機’由、燃料、冷媒、傳動和煞車油的油位。壓力感應器 檢測防煞車鎖死(ABS)線的壓力、真空程度、燃料喷射壓 力、輪胎壓力和更多的事物。化學和流量感應器被用於檢 測排氣構成物、入口流量。溫度感應器最佳化引擎效能, 而且連同濕度感應器可以決定座艙舒適性。藉由用於測定 20側滑速率之車輛動力控制以及藉由避免撞擊接近感應器而 提升駕駛安全性與方便性。還有許許多多。更便宜且效力 更大的感應器套件有許多可以增加駕駛安全性、改善座驗 ‘‘先進的空氣氣囊,最終經濟評估”,FMVSS第208號、NHTSA法規分析&評估、 計畫和政策辦公室,2000年五月。 11 553891 玖、發明說明 舒適性,並且使引擎持續更久且對環境更友善的潛力。安 全系統結合感應器型式可以擴展偵測網絡,並且透過智慧 的多餘警告(redundancy of alarms)以限制錯誤的警報。接 近、運動、振動和熱彳貞測被結合在一起。整合的感應器陣 5列在監測部隊戰力與移動之戰場感應器網路有龐大的潛力 。小型化無線通訊與微感應器套件整合可以使智慧型感應 器網具有龐大的潛力7。 振動感應器藉由在機械干擾期間禁止讀/寫操作保護 磁碟驅動。藉由振動感應器的數據可以延長產品的壽命, 10而且可以預測重要組件即將來臨的損壞,減少重要任務系 統的停工時間。環境監視器監測對於產品存貨清單和品質 控制以及水與空氣測試擁有很大的希望。 生醫的應用真正是一革新,而且遠超過DNA定序,其 包含新藥發現技術以及新且迅速的疾病測試。來自於改善 15藥物釋放方法、諸如助聽器與人工視覺之生物機械裝置對 與生活品質有巨大的改善。 光學轉換器和光學轉換組件(舉例來說,可變的光學 衰減器)也被提出,並且使用微機電系統形成,舉例來說 ’包括旋轉將光線導向需要的方向、賦予延遲與其他功能 2〇 性之微鏡。 該微系統市場很大而且以很快的速率變的更大。一種 建立有成本效益而且普及任一種可以產生許多新的、令人 ^M.Kahn,R. H. Katz和K.S.J. Pister,“用於智慧粉塵之移動網路”,務… $網曰路(_iC〇m99),ACM舰E a際會議,華盛頓州西雅二‘年移^ 12 553891 玖、發明說明 興奮的應用保有巨大潛能之感應器套件的方法。更便宜且 更有效力的感應器對於社會的每一方面都都有巨大的正面 衝擊。Ziptronix is clearly a wafer-scale stack for developing integrated circuits. For 20 straightening, stress management, thermal management, high-density interconnects, and productivity, considerable work remains to be done. Available vertical integrations have various drawbacks. A major flaw J. Minahan, A. Pepe, R. Some, and M. Suer, "Short form of 3D stacking (memory chip package)," Proceedings of the 42nd Electronic Components and Technology Conference, San Diego, California Brother (1992). 553891 玖, description of invention 疋 due to yield loss. All device stacking methods currently in use on the market are at the grain scale. Individual dies are prepared, arranged, stacked and connected. The processing is expensive, and the yield loss of the stack is the composite yield loss of each device in the layer. Increased yield loss is sometimes tolerable for cheap devices 5 such as static random access memory (SRAM) stacks. But when more expensive devices are being stacked, the solution is to use a known good die (KGD). For KGD, each unpackaged die is burned and tested. In addition, the stack needs to be tested electronically after each layer is completed. This method is very expensive and these applications have been limited to advanced users, such as military and satellite technology. Another disadvantage of traditional vertical integration is that the technology is limited to the grain size. With the exception of Ziptronix's sooner-to-reaeh_the market approach, all stacked device approaches are at the die scale. These technologies represent a significant economic advantage for wafer-scale manufacturing. The high cost of processing and testing individual grains limits the application of these methods to higher orders. Another disadvantage of traditional vertical integration is related to material incompatibility. Organic adhesives and potting compounds were used to build the stack. The use of adhesives and casting compounds is incompatible with many useful methods. The thermal expansion coefficient (TCE) of this adhesive usually does not match the TCE of the wafer. During the subsequent 20 treatments and during plant operation, temperature and thermal cycling must be severely restricted to avoid grain bursting and delamination. And most of the adhesives are organic compounds and are therefore incompatible with semiconductor processes that include oxidizing environments, high temperatures, and exposure to aggressive chemicals. Current sensor integration is still a very expensive and design intensive effort. 9 发明 Description of the invention The integration of sensors is mainly based on automobiles, and the high design cost is shared among a very large number of parts. It requires new integrated systems and methods, so that integrated MEMS devices have huge potential in a wider range of applications. Semiconductor and MEMS devices are fabricated on a small portion of the thickness of the wafer '. During the manufacturing period, most of the wafer thickness is used for structural support. Indeed, back-grinding—the final stage of the wafer before packaging—improves thermal transfer. Another feature of very thin devices is that they are flexible, which is advantageous in managing the mechanical stress of wire bonding and packaging. Although very thin layers have advantages, thinning to less than 100 microns is very responsible, so it is rarely done. To avoid impacts penetrating any area of the wafer, grinding must be performed at a low rate and careful wafer thickness positioning must be performed repeatedly. Thin wafers with similar complexity, thickness uniformity, and penetration can be completed by wet back etching or plasma etching on the back. One layer can be incorporated into the wafer as a finish or finish layer. For example, a nitrided layer can be incorporated into silicon as a hard polishing stop layer, or a boron implanted layer can stop selective dopant etching. When these methods work, they are expensive and difficult to implement. The use of electromechanical system sensors has grown rapidly. For all types of microsystems, the market size in 2000 was estimated to be more than $ 14 billion, and the CAGR was estimated to be 21%. Environmental monitors are less than 5% in this market, but are expected to have a CAGR of 35% over the next four years, which is much higher than the market average of 5. Improved cost and reliability caused Xu RH · Grace, "New MEMS and its fascinating applications", Sensor Magazine, July 2000. 553891 玖, Invention Description Many traditional sensors were replaced with The main driving force of microinductors. Microinductors are effective for measuring acceleration, vibration, pressure, temperature, humidity, strain, proximity effects, rotation, sound emission and many other things. Examples of applications include automotive airbag safety systems , Other automotive applications, safety systems, vibration sensors, biomedical applications. Automotive airbag safety systems are triggered by MEMS accelerometers. With MEMS sensors, the airbag system is saved every year. More than 1,000 people. The National Highway Traffic Safety Administration (NHTSA) estimates that the smart airbag system has a sensor array that can adjust the intensity and position of the impact, and adjust the passenger's appearance, position, movement and weight. Hundreds of lives are saved each year.6 The sensor market for airbag deployment has enjoyed the first 5 years There is a rapid growth of CAGR over 20-25%. There are many micro-electro-mechanical systems in automotive applications. Micro-electro-mechanical system sensors measure 15 miles of oil, fuel, refrigerant, transmission and brake oil levels. Pressure sensors detect anti-brake Lock-up (ABS) line pressure, vacuum level, fuel injection pressure, tire pressure and more. Chemical and flow sensors are used to detect exhaust components, inlet flow. Temperature sensors optimize engine performance, And together with the humidity sensor can determine the cockpit comfort. The vehicle's power control for determining the 20 sideslip rate and the driving safety and convenience are improved by avoiding impact proximity sensors. There are many more. Cheaper and There are many more powerful sensor kits that can increase driving safety and improve seat inspections. "Advanced Airbags, Final Economic Evaluation", FMVSS No. 208, NHTSA Regulation Analysis & Evaluation, Planning and Policy Office, 2000 May. 11 553891 玖, description of the invention The potential for comfort and making the engine last longer and be friendlier to the environment. The security system combined with the sensor type can expand the detection network and limit the false alarms through intelligent redundancy of alarms. Proximity, motion, vibration, and thermal measurement are combined. The integrated sensor array has a huge potential in monitoring battle forces and mobile battlefield sensor networks. The integration of miniaturized wireless communications with micro-sensor kits can give smart sensor networks a huge potential7. The vibration sensor protects the disk drive by prohibiting read / write operations during mechanical interference. Data from vibration sensors can extend product life, 10 and predict imminent damage to critical components, reducing downtime for critical mission systems. Environmental monitors hold great promise for product inventory and quality control, as well as water and air testing. The application of biomedicine is truly an innovation and goes far beyond DNA sequencing. It includes new drug discovery technologies and new and rapid disease tests. Improvements in drug release methods, such as biomechanical devices such as hearing aids and artificial vision, have dramatically improved the quality of life. Optical converters and optical conversion components (for example, variable optical attenuators) have also been proposed and formed using micro-electro-mechanical systems, such as' including rotating to direct light in the direction needed, imparting delay and other functions. Microscope of sex. The market for this microsystem is large and is getting larger at a rapid rate. A Cost-Effective and Popular Any One Can Generate Many New, Much, M. Kahn, RH Katz, and KSJ Pister, "Mobile Networks for Smart Dust", Service ... , ACM Intership Conference, Sea State, Washington, 2nd Annual Move ^ 12 553891 发明, invented a method to excite the application of a sensor kit with huge potential. Cheaper and more powerful sensors have a huge positive impact on every aspect of society.

用於微機電系統之溫度濕度和振動感應器之各種感應 5 器技術已經存在。溫度可以藉由許多工具測量。最常見的 是電阻溫度偵測器(RTD)、熱阻體和積體電路裝置。它也 可能使用壓力變化的電容測量,以根據溫度變化產生一電 力信號。這通常被進行做成一壓敏震盪器,其使得電力需 求相當高。RTD也需要一個相當高的操作電流,而且自我 10 加熱可能使縮短工作週期很難進行。另一方面,一個以非 常低電力驅動的薄膜熱阻體被直接建造出來。一無定形的 鍺熱阻體已經被報導其在2伏特下只需要消耗1微安培8。 據報導電阻的溫度係數在室溫時大約是-2%/K。如此的低 電流消耗,熱阻體的自我加熱效應可以安全地被忽略。另 15 一個優點是該感應器可以使用一電力供應源(電池)進行操 作而不需要外部電流來源。響應曲線,雖然是拋物線,有 足夠的線性特性,其可能不需要線性化。 積體電路感應器由石夕結點(silicon Junctions)之正向電 壓(forward voltage)的溫度依存性衍導出溫度。在3伏特下 20 運作的互補型金屬氧化半導體(CMOS)溫度計有商品化產 品。低供應電流,充分低於50微安培,產生非常低的自我 加熱一小於0.1 °C。國家半導體提供一種低電力驅動的 G. Urban,A. Jachimowicz,H. Ernst,S. Seifert,J. Freund » F. Kohl,“使用熱 微系統之液體用超敏感流量感應器”歐洲感應器(Eurosensors) XIII,歐洲第十三屆固 態轉換器會議,691頁(1999年)。 13 玖、發明說明 CMOS溫度計,其在3伏特下操作耗電< 1〇微安培(國家半 導體部件號碼LM19)。量<1000的成本是$ 〇·2〇。類比元 件公司(Analog Devices)製造一内建將供給電流減少至小於 〇·5微米1之關機功能的CMOS溫度計。 相對濕度感應器偵測吸收大氣水汽,材料性質變化的 反應。有興趣的材料性質可能是如電容量規中的介電功能 、電阻型濕度感應器的電阻抗或熱傳導性。電容型相對濕 度(RH)感應器是一在許多工業及測量學應用中所使用的簡 單裝置。電容型RH感應器有低溫度係數和低電力消耗(<1〇 微安培)。 標準的微機電系統震動感應器是以電容、壓電阻和壓 電的測量為基礎。對於各種不同的電容感應器或橋式壓電 阻裝置需要一外部電力源。不過,壓電(PE)產生一沒有由 外σ卩電力源而來之耗電電流(drawing current)的電力信號 由壓電感應器而來之而阻抗輸出信號使谓測容易受電磁 雜訊的影響,而且需要在測量電路中被提出。 許多感應器也有附在板子上的電力,例如電池。一般 是可用電池,鋰一次電池已經被使用以符合長期的電池壽 命。鋰電池有3伏特的操作電壓及高能量密度、長(>1〇年) 上架壽命、良好的低溫操作與優異的抗洩漏性。它們也適 θ於脈衝放電,它應該有該感應器套件需要的負荷週期。 長電池舞命需要一低平均電流消耗。低平均電流消耗 可藉由常駐(always-on)裝置上之非常低的恆定消耗電流或 1 部件號碼TM刚TMP36/TMP37美國類比元件公司,麻州諸伍德(Ν’")。 14 553891 玖、發明說明 藉由使用非常低的電力時脈繼電器將感應器套件負荷循環 (duty cycling)提至較高的操作電流來完成。商品化鋰硬幣 型電池的能量密度是在25-1700毫安培小時(mAh),多數型 態的鋰電池之容量是300-400 mAh。 5 考慮一個40〇 mAh 電池(Tadiran TL-5186),為 了達到 十年電池壽命,平均電流消耗必須小於4·5微安培。這是 一非常低的操作電流,而且是在可用的加速度計(震動感 應器)的要求之外。必須使用更大或更貴的圓柱型電池(有 用的可高達19安培小時),或者感應套件必須被觸發或負 10 荷循環。當溫度和濕度適合於慢達每個小時採樣一次或更 慢的採樣速率之緩慢改變的變數同時,衝擊一個隨機的事 件。震動感應器必須總是開著,或者必須在一啟動衝量之 後能夠快速啟動。封裝衝擊是一個相當短期的事件〇 毫秒),因此觸發衝擊感應器在睡眠模式下必須能夠在次 15 毫秒反應。達拉斯半導體DS1306E是一個具有警報的即時 時鐘,而且是以1微瓦的平均電力消耗操作,以保證總睡 眠電力消散是1微瓦。 室溫放流曲線(drainage curve)顯示如果流出電流是< 3 0毫安培,則對於3伏特的經電池而言十年的操作壽命是 20 可能的1G。在非常冷的條件(_21°C)下操作,壽命將會降低 大約一個數量級。 為了適應刖面所提之微機電糸統的大量使用,同時將 微機電系統整合在日常生活的更多面向之中,因此,更經 http://data.energizer.com/datasheets/_part of/splash htm 15 553891 玖、發明說明 濟的製造方法是需要的。根據晶片規模技術或使用傳統薄 化技術之晶圓規模技術製造微機電系統,不可能是為了經 濟的微機電系統整合。 發明的目的 5 因此,本發明的一個主要目的是提供一種低成本的微 機電系統。 本發明的另一個目的是提供一種垂直整合的微機電系 統。 本發明的又一個目的是提供一種包括一個或更多個微 10機電系統裝置以及結合電子學、光學系統、光生伏打 _〇V〇ltaics)、電化學電池、散熱管理(thermal邮叫㈣叫 ,及/或其他功能性之垂直整合的微機電系統。 本發明的再一個目的是提供一種製造微機電系統和垂 直整合微機電系統的方法,其通常包含在一允許微機電系 15統、微電子及/或其他的結構加工之條件中,在一個支持 層上提供一裝置層。 本發明的另-個目的是提供一種製造微機電系統和垂 直整合微機電系統的方法,其通常包含在一允許微機電系 統、微電子及/或其他的結構加工之條件中,在一個支持 層上提供一裝置層,使得具有形成在其中或在其上之該些 、-構的《裝置層可以迅速地移除(舉例來說,被剝離)而沒 有知σ 4對形成在该裝置層上的該些結構有最小的損害 ,藉此該裝置層可能形成一微機電系統,或者不同或類似 的有用結構之多數裝置層可以被排列及堆疊,而形成一垂 16 553891 玖、發明說明 直整合的微機電系統套件。 【發明内容】 發明概要 藉由本發明之數種方法與裝置,上面討論的與先前技 藝之其它的問題和缺點可以被克服或減少’同時可以達成 本發明的該些目的。薄裝置層的晶圓規模去除、轉移和堆 疊提供一種對於微機電系統之3維整合是有效果且有效率 的系統。晶圓接合和分離(debonding)被用於製造一種能夠 使裝置經濟的3維整合之定做晶圓。 10 微機電系統裝置或裝置套件是使用包含選擇性地貼附 或接合至第二層的第一層之多數層基材製造。該層較妤是 晶圓的一層。此方法使用一被設計成允許薄的‘‘有用,,層之 去除和轉移而沒有損害在該有用層上之被處理裝置的晶圓 起始基材。此技術可以被用於簡化同時能夠設計加工,以 15及能夠在晶圓尺度進行感應器和控制器垂直整合兩方面。 使用選擇性的接合技術利用簡化的薄層轉移,可以直接進 行設計。如此,任一微機電系統感應器和致動器之便宜的 、靈活的整合以及微機電系統和微電子混合可以被達成。 該技術可擴展至產生非常高密度之微電子。 藉由提供一有效成本工具使該選擇性的接合方法開啟 該設計方法以產生並轉移薄層,為了形成大量飛羅葉(fiU〇 leaf)結構(MFT)。從前複雜的加工步驟可以被分成簡單的 步驟。掏槽與其他傳統的昇降技術的困難可以被剝離該些 組件層,並且於晶圓規模上一次一個將它們堆疊所取代。 17 553891 玖、發明說明 因此利用5㈣層的起始晶®,它可轉移任-層。在其他 事物之中,違選擇性的接合方法可以被應用在組件層,並 且進一步應用到包括整個完成的微機電系統和微處理系統 此合裝置之晶圓規模轉移,藉此有效地將整合帶至微機電 5 糸統技術。 製造微機電系統的方法通常包含選擇性地將一可選擇 地具有在其上或在其中有用的結構之第一層黏附在第二支 樓層,移除該第-層,利用相似或不相似的有用結構(或 完全沒有)重複該程序,並且堆疊該多數的層以形成一個3 10 維的整合結構。 這個方法允許便宜的微電子、微機電系統感應器、微 機電系統致動器、混合的微機電系統_微電子或其任一組 合〇 本發明之上面討論的與其它的特徵和優點藉由下列詳 15細的說明與圖示而為該些熟悉該技藝者領略與瞭解。 圖式簡單說明 第1圖是一說明適合於形成微機電系統和其它聯合的 微裝置之一層狀結構的實施例的示意圖; 第2圖係根據某實施例描述一適用於微機電系統的内含 2〇 物之層; 第3圖係根據某實施例描述一支持層; 第4圖係根據某實施例描述一適用於微機電系統的内含 物之層; 第5圖係根據某實施例描述一支持層; 18 553891 玖、發明說明 第6圖係根據某實施例描述一適用於微機電系統的内容 物之層; 第7圖係根據某實施例描述一支持層; 第8圖係根據某實施例描述一適用於微機電系統的内容 5 物之層; 第9圖係根據某實施例描述一支持層; 第10圖係根據某實施例描述一適用於微機電系統的内 含物之層; 第11圖係根據某實施例描述一支持層; 10 第12圖係根據某實施例描述一適用於微機電系統的内 含物之層; 第13層係根據某實施例描述一支持層; 第14係用於第1圖之結構的接合幾何形狀之一維樣· 第15圖係描述用於第1圖之結構的接合幾何形狀之另 15 一態樣; 第16圖係描述用於第1圖之結構的接合幾何形狀之另 一態樣; 第17圖係根據某實施例描述藉由選擇性植一八 刀搏隹 步驟; 20 第18圖係根據某實施例描述該步驟之後的一中間鈇構 第19圖係第18圖之剝離該結構的步驟; 弟2 0圖係根據某貫例描述藉由經由光罩纟士構利用選 擇性植入之一分離步驟; 19 553891 玖、發明說明 第21圖係根據某實施例描述經該步驟之後的一中間結 構; 第22圖係描述第21圖之剝離該結構的步驟; 第23圖係根據某實施例描述藉由利用非選擇性植入之 5 一分離步驟; 第24圖係根據某實施例描述經第23圖的步驟之後的一 中間結構; 第25圖係描述第24圖之剝離該結構的步驟; 第26圖係根據某實施例描述藉由在周圍利用選擇性植 10 入之一分離步驟; 第27圖係根據某實施例描述經第26圖的步驟之後的一 中間結構; 第28圖係描述第27圖之剝離該結構的步驟; 第29圖顯示一欲記錄可致動的微鏡、致動器或其他微 15 機電系統之剝離層的側視及上視圖; 第30圖顯示一剝離層的側視及頂視圖,例如具有複數 的致動微鏡、致動器或其他於其上的微機電系統加工; 第31圖顯示另一具有複數的空隙之剝離層欲記錄可致 動的微鏡、致動器或其他微機電系統; 20 第32圖顯示一具有複數的邏輯裝置之剝離層欲可操作 地偶合至顯示於第30圖之聯合的微機電系統裝置; 第33圖顯示一具有複數的記憶裝置之剝離層欲可操作 地偶合至分別顯示於第30及32圖的聯合的微機電系統裝置 及邏輯裝置; 20 玖、發明說明 第34圖顯示一複數的垂直整合微機電系統裝置,包括 一晶圓程度之聯合的邏輯及記憶體;以及 第35圖顯示一個別的垂直整合微機電系統裝置。 ί:實施方式3 較佳實施例之詳細說明 在本發明中微機電系統裝置被垂直地堆疊,其提供其 他微糸統(包括’但不是限制在微電子、微射流、散熱管 理和類似物)之3維整合。與CMOS技藝的情況相比,微機 電系統裝置的臨界維度(critical dimens ion)是相當大的,其 大大地放鬆晶圓尺度校直標準。對於一給定的裝置而言, 所需的管腳數目有點少,對照垂直地整合微電子,會簡化 垂直的互相連接。舉例來說,商業化可用的溫度計u和濕 度計12晶片只需要用於電力與數據通訊之單一、纏繞導線 對。垂直的互相連接可以被作大,其對於可靠性有顯著的 正向衝擊。微機電系統感應器的另一有利於微機電系統感 應器堆疊的狀況是電力消耗相當低、直接進行散熱管理。 藉由使用本製造方法以及利用晶圓規模接合,垂直整 合的成本疋與形成分離的裝置的成本相同,而且最後將會 大幅地小於形成分離的裝置的成本。 一垂直整合的微機電系統套件,舉例來說包括一個或 多個感應器、光學開關或其他功能微機電系統被揭示。該 製造方法是可變通的,如此任一微機電系統混合的組合都 l-wire™tt% : , DS182〇(a^tt) 0Various sensor technologies for MEMS temperature and humidity and vibration sensors already exist. Temperature can be measured by many tools. The most common are resistance temperature detectors (RTDs), thermal resistors, and integrated circuit devices. It is also possible to use capacitance measurements of pressure changes to generate an electrical signal based on temperature changes. This is usually done as a pressure sensitive oscillator, which makes the power requirements quite high. RTDs also require a relatively high operating current, and self-heating may make shortening the duty cycle difficult. On the other hand, a thin-film thermal resistor driven by a very low power was directly constructed. An amorphous germanium thermal resistor has been reported to consume only 1 microampere 8 at 2 volts. The temperature coefficient of the resistor is reported to be approximately -2% / K at room temperature. With such a low current consumption, the self-heating effect of the thermal resistor can be safely ignored. Another advantage is that the sensor can operate from a power supply (battery) without the need for an external current source. The response curve, although parabolic, has sufficient linearity and may not require linearization. The integrated circuit inductor derives the temperature from the temperature dependence of the forward voltage of the silicon junctions. Commercial products are available for complementary metal-oxide-semiconductor (CMOS) thermometers operating at 3 volts 20. Low supply current, well below 50 microamps, produces very low self-heating-less than 0.1 ° C. National Semiconductor offers a low-power-driven G. Urban, A. Jachimowicz, H. Ernst, S. Seifert, J. Freund »F. Kohl," Ultra-sensitive Flow Sensors for Liquids Using Thermal Microsystems "European Sensors ( Eurosensors) XIII, The 13th European Conference on Solid State Converters, p. 691 (1999). 13 发明 Description of the invention A CMOS thermometer which operates at 3 volts < 10 microamperes (National Semiconductor Part Number LM19). The cost of the quantity < 1000 is $ 0.20. Analog Devices manufactures a CMOS thermometer with a built-in shutdown function that reduces the supply current to less than 0.5 micron1. The relative humidity sensor detects the response to changes in material properties by absorbing atmospheric moisture. The material properties of interest may be, for example, the dielectric function in a capacitance gauge, the electrical impedance or thermal conductivity of a resistive humidity sensor. Capacitive relative humidity (RH) sensors are a simple device used in many industrial and surveying applications. The capacitive RH sensor has a low temperature coefficient and low power consumption (< 10 microamperes). Standard MEMS vibration sensors are based on measurements of capacitance, piezoresistance, and piezo. An external power source is required for various capacitive sensors or bridge piezoresistive devices. However, piezoelectric (PE) produces a power signal that does not have a drawing current from an external σ 源 power source. The impedance output signal comes from a piezoelectric sensor, making predicate measurements susceptible to electromagnetic noise. Influence, and need to be raised in the measurement circuit. Many sensors also have electricity attached to the board, such as batteries. Generally available batteries, lithium primary batteries have been used to meet long-term battery life. Lithium batteries have an operating voltage of 3 volts, high energy density, long (> 10 years) shelf life, good low temperature operation, and excellent leak resistance. They are also suitable for pulsed discharges, which should have the duty cycle required by the inductor kit. Long battery life requires a low average current consumption. Low average current consumption can be achieved by a very low constant current consumption on an always-on device or 1 part number TM Gang TMP36 / TMP37 American Analog Component Corporation, Zhuwood, Mass. (N '"). 14 553891 发明, description of the invention is accomplished by using a very low power clock relay to increase the duty cycle of the inductor kit to a higher operating current. Commercial lithium coin batteries have an energy density of 25-1700 milliamp hours (mAh), and most types of lithium batteries have a capacity of 300-400 mAh. 5 Consider a 40 mAh battery (Tadiran TL-5186). In order to achieve ten-year battery life, the average current consumption must be less than 4.5 microamperes. This is a very low operating current and is outside the requirements of an available accelerometer (vibration sensor). A larger or more expensive cylindrical battery must be used (useful up to 19 amp-hours), or the sensing kit must be triggered or cycled for 10 loads. When the temperature and humidity are suitable for slowly changing variables that are slow to sample once per hour or slower, a random event is hit. The vibration sensor must always be on, or it must be able to start quickly after a starting impulse. Encapsulation shock is a fairly short-term event (0 milliseconds), so the trigger shock sensor must be able to respond in the next 15 milliseconds in sleep mode. The Dallas Semiconductor DS1306E is a real-time clock with alarms and operates at an average power consumption of 1 microwatt to ensure that the total sleep power dissipation is 1 microwatt. A room temperature drainage curve shows that if the outflow current is < 30 milliamps, a ten-year operating life for a 3 volt battery is 20 possible 1G. Operation in very cold conditions (_21 ° C) will reduce life by about an order of magnitude. In order to adapt to the large-scale use of the MEMS system mentioned at the same time, and integrate MEMS into more aspects of daily life, therefore, it has been more http://data.energizer.com/datasheets/_part of / splash htm 15 553891 发明, the manufacturing method of the invention is needed. It is impossible to manufacture MEMS based on wafer-scale technology or wafer-scale technology using traditional thinning technology for economic MEMS integration. OBJECT OF THE INVENTION 5 Therefore, a main object of the present invention is to provide a low-cost micro-electro-mechanical system. Another object of the present invention is to provide a vertically integrated micro-electro-mechanical system. Still another object of the present invention is to provide a device including one or more micro-electromechanical systems and a combination of electronics, optical systems, photovoltaics, photovoltaics, thermal management (thermal post-calling, howling) And / or other functionally vertically integrated micro-electro-mechanical systems. Another object of the present invention is to provide a method for manufacturing a micro-electro-mechanical system and a vertically-integrated micro-electro-mechanical system. In the electronic and / or other structural processing conditions, a device layer is provided on a support layer. Another object of the present invention is to provide a method for manufacturing a micro-electromechanical system and a vertically integrated micro-electro-mechanical system, which are usually included in a Among the conditions that allow MEMS, microelectronics, and / or other structural processing, a device layer is provided on a support layer, so that the device layer with the Removal (for example, being peeled off) without knowing that σ 4 has minimal damage to the structures formed on the device layer, whereby the device layer may form Many device layers that form a micro-electro-mechanical system, or different or similar useful structures can be arranged and stacked to form a vertically integrated micro-electro-mechanical system kit. Description of the invention Summary of the invention Several methods and devices. The problems and disadvantages discussed above and other prior art techniques can be overcome or reduced. At the same time, these objectives of the invention can be achieved. Thin-scale wafer layer removal, transfer and stacking provide a 3D integration of electromechanical systems is an effective and efficient system. Wafer bonding and debonding is used to make a custom wafer that enables 3D integration of the device economically. 10 MEMS devices or device kits are Manufactured using a multi-layer substrate that includes a first layer that is selectively attached or bonded to a second layer. This layer is more a layer than a wafer. This method uses a layer that is designed to allow thin `` useful, '' layers It can be removed and transferred without damaging the wafer starting substrate of the device being processed on the useful layer. This technique can be used to simplify simultaneous Enabling design and processing, 15 and vertical integration of sensors and controllers at wafer scale. Selective bonding technology can be used to design directly using simplified thin layer transfer. In this way, any MEMS sensor Cheap and flexible integration with actuators and hybrid MEMS and microelectronics can be achieved. The technology can be extended to produce very high density microelectronics. This selective bonding method is provided by providing an effective cost tool This design method was opened to generate and transfer thin layers, in order to form a large number of fiuoleaf structures (MFT). The complex processing steps in the past can be divided into simple steps. The difficulties of notching and other traditional lifting techniques can be These component layers are stripped and replaced one at a time on a wafer scale. 17 553891 发明, description of the invention Therefore, using a 5㈣ layer of starting crystal ®, it can transfer any one layer. Among other things, the non-selective bonding method can be applied at the component level and further applied to the wafer scale transfer including the entire completed MEMS and microprocessing system, thereby effectively integrating the tape To MEMS 5 system technology. A method of manufacturing a micro-electro-mechanical system typically includes selectively adhering a first layer, optionally with structures on or in it, to a second floor, removing the first layer, using similar or dissimilar The procedure is repeated with no structure (or none at all) and the majority layers are stacked to form a 3 10-dimensional integrated structure. This method allows inexpensive microelectronics, microelectromechanical system sensors, microelectromechanical system actuators, hybrid microelectromechanical systems_microelectronics, or any combination thereof. The above-discussed and other features and advantages of the present invention are addressed by the following: See detailed descriptions and illustrations for detailed understanding and understanding of those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram illustrating an embodiment suitable for forming a layered structure of a micro-electro-mechanical system and other associated micro-devices; FIG. 2 is a description of an internal structure suitable for a micro-electro-mechanical system according to an embodiment A layer containing 20 objects; FIG. 3 illustrates a support layer according to an embodiment; FIG. 4 illustrates a layer of inclusions suitable for a micro-electromechanical system according to an embodiment; FIG. 5 illustrates a layer according to an embodiment Describe a support layer; 18 553891 发明 Description of the invention Figure 6 describes a layer of content suitable for a micro-electromechanical system according to an embodiment; Figure 7 describes a support layer according to an embodiment; Figure 8 is based on An embodiment describes a layer of content 5 suitable for a micro-electro-mechanical system; FIG. 9 illustrates a support layer according to an embodiment; FIG. 10 illustrates a content of a micro-electro-mechanical system according to an embodiment. Figure 11 depicts a support layer according to an embodiment; 10 Figure 12 depicts a layer of inclusions suitable for a micro-electro-mechanical system according to an embodiment; layer 13 depicts a support layer according to an embodiment ; For the 14th series One dimension of the joining geometry of the structure in Fig. 1 Fig. 15 depicts another aspect of the joining geometry of the structure in Fig. 1; Fig. 16 depicts the structure used in Fig. 1 Another aspect of the joining geometry; FIG. 17 is a description of an eight-blade selective step according to an embodiment; 20 FIG. 18 is an intermediate structure following the step according to an embodiment Figure 19 is the step of peeling off the structure in Figure 18; Figure 20 illustrates a separation step by using selective implantation through a mask structure according to a conventional example; 19 553891 发明, Figure 21 of the description of the invention An intermediate structure after this step is described according to an embodiment; FIG. 22 illustrates the steps of stripping the structure from FIG. 21; and FIG. 23 illustrates a method by using non-selective implantation according to an embodiment. Separation step; FIG. 24 illustrates an intermediate structure after the steps of FIG. 23 according to an embodiment; FIG. 25 illustrates the steps of stripping the structure from FIG. 24; Use selective planting around 10 points Fig. 27 illustrates an intermediate structure after the steps of Fig. 26 according to an embodiment; Fig. 28 illustrates the steps of peeling off the structure of Fig. 27; Fig. 29 shows an actuating micrograph to be recorded Side view and top view of a peeling layer of a mirror, actuator or other micro-electromechanical system; Figure 30 shows a side view and a top view of a peeling layer, such as a plurality of actuated micromirrors, actuators or MEMS processing on it; Figure 31 shows another peeling layer with multiple voids to record actuable micromirrors, actuators or other MEMS; 20 Figure 32 shows a logic device with multiple The peeling layer is operatively coupled to the combined MEMS device shown in FIG. 30; FIG. 33 shows the peeling layer of a plurality of memory devices to be operatively coupled to the MEMS devices shown in FIGS. 30 and 32, respectively. Combined MEMS device and logic device; 20 玖. Description of the invention Figure 34 shows a plurality of vertically integrated MEMS devices including a wafer-level combined logic and memory; and Figure 35 shows a Vertical integration of other MEMS devices. ί: Detailed description of the preferred embodiment 3 In the present invention, the MEMS device is stacked vertically, which provides other microsystems (including 'but not limited to microelectronics, microfluidics, thermal management, and the like) 3D integration. Compared with the situation of CMOS technology, the critical dimension of the microcomputer electrical system device is quite large, which greatly relaxes the wafer-scale alignment standard. For a given device, the number of pins required is a bit small. In contrast to integrating microelectronics vertically, vertical interconnections are simplified. For example, commercially available thermometer u and hygrometer 12 chips require only a single, twisted pair of wires for power and data communications. Vertical interconnections can be made large, which has a significant positive impact on reliability. Another advantage of the MEMS sensor stack is that the MEMS sensor stacking condition is relatively low power consumption and direct thermal management. By using this manufacturing method and using wafer-scale bonding, the cost of vertical integration is the same as the cost of forming a separate device, and it will ultimately be significantly less than the cost of forming a separate device. A vertically integrated micro-electro-mechanical system kit, including, for example, one or more sensors, optical switches or other functional micro-electro-mechanical systems is disclosed. The manufacturing method is flexible, so that any MEMS hybrid combination is l-wire ™ tt%:, DS182〇 (a ^ tt) 0

DanAwtrey,1-刪減感應&,,,感應器(sens〇r)H7⑻卷,2〇〇〇、年八^ c 21 553891 玖、發明說明 可以被製造,其容易使設計升級。該方法會降低整合微機 電系統的成本,而允許在新的應用種類使用。 大體上,控制接合強度以產生一個在完成之後允許該 整個裝置層移除與轉移的起始晶圓。這些接合的晶圓被設 5計成禁得起裝置加工,而且仍允許在晶圓規模之該薄裝置 層的剝離,沒有困難的研磨與蝕刻。 一種用於製造SOI晶圓的新方法,是利用矽晶圓上藉 由控制沿著離子植入損害的平面劈裂之一薄層的轉移。通 常’此層是永久地接合在氧化的矽晶圓上,以形成一矽_ 10氧化物-矽積層。此接合沒有使用接著劑。通過該整個晶 圓表面或是在強與弱接合區域之選擇性的圖案中,控制該 接合強度是形成一永久接合的另一方法。舉例來說,接合 月b里可以藉由奈米規模的粗縫化而被控制。具有能量受控 制之内部平面的這些晶圓可以被使用,以製造可靠的感應 15器設計。在製造之後,每個薄的感應器裝置層被轉移到一 提拉晶圓(handle wafer)。該裝置層的轉移與接合發生於晶 圓規模,那就是,該整個頂端層一層接著一層被轉移,並 且直接接合在該提拉晶圓。感應器或控制器的附加層可以 被堆疊在該提拉晶圓上,覆蓋在該原始的轉移層上方以產 20 生一 3維感應器套件。此方法允許任一種型式的感應器被 整合成一堆疊的套件。 參考第1圖,一選擇性地接合之多數層基材1〇〇被顯示 。該多數層基材100包含具有一暴露表面1B與選擇性地接 合在層2的一表面2A之表面1A的層1。層2進一步包含背面 22 玖、發明說明 的表面2B。大體上,層1、層2或層1與2兩者被處理以定義 弱接合5和強接合6區域並且隨後被接合,而形成該選擇性 地接合之多數層基材100,其中弱接合5的該些區域是在允 許一有用的裝置或結構加工的情況中,其包括微機電系統 及/或其他有用的裝置或結構。 大體上’層1和2疋相谷的。那就是’層1和2組成相容 之熱的、機械的及/或結晶的性質。在某些較佳實施例中 ,層1和2是相同的材料。當然,不同的材料也可以被使用 ,但是較好是以相容性做選擇。 層1的一個或多個區域被定義作為諸如可以形成在基 材區域中或其上之微電子的一個或多個結構。這些區域可 能是任一種需要的圖案,如此處進一步說明的。然後,層 1之選擇性的區域可以被處理以將接合減到最小而形成該 弱接合區域5。另一方面,層2的相應區域可被處理(連同 層1處置或代替層1處置)以將接合減到最小。另一個選擇 包括處理在那些不是被選擇形成該些結構物的區域中之層 1及/或層2,以便提升在該強接合區域6之接合強度。 層1及/或層2被處理之後’該些層可以被排列並接合 。該接合可以藉由此處進一步說明的任一種合適方法進行 。此外’校直可能是機械的、光學的或其之組合。應該瞭 解的是在此階段的校直可能不是重要的,因為在層丨上通 常沒有結構物形成。不過,如果層1和層2兩者都被處理時 ’校直在將源自於該選擇性的基材區域中震動減到最低時 可能是必須的。 玖、發明說明 該多數層基材100可以被加工,以在層1中或其上形成 一微機電系統或其他任一種需要的結構。因此,該多數層 基材100被形成,使得使用者可以使用傳統製造技術或其 他變成已知之各種相關技藝發展的技術加工任一結構或裝 置。某些製造技術會使該基材遭受極端的情況,諸如高溫 度、壓力、惡劣的化學品或其組合。因此,該多數層基材 100較好被製造成可以禁得起這些情況。 被機電糸統或其他有用的結構或裝置可以被形成在區 域3中或之上,部分地或實質地與弱接合區域5重疊。因此 ,區域4,部分地或實質地與強接合區域6,通常在其中或 在其上沒有結構。在該多數層基材1〇〇的層1中或上面之微 機電系統或其他有用的裝置形成之後,層1後續可能被接 合。該分離可以藉由任一種適當的方法進行,諸如剝離, 而不需要直接使該微機電系統或其他有用的裝置進行不利 的脫層技術。因為微機電系統或其他有用的裝置通常沒有 形成在區域4中或之上,這些區域可以進行分離處理,諸 如離子或粒子植入,而無損於形成在區域3中或之内的該 些結構。 為了形成弱接合區域5,表面1A、2 A或兩者可以在弱 接合區域的位置被處理,以實質形成沒有接合或弱接合。 另一方面,該些弱接合區域5可以留著未處理,藉由該強 接合區域6的處理而引發強接合。區域4部份地或實質地 重疊該強接合區域6❹為了要形成強接合區域6,表面ία、 2A或兩者可以在強接合區域6的地點被處理。另一方面, 553891 玖、發明說明 該強接合區域6可以留著未處理,藉由該弱接合區域5的處 理而引發弱接合。再者,區域5和6兩者可能藉由不同的處 理技術處理,其中該些處理可能在品質上或數量上有差異。 在弱接合區域5和強接合區域6兩組之一或兩者的處理 5之後,層1和2被接合在一起,以形成實質上完整的多層基 材100。因此,如所形成的,多層基材1〇〇可承受終端使用 者之嚴格的環境,舉例來說,而在其中或在其上形成結構 或裝置’特別是在層1的區域3中或之上。 該詞組“弱結合,,或“弱接合,,通常是指層間或藉由諸如 10剝離或其他機械的分離、熱、光、壓力或包含至少一種前 述分離技術之組合的分離技術可以迅速回復之層的部分之 間的接合。這些分離技術對層2有最小的鑄疵或損害,特 別是在弱接合區域5的附近。 弱接合區域5和強接合區域6群組之一或兩者的處理可 15藉由多種方法完成。該處理的重點是弱接合區域5比強接 合區域6更容易被分離(如此處進一步說明之後續的分離步 驟)。在分離期間,這會對該區域3的損害減到最小或避免 ,其可能包含在其上之有用的結構。再者,強接合區域6 的内含物提升該多數層基材1〇〇的機械整體性。因此,當 2〇除去在其中或其上之有用結構時,對層以來的處理可減 到最少或免除。 弱接合區域5和強接合區域6群組之一或兩者進行的特 殊型式之處理通常是根據選擇的材料而定。而且,層1和2 之接合技術的選擇可能是根據,至少部分,選擇^理方 25 553891 玖、發明說明 法而定。另外,隨後的分離是根據諸如處理技術、接合方 法、材料、有用結構的型式與存在或包含至少一種前述的 因素之組合的因素而定。在某些實施例中,該選擇性的處 理、接合與隨後的分離之組合(也就是終端使用者在區域3 5中進行形成有用結構,或者在一較高階裝置中的中間組件 )可消除對於裂縫傳播而使層丨由層2分離或機械磨薄以除 去層2的需求,較好是消除裂縫傳播和機械磨薄。因此, 在下面的基材可以利用最少的處理或沒有處理而被再使用 ,因為傳統的學說,裂縫傳播或機械薄化會損害層2,使 10得它在沒有進一步實質的處理時,基本上是沒有用的。 一種可能仰賴在該些些弱接合區域5和強接合區域6之 間的表面粗糙度的處理技術。該表面粗度可以在表面ia( 第4圖)、表面2A(第5圖)或表面ιΑ和2a兩者上做修飾。大 體上,該些弱接合區域5比強接合區域6有更高的表面粗縫 15度7(第4和5圖)。在半導體材料中,舉例來說該些弱接合區 域5可以有大於大約〇·5奈米(nm)的表面粗糙度,同時該些 強接合區域4可能有一較低的表面粗糙度,通常是小於大 約〇·5 nm。在另一個實施例中,該些弱接合區域5可以有 大於大mnm的表面粗财,而且該些強接合區域4可能有 2〇 一較低的表面粗糙度,通常是小於大約lnm。於再一個實 施例中,該些弱接合區域5可以有大於大約5nm的表面城 度,而且該些強接合區域4可能有_較低的表 面粗糙度, 通常是小於大約5 nm。表面粗縫度可以藉由㈣(例如在 氫氧化卸或氟化氫溶液中)或沈積方法(例如低壓化學氣相 26 553891 玖、發明說明 沈積(LPCVD)或電漿輔助化學氣相沉積(PECVD))產生。舉 例來說’該接合強度以及表面粗糖度在Gui等之“藉由表面 粗糙度控制選擇性的晶圓接合”,電化學學會期刊(Journal of The Electrochemical Society),第 148(4)卷第 G225-G228 5 頁(2001年)中更完全地被說明,其在此處被併入參考資料 中。 在一類似的方式中(其中類似狀態的區域被標上如第4 與5圖之類似參考數標),一個多孔的區域7可能被形成在 該些弱接合區域5中,而且該強接合區域6可能仍未處理。 10 因此,由於其多孔的性質,層1在該些弱接合區域5的位置 與層2有最小接合。該孔隙度可以在表面1八(第4圖)、表面 2A(第5圖)或表面1A和2A兩者上做修飾。大體上,在該些 多孔區域7處該些弱接合區域5比強接合區域6有更高的孔 隙度(第4和5圖)。 15 其它的處理技術可能仰賴該些弱接合區域5的選擇性 餘刻(在表面1A(第4圖)、2A(第5圖)或表面1A和2A兩者), 接著在該蝕刻區域中進行光阻或其他含碳材料(例如包括 聚合物基可分解材料)的沈積。再一次,類似狀態的區域 被標上如第4與5圖之類似參考數標。關於層1和2的接合, 20 其較好是在一足夠使該載體材料分解的溫度下進行,該些 弱接σ &域5之中包括一多孔的破材料’如此在該些弱接 合區域5之層1和2之間的接合與在該強接合區域6之層1和2 之間的接合相比是非常弱的。一熟悉該技藝者將會瞭解到 ’依照環境而定,不會加熱排出氣體、污染或不同樣地弄 27 553891 玖、發明說明 髒該基材層1或2或任一將被形成在區域3之中或接近區域3 之有用結構的分解材料將會被選擇。 一個進一步的處理技術可能是使用輻射以獲得強接合 區域ό及/或弱接合區域5。在此技術中,以中子、離子、 5粒子束或其組合輻射層1及/或2 ,而達成所需之強及/或弱 的接合。舉例來說,諸如氦離子(He+)、氫離子(Η+)之粒子 或其他合適的離子或粒子、電磁能或雷射光束可在該些強 接合區域6(在表面1Α(第10圖)、2Α(第11圖)或1八與2八兩者 )進行輻射。應該瞭解的是對於脫離一層的目的而言,輻 10射方法與離子植入的不同通常是在於劑量及/或植入能量 是非常低的(舉例來說,適用於脫層使用的劑量之百分之 一或千分之一的數量級)。 一附加的處理技術包括含有在表面1Α、2Α或1Α與2Α 兩者上之固體組成物與可分解的組成物之泥漿的使用。該 15固體組成物舉例來說可以是氧化鋁、氧化矽(Si〇(x))、其 他固體金屬或金屬氧化物或其他將該些層1與2的接合降到 最低的材料。該可分解的組成物舉例來說可以是聚乙婦醇 (PVA)或其他合適的可分解聚合物。通常,泥漿8被塗佈 在該些弱接合區域5中表面1A(第2圖)、2A(第3圖)或1A與 20 2A兩者處。之後,層丨及/或2可被加熱,較好是在惰性的 環境中,以分解該聚合物。因此,多孔的結構(由該泥漿 之該固體組成物組成)仍留在該些弱接合區域5 ,而且一旦 接合,層1和2不接合在該些弱接合區域5。 再另一個處理技術包括蝕刻該些弱接合區域5的表面 28 553891 玖、發明說明 。在此蝕刻步驟期間,柱9被界定在該些弱接合區域5的表 (第8圖)、2A(第9圖)或1A與2A兩者處。該些柱可以藉 由選擇性敍刻而被界定,留下在後面的該些柱。該些柱的 形狀可能是三角形、三角錐形、矩形或其他合適的形狀。 5另方面,该些柱可以被生長或沈積在該蝕刻的區域中。 對於該材料而言,因為有較少的接合點接合,在該些弱接 合區域5的總接合強度小於在該些強接合區域6處的接合。 還有另一個處理技術包括一空的區域10(第12和13圖) ,舉例來說,是在該弱接合區域5層1(第12圖)、2(第13圖) 10中藉由蝕刻、機械或兩者而形成。因此,當第一層丨被接 σ在xr亥第一層2時,與該強接合區域6相比,該些空隙區域 10將會使該接合降到最低,其有助於隨後的分離。 另一種處理技術包括在表面1A(第2圖)、2A(第3圖)或 1A與2A兩者之該些弱接合區域的一種或多種金屬區域8的 15使用。舉例來說,金屬包括,但不是限制,銅、金、白金 或其任一組合或合金可以被沈積在該些弱接合區域5。關 於層1和2的接合,該些弱接合區域5將會被微弱地接合。 忒些強接合區域可能仍未處理(其中有關弱接合區域5與強 接合區域6而言’該接合強度的差異提供需要的強接合與 20弱接合比例),或可能如上面或下面的說明被處理,以引 發牢固的黏著。 再一處理技術包括在該些強接合區域6之表面1A(第1〇 圖)、2A(第11圖)或1A與2八兩者上一種或多種接著促進劑 11的使用。合適的接著促進劑包括,但不是限制,鈦氧化 29 553891 玖、發明說明 物TiO(x)、氧化鈕或其他接著促進劑。另一方面,實質上 接著促進劑可以被使用在所有的表面1A及/或2A上,其中 一金屬材料被放置在該接著促進劑與在該些弱接合區域5 之違表面1A及/或2 A之間(根據該接著促進劑的地點而定) 5 。因此,在接合之後該金屬材料將會立即避免牢固的接合 在該些弱接合區域5,反之,殘留在該該些強接合區域6的 接著促進劑會促進強接合。 還有另一處理技術包括提供改變疏水性及/或親水性 的區域。舉例來說,親水性區域對強接合區域6是特別有 10 用的’因為诸如碎材料在室溫可以自發地接合。在室溫血 高溫兩者之疏水和親水的接合技術是已知的,舉例來說, 如在唐(Q· Y· Tong)、高斯爾(u· Goesle),半導體晶圓接合 ’科學和技術(Science and Technology),第 49-135 頁, John Wiley and Sons,紐約NY 1999年,其在此處被併入 !5 參考資料中。 再另一處理技術包括一個或多個被選擇性地輻射之剝 離層。舉例來說,一或多個剝離層可以被放置在表面1A& /或2A上。沒有輻射,該剝離層的行為是一個接著劑。關 於該些弱接合區域5在諸如紫外線之輻射的曝光,該黏著 2〇特性可以降至最少。該些有用的結構可以形成在該弱接合 區域5中或其上,而且隨後的紫外光輻射步驟或其他分離 技術可以被使用,以分離在該些強接合區域6之該層丨和2 〇 一附加的處理技術包括一植入離子12(第6和7圖),根 30 553891 玖、發明說明 據熱處理而允許在該弱區域之層丨(第6圖)、層2(第7圖)或 層1和2兩者中有多數微泡泡13形成。因此,當層丨和2被 接合的時候,該些弱合區域5比該些強接合區域6有更少的 接合,使得隨後層1和2在該些弱合區域5的分離容易進行 5 〇 另一種處理技術包括離子植入步驟與其後的蝕刻步驟 。在一實施例中,此技術實質是在整個表面1B上以離子植 入進行。其後,該些弱接合區域5可以被選擇性地蝕刻。 關於損害選擇性的蝕刻而除去缺陷的方法被說明於辛普森 10等“磷化銦之植入誘發選擇性化學蝕刻,,,電化學與固態學 (Electrochemical and Solid-State Letters),第 4(3)卷第 G26- G27頁,其在此處被併入參考資料中。 進一步的處理技術實現選擇性地放在該些弱合區域5 及/或強接合區域6,其具有輻射吸收及/或反射的特性之一 15層或多層,可能是以窄或寬的波長範圍作根據。舉例來說 ’選擇地放置在強接合區域6之一層或多層在暴露於某些 輻射波長之後可能立即具有接著特性,使得該層吸收輻射 而且在強接合區域6接合層1和2。 一熟悉該技藝者將會瞭解不但該附加的處理技術可以 20被使用,而且包含至少一種該些前述的處理技術之組合也 可以被使用。不過,所使用的任一種處理的關鍵特性是形 成一個或多個弱接合區域與一個或多個強接合區域的能力。 該些弱接合區域5與該些強接合區域6在層1與2的界面 之幾何形狀,可能根據包括,但不是限制,在區域3上或 31 553891 玖、發明說明 其中形成有用結構的型式、選擇的分離/接合的型式、選 擇的處理技數之因素與其它的因素而改變。如第〗‘16圖 所示,該些區域5、6可能是同心的。#然,一熟悉該技藝 者將會察知任一種幾何性狀都可以被選擇。此外,弱接合 5區域與強接合的區域的比例可能改變。大體上,該比例提 供足夠的接合(也就是,在該些強接合區域6)以便不含有該 多數層結構100的整體性,特別是在結構處理期間。該比 例較好也使用於結構處理之有用的區域最大化(也就是弱 接合區域5)。 1〇 實質上是在如上述之弱接合區域5及/或強接合區域6 中的表面1A和2A之一或兩者處理之後,層2被接合在 一起以形成一實質的整合多層基材1〇〇。層丨和2可以藉由 多種技術及/或物理現象之一接合在一起,其包括但不是 限制,共晶、融合、陽極的、真空、凡德瓦爾、化學接著 15 、疏水現象、親水現象、氫接合、哥倫布力、毛細力量、 非常短距離的力量或包含至少一種該些前述接合技術及/ 或物理現象的組合。當然,一熟悉該技藝者可顯而易見的 是該接合技術及/或物理現象部分可能根據使用的一種或 多種處理技術、在其中或其上形成的有用結構之型式或實 20 體、預期的分離方法或其它的因素而定。 因此,多數層基材100可能被用於在區域3中與上面形 成微機電系統或一種或多種其他有用的結構,其實質地或 部分地在表面1A與2A的界面與弱接合區域5重疊。該些有 用的結構可能包含一種或多種主動或被動的元件、裝置、 32 553891 玖、發明說明 器具、工具、電路、其他有用的結構或包含至少一種該些 月’j述有用的結構的組合。例如,該有用的結構可能包含一 整合的電路或太陽能電池。當然,一熟悉該技藝者將會察 知各種不同的微米技術與奈米技術裝置可能被形成,其包 5括用於各種目的的微機電系統,諸如感應器、開關、鏡子 、微馬達、微風扇與其他微機電系統。 在一種或多種結構已經被形成在層丨的一個或多個選 擇的區域3上之後,層丨可以藉由各種方法分離。可以領會 的疋因為該些結構物被形成在該些區域4中或上面,其部 1〇分或實質地與弱接合區域5重疊,層1的分離可以發生同時 被隨分離而對該結構物之典型的損傷,諸如結構的缺陷或 變形可以減到最小或消除。 分離可以藉由各種不同已知的技術完成。大體上,分 離可能根據,至少部分,該處理技術、接合技術、有用結 15構的類型與實體或其它的因素而定。 大體上,談到第17-28圖,分離技術可能根據離子或 粒子的植入而在一參考的深度形成微泡,通常是相當於層 1的厚度。該些離子或粒子可能源自於氧、氫、氦或其他 的粒子14。該結合之後被暴露在強電磁輻射、熱、光(舉 20例來說紅外光或紫外線)、壓力或包含至少一種前述者之 組合,而導致該些粒子或離子形成該些微泡15,而且最後 膨脹並使層1與2脫層。該植入與可選擇的熱、光及/或壓 力之後也可進行機械分離步驟(第19、22、25、28圖),舉 例來說,在垂直該些層1與2平面、平行該些層丨與2平面、 33 553891 玖、發明說明 在’對於該些層1與2平面的其他角度的方向、在剝離方向( 第19、22、25、28圖中虛線所示)或其組合上進行。用於 薄層之分離的離子植入將更詳細的被說明,舉例來說在鍾 (Cheung)等之美國專利第6,027,988號標題“利用電漿浸 5 沒離子植入由總體基材分離薄膜的方法’’(Method Of Separating Films From Bulk Substrates By Plasma Immersion Ion Implantation)中說明的,其在此處被併入參 考資料中。典型的氫植入條件是劑量5χ 10-16公分_2且能量 是120千電子伏特。對於上面的條件而言,可以由晶圓劈 10 開大約1微米層厚度。該層厚度只是植入深度的函數,其 對於矽中的氫是90埃(Α) /千電子伏特能量π。該高能粒子 的植入會明顯地加熱材。當植入氫時,較好是藉由降低 束電流1/2或更多的係數,或是藉由夾住並冷卻該晶圓而 避免起泡。以較低的氫植入劑量做分離已經可以利用氦I4 15或硼(更高性能的銅製程)15的共植入而完成。此技術已經 在商業化製造絕緣體上矽(SOI)晶圓,其在機械加工微機 電裝置、光學裝置與更多裝置3微電子之3維整合留下龐大 的可能性。 该劈開的表面之表面品質據報導是優異的I6。一薄層 20是沿著氫離子植入形成的微裂縫分開。該分開可以藉由增 加在晶格内之氫微泡的内部壓力之熱處理進行,或者機械 應力可以被使用,以起始並傳播該裂縫。微電子裝置對植 ;5374564 ^(1994 〇 34 553891 玖、發明說明 入損害是非常敏感的,因此該技術特別被使用於製備起始 曰曰圓,而且永遠不會在完成的或在處理中的晶圓上進行。 此外,尚能離子植入穿過一結構的晶圓時會產生更多擴散 植入/罙度輪廓。该些入射的離子將會經歷不同的材料和地 5形,因此該範圍參數將會與晶圓位置有關。 特別谈及第17-19圖與第20-22圖,在層1和2之間的界 面可能被選擇性地植入離子或粒子16,尤其是在該些強接 合區域17形成微泡17。在此方式中,在區域3的粒子16 植入(在其中或其上具有一種或多種有用的結構)被減到最 1〇 ),如此會減少可能發生在區域3中一種或多種有用結構 之可修復或不可修復的損害的可能性。選擇的植入可藉選 擇性的離子束掃瞄該強接合區域4(第17_19圖)或該些區域3 的遮蔽(第20-22圖)來進行。選擇性的離子束掃瞄是指該結 構100及/或使用的裝置之機械操作而導入將被植入的離子 15或粒子。如熟悉該技藝者所已知的,各種不同的設備與技 術可以被利用以進行選擇性的掃瞄,其包括,但不是限制 ,聚焦的離子束與電磁束。再者,各種不同的遮蔽材料與 技術在該技藝中也是已知的。 參考第23-25圖,植入實質上可能是遍及該整個表面 20 或2B進行。合適程度的植入是根據該靶與植入材料和 需要的植入深度而定。因此,層2比層1厚許多,它可能無 法透過表面2B進行植入;不過,如果層2是一合適的植入 厚度(舉例來說,在可以進行植入的能量範圍内),植入穿 聰明切割表面品質β 35 553891 玖、發明說明 透表面2B可能是所需要的。這會將發生在區域3中一種或 多種有用結構的可修復或不可修復的損害之可能性降到最 小或消除。 在一實施例中,同時參考第15圖與第26-28圖,強接 5 合區域6被形成在層1和2之間的界面之外部周圍。因此, 為了疋層1與層2分離’離子或粒子16可被植入,舉例來說 ’穿過區域4而在層1和2之間的界面形成微泡17。較好使 用選擇性的掃瞄,其中該結構100可以被旋轉(箭頭2〇所示) 、一個掃瞄的裝置21可能被旋轉(箭頭22所示),或其組合 1〇 。在此實施例中,另一個優點是提供終端使用者在選擇在 結構中或其上形成有用的材料之靈活性。該強接合區域6 的尺寸(也就是寬度)是適合於維持該多層結構1〇〇之機械的 與熱的完整性。該強接合區域6的尺寸較好是最小的,如 此會最大化用於結構處理之弱接合區域的面積。舉例來說 15 ,強接合區域6可能是大約八(8)吋級的一(1)微米。 再者,由層2分離層!可以,舉例來說,藉由諸如钱刻 (平订表面)之其他傳統方法開始,而形成透過強接合區域6 的姓刻。在如此的實施例中,該處理技術是特別適合的, 其中例如該強接合區域6是利用一具有對該總體材料(也就 2〇是層m2)有很高的餘刻選擇性之氧化層處理。該些弱接 合區域5較好不需要蝕刻,而在弱接合區域5的位置由層2 分開層1,因為該選擇性的處理,或其不足,可避免在層i 接合至層2的步驟時的接合。 另一方面,裂縫傳播可能用來起始層1與層2的分離。 36 553891 玖、發明說明 再一次,該分離較好只在需要的該些強接合區域6,因為 在該些弱接合區域5的接合是有限的。再者,可以藉由蝕 刻(垂直於表面)開始分離,照慣例是已知的,較好被限制 在區域4的位置(也就是部份地或實質上與強接合區域6重 5 疊)。 層1和2可能是該些相同或不同的材料,而且可能包含 材料,包括但不是限制,塑膠(例如碳酸酯)、金屬、半導 體、絕緣體、單晶、無定形、無結晶、生物的(例如dna 基薄膜)或包含至少一種前述材料種類的組合。舉例來說 1〇 ,特殊的材料類型包括矽(舉例來說,諸如氮化矽、碳化 矽一氧化矽之單晶 '多晶、無結晶、聚矽與衍生物), 砷化鎵、磷化銦、硒化鎘、碲化鎘、鍺化矽、磷化砷鎵、 氮化鎵、碳化石夕、砰化鎵銘、珅化麵、録化銘嫁、神化姻 鎵、硫化鋅、氮化鋁、氮化鈦、其他三A-五A(IIIA-VA)族 15材料、三B(IIIB)族材料、六A(VIA)族材料、藍寶石、石英 (晶體或玻璃)、鑽石、氧化矽及/或矽酸鹽基材料或包含至 少一種前述材料的組合。當然,其他類型的材料之加工可 月b有益於此處說明的方法,提供需要的成分之多層基材 100。特別適合於此處說明的方法之該較佳的材料包括以 20半導體材料(舉例來說,石夕)作為層i ,和半導體材料(舉例 來說,石夕)作為層2 ,其它的組合包括,但不是限制,半導 體(層υ或玻璃(層2),·碳化石夕(層2)上的半導體(層1};在藍 寶(層2)上的半導體(層u ;在藍寶(層幻上的氮化録(層^); 在玻璃(層2)上的氮化鎵(層U ;在碳化石夕(層2)上的氮化鎵 37 553891 玖、發明說明 (層1);在塑膠(層2)上的塑膠(層υ,其中層丨和2可能是相 同或不同的塑膠;和在玻璃(層2)上的塑膠(層丨)。 層1和2可能源自於各種不同的材料,包括晶圓或被沈 積以形成薄膜及/或基材結構的流體材料。在該起始材料 5是晶圓的形狀時,任一種傳統的方法可以被使用以產生層 1及/或2。舉例來說,層2可能由一晶圓所組成,而且層i 可能包含相同或不同晶圓的一部分。該晶圓組成層丨的部 分可能源自於機械磨薄(舉例來說,機械研磨、切割、拋 光、化學機械研磨、拋光-停止或包含至少一種前述研磨 1〇的組合)、裂縫傳播、離子植入後接著機械分離(例如裂縫 傳播,垂直於結構100的平面、平行於結構的平面、在 剝離方向、或其組合)離子植入後接著熱、光及/或壓力誘 發的層分離、化學蝕刻或類似物。再者,舉例來說層1和 2之一或兩者可藉由化學氣象沈積、磊晶成長方法或類似 15方法而被沈積或生長。 此立即的方法以及在其上產生具有微機電系統或其他 有用結構的多層基材之一重要利益是該些有用的結構是形 成在忒些區域3中或其上,其部分地或實質地與該弱接合 區域5重疊。當該層丨由層2除去時,這實質上會使對該有 用、構物的損害之可能性減到最小或消除。該分離步驟通 常需要侵入(舉例來說,離子植入)、施加力量或其他分離 層1和2所需要的技術。因為,在某些實施例中,在區域3 中或其上之該些結構不需要局部的侵入、施加力量或其他 對該些結構可能有可修復或不可修復的損害之加工步驟, 38 553891 玖、發明說明 層1可被移除,同時特別衍生的結構物不需要隨後的加工 來修補該些結構。部分或實質地與該些強接合區域6重叠 之該些區域4通常在其上沒有結構,因此這些區別可進行 插入或施力而沒有損害該些結構。 5 該層1可以被移除作為一自我支撐薄膜或一被支撐的 薄膜。舉例來說,提拉層通常被用來貼附在層丨,使得層1 可以由層2移除,並且仍然被該提拉層支撐。通常,該提 拉層可以被使用以實質地將該薄膜或其(例如具有一個或 多個有用的結構)部分放置在一預期的基材、其他加工的 10薄膜或二者擇一殘留在提拉層上。一個如此的提拉層被揭 示於2001年1〇月02曰成案之美國暫時專利申請序號第 60/326432號,標題“用於處理易碎的物件之裝置與方法及 其製造方法’,,其在此處被併入參考資料中。 該迫切的方法之利益是組成層2的材料可以被再使用 15或再循環利用。舉例來說,藉由任一已知的方法,單一晶 圓可被使用以產生層1。該衍生的層1可以被選擇性地接合 在如上述的殘留部分(層2)。當該薄膜被分離時,使用層2 之殘留的部分可以獲得將被使用作為下一個層丨的薄膜。 這可以重複直到不再可行或實際使用層2之殘留部分以衍 2〇 生用於層1的薄膜。 如上面討論的,微機電系統裝置是一用於垂直堆疊的 自然選擇。微機電系統感應器套件的3維整合的挑戰比在 微電子中更容易被應付。對於微機電系統裝置而言,該臨 界尺寸是大的且輸入/輸出總數是小的。垂直的互相連接 39 553891 玖、發明說明 可以被做大,其對增加晶片大小沒有不利影響之裝置間垂 直連接的可靠性有明顯地正向衝擊。晶圓接合是微機電系 統製造中已確立的步驟。對於微機電系統感應器而言,電 力消耗可以相當低,使得散熱管理容易許多。舉例來說, 5在某些實施例中,平均電力消耗可以小於100微瓦(3伏特 、平均電流消耗<30微安培),除去作為依重要議題的堆疊 套件之散熱管理。既然該薄裝置層被轉移,垂直互相連接 可以藉由用於微機電系統之通孔技術可以容易地進行。 該多層基材可以經濟的將辯駁的裝置堆疊成單一的封 10裝。該些裝置的便薄可以藉由該裝置層由該多層基材之晶 圓規模的剝離。 因此’根據此處的方法,裝置層可以完全由接合的晶 圓被移除。由於上面說明之該選擇性的接合方法,該方法 不需要離子植入通過完成的晶圓、後研磨該晶圓或蝕刻該 15晶圓。朝向平面,受控制的裂縫(舉例來說,剝離)將會由 該晶圓主體分開該薄的、完成的裝置層。該裝置的轉移可 以達到晶圓規模。在薄層轉移期間,該裝置層被接合在另 一個具有相同或不同裝置的晶圓,或接合至任一表面。該 些裝置可以是其它的微機電感應器,或是該晶圓可能含有 20 ASIC控制器或記憶晶片。此方法排除設計限制,並且允許 感應器的選擇是不連續地被最適化。此社計有一允許最佳 等級感應器之選擇的開放架構。對該套件之設計變化可以 藉由簡單地替換一層或多數層,而利用最小的成本進行。 感應器可能以商業化可獲得的感應器之型式被提供, 40 553891 玖、發明說明 或者可能被設計用於具有被設計成符合具有該商品化感應 器之該基材晶圓的晶片尺寸之單獨的晶圓或晶圓的製造。 該起始晶圓是被設計成具有用於容易除去該裝置層之分離 的平面,ϋ且轉移至該主要的晶B ,它在此處可以被溶融 5接合。如果需要,感應器之額外的層及/或控制電路可以 被增加。後研磨不是必須的。該晶圓接合墊被設計成垂直 杈直。藉由設計平行的管腳可以將管腳總數盡可能的減少 。因為該些層是非常薄的,通孔凹槽是形成3維互相連接 的一實際解決方法。再者,可以是一邊緣連接設計。在可 1〇選擇的鈍化之後,該晶圓準備用於背面端製造(切片、線 接合等)。 現在參考29-34圖,用於形成垂直整合的微機電系統 基裝置的處理步驟被顯示。第29圖顯示一具有打算以可致 動的微鏡、致動或其他微機電系統標示之多數空洞52( 15在該些弱接合區域中)的剝離層51(例如相當於上面的層工) 的側邊與頂端圖示。要注意的是某些裝置可能不需要空的 區域以允許運動,再者如此空的區域可以被併入含有該微 機電系統本身的層中。第30圖顯示一剝離層53(例如相當 於上面的層1)的側邊與頂端圖示,舉例來說,具有(在該些 20弱接合區域中)之多數可致動的微鏡、致動器或在該技藝 中已知的在其上加工之其他微機電系統54。第31圖顯示具 有打算以可致動的微鏡、致動器或其他微機電系統標示之 多數空洞56(在該些弱接合區域中)的另一可選擇剝離層55( 例如相當於上面的層1)之侧邊與頂端圖示。第32圖顯示一 41 553891 玖、發明說明 剝離層57(例如相當於上面的層1)之側邊與頂端圖示,舉例 來說,具有打算與第3〇圖中顯示的微機電系統耦合操作的 多數邏輯裝置58(在該些弱接合區域中)。第33圖顯示一剝 離層59(例如相當於上面的層1)之侧邊與頂端圖示,舉例來 5 說’具有打鼻與分別於第30圖及第32圖中顯示的微機電系 統及邏輯裝置耦合操作的多數記憶裝置60(在該些弱接合 區域中)。 然後,在第29-33圖中之該每一個單獨的裝置(或空洞) 層被堆疊如第34圖所示,以形成包括聯合邏輯與記憶體( 10和其他對熟悉該技藝者是顯而易見的功能性)多數垂直整 合的微機電系統裝置。該些層的邊緣(相當於該強接合區 域並且以點線21顯示)可以被除去,同時包括聯合邏輯與 記憶體之該個別的垂直整合微機電系統裝置(第35圖)可以 在點線22處模切。 15 裝置整合必須應付混合產率損失的議題。考慮一層數 等於η的堆疊。如果在堆疊中的每一裝置以γ%的產率被製 造,對於該整合系統而言產率是增加η次方的γ。當層的數 目增加時,該系統的產率會非常快地變的非常小。對於一 組成具有90%產率之裝置的層堆疊而言,大約有4〇%的 2〇堆疊將會含有一個無功能的晶粒。當該實施例考慮堆疊整 合之產率損失的同時,當在單一晶片區域上整合不同型式 的加工流程時,該情況是相似的。 微機電系統整合計劃較好藉由使用已知良好的晶粒 (ICGD)、藉由建立允許該套件之過剩的能力,即使一個特 42 553891 玖、發明說明 別的裝置是沒有功能的、或藉由具有一可以支撐低產率的 成本結構,而允許混合產率損失。如以前提到的,使用已 知良好的晶粒是一被限制在高可靠度且高成本的應用之昂 貴的選擇。設計多餘的裝置對於晶片面積、電力消耗、操 5作複雜性與管腳總數會造成不利的影響。垂直堆疊可藉由 堆疊該些裝置而緩和對該面積的不利影響。藉由採取該垂 直的尺寸之優點,該些裝置可以疊層而沒有增加封裝尺寸 與成本。 此處說明之該微機電系統與用於形成該微機電系統的 1〇方法的優點,包括:經濟、使用最好的等級之感應器的能 力(在裝置加工流程中沒有交換)、開放的架構,而且它們 可以延伸到混合的微機電系統_微電子套件。 一個垂直整合加工流程被提供,其可製作一開放的架 構之微機電系統感應器套件。特別地,具有結合溫度、相 15對濕度和3-軸震動測量之感應器套件將被設計,但是該方 法預期一般是應用到所有感應器類型的整合,同時應用到 微機電系統外加電子控制器晶片組合。 使用此處說明的該些方法之3維整合的感應器套件也 被提供。在一實施例中,商品化感應器可以被選擇用於基 20 礎(提拉)晶圓。 整個晶圓可以被加工,包括所需要的晶粒大小與輸入 /輸出規劃。剩餘的感應器可能被設計成商品化晶粒之實 際尺寸和接合塾。 在裝置製造之後也提供一個起始晶圓,其中該起始晶 43 553891 玖、發明說明 圓包括諸如微機電系統套件的3維微機電系統的一部份。 再者’提供製造如此之起始晶圓的方法,以促進晶圓規模 裝置的移除與轉移。 該3維微機電系統可能具有通孔連接或邊緣連接,如 5 那些熟悉該技藝者所已知的。 除微機電系統和混合的微機電系統套件之外,此處之 該些方法與結構可被擴展至高密度微電子堆疊。前者的實 施例是非常高密度記憶體堆疊(千兆位元(petabyte))以及記 憶和邏輯晶片的結合。 1〇 該方法將會對任一種型式感應器套件進行迅速的設計 原型和生產。該方法可以延伸至超高密度的電子封裝及具 有ASIC控制器之微機電系統和記憶晶片的高密度結合。 違k機電糸統具有允許任一個別的組件在任一時間, 以最少的再設計和遮罩變化做改變之開放的架構。 15 關於微機電系統感應器的應用已經在上面討論。如討 論的,微機電系統感應器預想是有35%之非常高的混合成 長率。該改善成本之垂直整合結構對於微機電系統技術將 會開啟許多相的應用。 當較佳實施例已經被顯示並說明的鋼時,在不偏離本 20發明之精神與範圍,可以進行各種不同的修正與替代。因 此,應該被瞭解的是本發明已經藉由圖示而且不是限制在 該些圖示的方式說明。 【圖式簡單說明】 第1圖是一說明適合於形成微機電系統和其它聯合的 44 553891 玖、發明說明 微裝置之一層狀結構的實施例的示意圖; 第2圖係根據某實施例描述一適用於微機電系統的内含 物之層; 第3圖係根據某實施例描述一支持層; 5 第4圖係根據某實施例描述一適用於微機電系統的内含 物之層; 第5圖係根據某實施例描述一支持層; 第6圖係根據某實施例描述一適用於微機電系統的内容 物之層; 10 第7圖係根據某實施例描述一支持層; 第8圖係根據某實施例描述一適用於微機電系統的内容 物之層; 第9圖係根據某實施例描述一支持層; 第10圖係根據某實施例描述一適用於微機電系統的内 15 含物之層; 第11圖係根據某實施例描述一支持層; 第12圖係根據某實施例描述一適用於微機電系統的内 含物之層; 第13層係根據某實施例描述一支持層; 2〇 第14係用於第1圖之結構的接合幾何形狀之一離、樣· 第15圖係描述用於第丨圖之結構的接合幾何形狀之另 一態樣; 第16圖係描述用於第丨圖之結構的接合幾何形狀之另 一態樣; / 45 553891 玖、發明說明 第17圖係根據某實施例描述藉由選擇性植人之一分離 步驟; 第18圖係根據某實施例描述該步驟之後的一中間結構 5 第19圖係第18圖之剝離該結構的步驟; 第20圖係根據某實施例描述藉由經由光罩結構利用選 擇性植入之一分離步驟; 第21圖係根據某實施例描述經該步驟之後的一中間結 構; 10 第22圖係描述第21圖之剝離該結構的步驟; 第23圖係根據某實施例描述藉由利用非選擇性植入之 一分離步驟; 第24圖係根據某實施例描述經第23圖的步驟之後的一 中間結構, 15 第25圖係描述第24圖之剝離該結構的步驟; 第26圖係根據某實施例描述藉由在周圍利用選擇性植 入之一分離步驟; 第27圖係根據某實施例描述經第26圖的步驟之後的一 中間結構; 20 第28圖係描述第27圖之剝離該結構的步驟; 第29圖顯示一欲記錄可致動的微鏡、致動器或其他微 機電系統之剝離層的側視及上視圖; 第30圖顯示一剝離層的側視及頂視圖,例如具有複數 的致動微鏡、致動器或其他於其上的微機電系統加工; 46 玖、發明說明 第31圖顯示另一具有複數的空隙之剝離層欲記錄可致 動的微鏡、致動器或其他微機電系統; 第3 2圖顯示一具有複數的邏輯裝置之剝離層欲可操作 地偶合至顯示於第30圖之聯合的微機電系統裝置; 第33圖顯示一具有複數的記憶裝置之剝離層欲可操作 地偶合至分別顯示於第30及32圖的聯合的微機電系統裝置 及邏輯裝置; 第34圖顯示一複數的垂直整合微機電系統裝置,包括 一晶圓程度之聯合的邏輯及記憶體;以及 10 第35圖顯示一個別的垂直整合微機電系統裝置。 【圖式之主要元件代表符號表】 層 5…弱接合區域 1A…層1的表面 1B…層1的背面 2…層 2A…層2的表面 2B…層2的背面 3···弱接合區域 4···強接合區域DanAwtrey, 1-Truncation Induction & , , , Sensor (sens〇r) H7 roll, 2〇〇〇, Year eight ^ c 21 553891 玖, Description of the invention It is easy to upgrade the design. This method will reduce the cost of integrating microcomputer electrical systems, And allows use in new application categories.  In general, The bond strength is controlled to produce a starting wafer that allows the entire device layer to be removed and transferred after completion. These bonded wafers are set up to withstand device processing, And still allow stripping of this thin device layer at the wafer scale, No difficult grinding and etching.  A new method for manufacturing SOI wafers, It is a transfer of a thin layer on a silicon wafer by controlling splitting along the plane of the ion implantation damage. Usually, this layer is permanently bonded to an oxidized silicon wafer, To form a silicon_10 oxide-silicon laminate. No adhesive was used for this joint. Through the entire wafer surface or in a selective pattern of strong and weak junctions, Controlling the strength of the joint is another way to form a permanent joint. for example, The joint month b can be controlled by nano-scale rough stitching. These wafers with energy-controlled internal planes can be used, Designed to manufacture reliable sensors. After manufacturing, Each thin sensor device layer is transferred to a handle wafer. The transfer and bonding of this device layer occurs at the wafer scale, That is, The entire top layer is transferred layer by layer, And directly bonded to the pull wafer. Additional layers of sensors or controllers can be stacked on the pull wafer, Overlay the original transfer layer to produce a 3-dimensional sensor kit. This method allows any type of sensor to be integrated into a stacked kit.  Referring to Figure 1, A selectively bonded majority of the substrate 100 is shown. The multi-layer substrate 100 includes a layer 1 having an exposed surface 1B and a surface 1A selectively bonded to a surface 2A of the layer 2. Layer 2 further contains the back side 22 玖, Description of the invention Surface 2B. In general, Layer 1, Layer 2 or both layers 1 and 2 are processed to define areas of weak junction 5 and strong junction 6 and are subsequently joined, To form the plurality of selectively bonded substrates 100, These areas where the weak joint 5 is in a case where a useful device or structural processing is allowed, It includes micro-electro-mechanical systems and / or other useful devices or structures.  In general, 'layers 1 and 2 are phase-phased. That ’s ’layers 1 and 2 make up compatible heat, Mechanical and / or crystalline properties. In some preferred embodiments, Layers 1 and 2 are the same material. of course, Different materials can also be used, But it is better to make a choice based on compatibility.  One or more regions of layer 1 are defined as one or more structures such as microelectronics that can be formed in or on a substrate region. These areas may be any desired pattern, As explained further here. then, Selective areas of layer 1 can be processed to minimize the bonding to form the weak bonding area 5. on the other hand, The corresponding area of layer 2 can be processed (together with or instead of layer 1) to minimize the joint. Another option involves treating layer 1 and / or layer 2 in areas that are not selected to form the structures, In order to improve the bonding strength in the strong bonding region 6.  After layer 1 and / or layer 2 are processed, the layers can be aligned and joined. The joining can be performed by any suitable method as further described herein. Also, the alignment may be mechanical, Optical or a combination thereof. It should be understood that straightening at this stage may not be important, Because there is usually no structure formed on the layer. but, If both layer 1 and layer 2 are processed, 'alignment may be necessary to minimize vibrations in the area of the substrate originating from this selectivity.  玖, SUMMARY OF THE INVENTION The multi-layer substrate 100 can be processed, To form a microelectromechanical system or any other desired structure in or on layer 1. therefore, The multi-layer substrate 100 is formed, It allows users to process any structure or device using traditional manufacturing techniques or other technologies that have become known as the development of various related technologies. Certain manufacturing techniques can subject the substrate to extreme conditions, Such as high temperature, pressure, Harsh chemicals or combinations thereof. therefore, The multi-layer substrate 100 is preferably manufactured to withstand these conditions.  Mechatronic systems or other useful structures or devices can be formed in or on Area 3, Partially or substantially overlaps the weak junction area 5. Therefore, Zone 4, Partially or substantially with a strong joint area 6, There is usually no structure in or on it. After the microelectromechanical system or other useful device is formed in or on layer 1 of the plurality of substrates 100, Layer 1 may be subsequently joined. This separation can be performed by any suitable method, Such as stripping,  There is no need for the MEMS or other useful devices to perform unfavorable delamination techniques directly. Because micro-electro-mechanical systems or other useful devices are usually not formed in or on area 4, These areas can be separated, Such as ion or particle implantation, This does not damage the structures formed in or within the region 3.  To form a weak junction area 5, Surface 1A, 2 A or both can be processed at the position of the weak junction, To form substantially no joints or weak joints.  on the other hand, The weakly bonded areas 5 may be left untreated, The strong bonding is caused by the processing of the strong bonding region 6. The region 4 partially or substantially overlaps the strong bonding region 6. In order to form the strong bonding region 6, Surface ία,  2A or both can be processed at the location of the strong junction area 6. on the other hand,  553891 玖, DESCRIPTION OF THE INVENTION The strong bonding area 6 can be left untreated, Weak bonding is caused by the processing of the weak bonding region 5. Furthermore, Zones 5 and 6 may be processed by different processing techniques, These treatments may differ in quality or quantity.  After the treatment 5 of one or both of the weak joint region 5 and the strong joint region 6, Layers 1 and 2 are joined together, To form a substantially complete multilayer substrate 100. therefore, As formed, The multilayer substrate 100 can withstand the severe environment of the end user, for example, And a structure or device 'is formed therein or thereon, in particular in or on the region 3 of the layer 1.  The phrase "weak association, , Or "weak engagement, , Usually refers to separation between layers, or by separation such as 10 peeling or other mechanical, heat, Light, Pressure or a separation technique comprising a combination of at least one of the foregoing separation techniques can quickly recover the bonding between portions of a layer. These separation techniques have minimal casting defects or damage to layer 2, Especially in the vicinity of the weak joint area 5.  The processing of one or both of the group of weak joints 5 and the group of strong joints 6 can be performed by various methods. The point of this process is that the weakly bonded region 5 is easier to separate than the strongly bonded region 6 (as described in the subsequent separation step described further herein). During separation, This will minimize or avoid damage to Area 3, It may contain useful structures on it. Furthermore, The inclusions in the strong bonding region 6 enhance the mechanical integrity of the multi-layer substrate 100. therefore, When 20 removes useful structures in or on it, Handling of layers can be minimized or eliminated.  The special type of treatment performed by one or both of the group of weak joints 5 and strong joints 6 is usually based on the materials selected. and, The choice of bonding technology for layers 1 and 2 may be based on, At least in part, Choose ^ Li Fang 25 553891 玖, Description of the invention In addition, The subsequent separation is based on Joining method, material, The type of useful structure depends on factors that exist or contain a combination of at least one of the foregoing. In some embodiments, The selective treatment, The combination of bonding and subsequent disengagement (i.e. the end user makes a useful structure in zone 35, Or an intermediate component in a higher-order device) can eliminate the need for cracks to propagate layer 丨 separated by layer 2 or mechanically thinned to remove layer 2, It is better to eliminate crack propagation and mechanical wear. therefore,  The underlying substrate can be reused with minimal or no treatment, Because of traditional doctrine, Crack propagation or mechanical thinning can damage layer 2, So that 10 gets it without further substantial processing, Basically useless.  A processing technique that may depend on the surface roughness between the weakly bonded areas 5 and the strongly bonded areas 6. The surface roughness can be found on the surface ia (Figure 4), Surface 2A (Fig. 5) or both ιA and 2a were modified. In general, These weak joint areas 5 have a higher surface roughness 15 degrees 7 than the strong joint areas 6 (Figures 4 and 5). In semiconductor materials, For example, the weak junction regions 5 may have a surface roughness greater than about 0.5 nanometers (nm), At the same time, the strong bonding areas 4 may have a lower surface roughness, It is usually less than about 0.5 nm. In another embodiment, The weak bonding regions 5 may have a surface roughness larger than a large mnm, Moreover, these strong bonding areas 4 may have a low surface roughness, It is usually less than about 1 nm. In another embodiment, The weak bonding regions 5 may have a surface urbanization greater than about 5 nm, And these strong bonding areas 4 may have a lower surface roughness,  It is usually less than about 5 nm. The surface roughness can be determined by rhenium (for example, in a hydrogen hydroxide solution or a hydrogen fluoride solution) or by a deposition method (for example, low pressure chemical vapor phase 26 553891 玖, Description of the invention Deposition (LPCVD) or plasma-assisted chemical vapor deposition (PECVD)). For example, ‘the bonding strength and the surface sugar content are in Gui ’s“ Selective wafer bonding by controlling surface roughness ”, Journal of The Electrochemical Society, It is more fully described in Vol. 148 (4), pages G225-G228 5 (2001), It is here incorporated by reference.  In a similar way (where similar states are marked with similar reference numerals as in Figures 4 and 5), A porous region 7 may be formed in these weakly bonded regions 5, And the strong bonding area 6 may still be untreated.  10 Therefore, Due to its porous nature, The layer 1 has a minimum joint with the layer 2 at the positions of these weak joint regions 5. The porosity can be on the surface (Figure 4), Surface 2A (Figure 5) or both surfaces 1A and 2A are modified. In general, The weak joints 5 have higher porosity than the strong joints 6 at the porous regions 7 (Figs. 4 and 5).  15 Other processing techniques may depend on the selectivity of these weak junctions 5 (on surface 1A (Figure 4), 2A (Figure 5) or both surfaces 1A and 2A),  Deposition of photoresist or other carbon-containing materials, such as polymer-based decomposable materials, is then performed in the etched area. one more time, Areas of similar status are marked with similar reference numerals as in Figures 4 and 5. Regarding the joining of layers 1 and 2,  20 It is preferably carried out at a temperature sufficient to decompose the carrier material, The weak connection σ & Domain 5 includes a porous broken material 'so that the bonding between layers 1 and 2 of the weak bonding areas 5 is very weak compared to the bonding between layers 1 and 2 of the strong bonding areas 6 of. Anyone familiar with the art will understand that ‘depending on the environment, Does not heat exhaust gas, Pollution or not the same 27 553891 玖, BRIEF DESCRIPTION OF THE INVENTION A decomposing material that dirtys the substrate layer 1 or 2 or any useful structure that will be formed in or near the region 3 will be selected.  A further processing technique may be the use of radiation to obtain strong joint areas and / or weak joint areas5. In this technique, With neutrons, ion,  5 particle beam or combination of radiation layers 1 and / or 2 thereof, To achieve the required strong and / or weak joints. for example, Such as helium ions (He +), Particles of hydrogen ions (Η +) or other suitable ions or particles, Electromagnetic energy or laser beams can be applied to these strong bonding areas 6 (on the surface 1A (Figure 10), 2A (Figure 11) or both 18 and 28). It should be understood that for the purpose of leaving the layer, Radiation methods differ from ion implantation in that the dose and / or implantation energy is very low (for example, Suitable for delamination use in the order of one hundredth or one thousandth).  An additional processing technique includes the Use of a slurry of solid composition and decomposable composition on both 2A or 1A and 2A. The 15 solid composition may be, for example, alumina, Silicon oxide (Si〇 (x)), Other solid metals or metal oxides or other materials that minimize the bonding of these layers 1 and 2. The decomposable composition may be, for example, polyethylene glycol (PVA) or other suitable decomposable polymers. usually, Mud 8 is applied to the surfaces 1A (Figure 2) of these weakly bonded areas 5, 2A (Figure 3) or both 1A and 20 2A. after that, Layers 丨 and / or 2 can be heated, Preferably in an inert environment, To decompose the polymer. therefore, The porous structure (composed of the solid composition of the mud) remains in the weakly bonded areas 5, And once joined, Layers 1 and 2 are not bonded to these weakly bonded areas 5.  Yet another processing technique includes etching the surfaces of the weak bonding areas 5 28 553891 玖, Description of the invention. During this etching step, Column 9 is defined in the tables of these weak junction areas 5 (Figure 8), 2A (Figure 9) or both 1A and 2A. The columns can be defined by selective narration, Leave the columns behind. The shape of these columns may be triangular, Triangular cone, Rectangle or other suitable shapes.  5 On the other hand, The pillars can be grown or deposited in the etched area.  For this material, Because there are fewer joints, The total bonding strength at the weak bonding regions 5 is lower than the bonding at the strong bonding regions 6.  There is another processing technique including an empty area 10 (Figures 12 and 13), for example, It is 5 layers 1 in this weak junction area (Figure 12), 2 (Figure 13) In 10, by etching, Mechanical or both. therefore, When the first layer is connected to σ at the first layer 2 of xr, Compared with this strong joint area 6, The void areas 10 will minimize the joint, It facilitates subsequent separation.  Another treatment technique includes surface 1A (picture 2) 2A (Figure 3) or 1A and 2A of these weakly bonded areas of one or more metal regions 8 15 is used. for example, Metals include, But not restricted, copper, gold, Platinum or any combination or alloy thereof may be deposited on these weakly bonded areas 5. Regarding the joining of layers 1 and 2, The weakly bonded areas 5 will be weakly bonded.  Some of the strong joint areas may still be untreated (where the weak joint area 5 and the strong joint area 6 ’the difference in joint strength provides the required ratio of strong joints to 20 weak joints), Or may be processed as described above or below, To cause firm adhesion.  Another treatment technique includes 1A (Figure 10) on the surfaces of the strong bonding areas 6, Use of one or more adhesion promoters 11 on 2A (Figure 11) or both 1A and 2A. Suitable adhesion promoters include, But not restricted, Titanium oxide 29 553891 玖, Description of the Invention TiO (x), Oxidation buttons or other adhesion promoters. on the other hand, Substantially subsequent accelerators can be used on all surfaces 1A and / or 2A, One of the metallic materials is placed between the adhesion promoter and the opposing surfaces 1A and / or 2 A of the weakly bonded areas 5 (depending on the location of the adhesion promoter) 5. therefore, Immediately after joining, the metallic material will avoid strong joining. In these weak joining areas 5, on the contrary, The adhesion promoter remaining in these strong bonding areas 6 promotes strong bonding.  Yet another treatment technique includes providing areas that change hydrophobicity and / or hydrophilicity. for example, The hydrophilic region is particularly useful for the strong bonding region 6 'because, for example, broken materials can spontaneously bond at room temperature. Hydrophobic and hydrophilic joining techniques are known at room temperature and high temperature. for example,  Such as in Tang (Q · Y · Tong), Goesle, Semiconductor wafer bonding ‘Science and Technology, Pages 49-135  John Wiley and Sons, New York NY 1999 It was incorporated here! 5 References.  Yet another processing technique includes one or more peeling layers that are selectively irradiated. for example, One or more release layers can be placed on the surface  / Or 2A. No radiation, The release layer acts as an adhesive. Regarding the exposure of these weakly bonded areas 5 to radiation such as ultraviolet light, This adhesion 20 characteristic can be minimized. The useful structures can be formed in or on the weakly bonded region 5, And subsequent UV radiation steps or other separation techniques can be used, In order to separate the layers 丨 and 2 at the strong bonding areas 6, an additional processing technique includes an implanted ion 12 (Figures 6 and 7), Root 30 553891 玖, Description of the invention The layer allowed in the weak area according to the heat treatment (Figure 6), Most microbubbles 13 are formed in layer 2 (Figure 7) or both layers 1 and 2. therefore, When layers 丨 and 2 are joined, The weakly-bonded regions 5 have fewer bonds than the strong-bonded regions 6, The subsequent separation of the layers 1 and 2 in the weakly bonded regions 5 is easily performed. 5 Another processing technique includes an ion implantation step and an etching step subsequent thereto. In one embodiment, This technique is essentially performed by ion implantation over the entire surface 1B. Since then, The weak bonding regions 5 can be selectively etched.  A method for removing defects by removing selective etching is described in Simpson 10 et al. , , Electrochemical and Solid-State Letters, Vol. 4 (3), pp. G26-G27, It is here incorporated by reference.  Further processing techniques enable selective placement of these weakly-bonded regions 5 and / or strong-bonded regions 6, It has one of the characteristics of radiation absorption and / or reflection. 15 or more layers, May be based on a narrow or wide wavelength range. For example, ’a layer or layers that are selectively placed in the strong junction area 6 may have a bonding property immediately after exposure to certain radiation wavelengths, This layer is made to absorb radiation and to bond layers 1 and 2 in a strong bonding region 6.  A person familiar with the art will understand that not only the additional processing technology can be used, Furthermore, a combination comprising at least one of the aforementioned processing techniques can also be used. but, A key characteristic of any of the processes used is the ability to form one or more weak junctions and one or more strong junctions.  The geometry of the interface between the weak junction areas 5 and the strong junction areas 6 at layers 1 and 2, May be based on including, But not restricted, On area 3 or 31 553891 玖, Description of the invention Selected separation / joint type, The factors selected for the processing technique vary with other factors. As shown in Figure ‘16, The areas 5, 6 may be concentric. # 然 , A person familiar with the art will know that any geometric trait can be selected. In addition, The ratio of weakly joined 5 areas to strongly joined areas may change. In general, This ratio provides sufficient engagement (that is, In the strong bonding regions 6) so as not to contain the integrity of the multi-layer structure 100, Especially during structural processing. This ratio is better and is also used to maximize the useful area for structural processing (i.e. weak junction area 5).  10 is substantially after one or both of the surfaces 1A and 2A in the weak bonding region 5 and / or the strong bonding region 6 as described above, Layers 2 are joined together to form a substantially integrated multilayer substrate 100. Layers 丨 and 2 can be joined together by one of several technologies and / or physical phenomena, It includes, but is not limited to, Eutectic, Fusion, Anode, vacuum, Van der Waal, Chemistry followed by 15 Hydrophobic phenomenon, Hydrophilic phenomenon, Hydrogen bonding, Columbus, Capillary force,  Very short-range forces or a combination of at least one of the foregoing joining techniques and / or physical phenomena. of course, It will be apparent to one skilled in the art that the bonding technique and / or physical phenomenon may be partially dependent on one or more processing techniques used, A form or entity of useful structure formed in or on it, Depending on the intended separation method or other factors.  therefore, A plurality of layers of substrate 100 may be used to form a microelectromechanical system or one or more other useful structures in area 3 with it, It substantially or partially overlaps the weak junction region 5 at the interface of the surfaces 1A and 2A. These useful structures may include one or more active or passive elements, Device,  32 553891 玖, Description of the invention tool, Circuit, Other useful structures or combinations containing at least one useful structure described in these months. E.g, The useful structure may include an integrated circuit or solar cell. of course, A person familiar with the art will know that various micro-technology and nano-technology devices may be formed, It includes MEMS for various purposes, Such as sensors, switch, Mirror, Micro motor, Micro fans and other MEMS.  After one or more structures have been formed on one or more selected regions 3 of the layer, Layers can be separated by various methods. It can be appreciated that because the structures are formed in or on the regions 4, Its portion 10 points or substantially overlaps the weak junction area 5, The separation of layer 1 can occur at the same time as the typical damage to the structure with the separation, Defects or deformations such as structures can be minimized or eliminated.  Separation can be accomplished by a variety of different known techniques. In general, The separation may be based on, At least in part, The processing technology, Joining technology, The type of useful structure depends on the entity or other factors.  In general, Speaking of Figures 17-28, Separation techniques may form microbubbles at a reference depth based on the implantation of ions or particles, It is usually equivalent to the thickness of layer 1. These ions or particles may be derived from oxygen, hydrogen, Helium or other particles 14. This combination was then exposed to strong electromagnetic radiation, heat, Light (infrared or ultraviolet for 20 examples), Stress or a combination of at least one of the foregoing, Causing the particles or ions to form the microbubbles 15, And finally swell and delaminate layers 1 and 2. The implantation and optional heat, The mechanical separation step can also be performed after light and / or pressure (section 19, twenty two, 25, Figure 28), for example, In the plane of these layers 1 and 2, Parallel to these layers 丨 and 2 planes,  33 553891 玖, DESCRIPTION OF THE INVENTION In the direction of other angles of the planes 1 and 2 of these layers, In the peeling direction (19th, twenty two, 25, 28), or a combination thereof. Ion implantation for thin layer separation will be explained in more detail, For example, in U.S. Patent No. 6, Cheung, etc., 027, No. 988, "Method Of Separating Films From Bulk Substrates By Plasma Immersion Ion Implantation", It is here incorporated into the reference. Typical hydrogen implantation conditions are a dose of 5 x 10-16 cm_2 and an energy of 120 kiloelectron volts. For the conditions above, It can be split from the wafer by about 1 micron layer thickness. The thickness of this layer is only a function of the depth of the implant, It is 90 Angstroms (A) per kilovolt of energy π for hydrogen in silicon. The implantation of high-energy particles will significantly heat the material. When hydrogen is implanted, Preferably, by reducing the beam current by a factor of 1/2 or more, Or, avoid blistering by holding and cooling the wafer. Separation with a lower implantation dose of hydrogen can already be done using co-implantation of helium I4 15 or boron (higher performance copper process) 15. This technology has been used to commercialize silicon-on-insulator (SOI) wafers, It is used in machining microcomputer electrical equipment, The 3-dimensional integration of optical devices with more devices and 3 microelectronics leaves huge possibilities.  The surface quality of this cleaved surface is reported to be excellent I6. A thin layer 20 is separated along the micro-cracks formed by the hydrogen ion implantation. The separation can be performed by a heat treatment that increases the internal pressure of hydrogen microbubbles in the crystal lattice, Or mechanical stress can be used, To start and spread the crack. Microelectronic device pairing; 5374564 ^ (1994 〇 34 553891 玖, Description of the invention Ingression damage is very sensitive, Therefore, this technique is particularly used at the beginning of preparation. And never on a completed or in-process wafer.  In addition, Passive ion implantation results in more diffusion implant / height profile when passing through a structured wafer. These incident ions will experience different materials and ground shapes. Therefore, the range parameter will be related to the wafer position.  Especially referring to Figures 17-19 and 20-22, The interface between layers 1 and 2 may be selectively implanted with ions or particles 16, In particular, microbubbles 17 are formed in these strongly bonded regions 17. In this way, The implantation of particles 16 in region 3 (with one or more useful structures in or on it) is reduced to a maximum of 10), This reduces the possibility of repairable or irreparable damage that may occur to one or more useful structures in area 3. Selective implantation can be performed by selective ion beam scanning of the strong junction area 4 (Figures 17-19) or the masking of these areas 3 (Figures 20-22). Selective ion beam scanning refers to the mechanical operation of the structure 100 and / or the device used to introduce ions 15 or particles to be implanted. As is known to those skilled in the art, Various devices and technologies can be used for selective scanning, It includes, But not limited Focused ion beam and electromagnetic beam. Furthermore, Various masking materials and techniques are also known in the art.  Referring to Figures 23-25, Implantation may be performed substantially across the entire surface 20 or 2B. The appropriate degree of implantation depends on the target and implant material and the desired depth of implantation. therefore, Layer 2 is much thicker than Layer 1, It may not be implantable through surface 2B; but, If layer 2 is a suitable implant thickness (for example, Within the range of energy that can be implanted), Implantable Smart cut surface quality β 35 553891 玖, DESCRIPTION OF THE INVENTION A translucent surface 2B may be required. This will minimize or eliminate the possibility of repairable or irreparable damage to one or more useful structures in area 3.  In one embodiment, Referring to Figure 15 and Figures 26-28 at the same time, The abutment region 6 is formed around the outside of the interface between the layers 1 and 2. therefore,  In order to separate the layers 1 and 2, the ions or particles 16 can be implanted For example, 'the microbubbles 17 are formed at the interface between layers 1 and 2 through region 4. Better use of selective scanning, The structure 100 can be rotated (shown by arrow 20), A scanning device 21 may be rotated (shown by arrow 22), Or a combination thereof 10. In this embodiment, Another advantage is to provide the end user with the flexibility to choose useful materials in or on the structure. The size (i.e., width) of the strong bonding region 6 is suitable for maintaining the mechanical and thermal integrity of the multilayer structure 100. The size of the strong bonding area 6 is preferably the smallest, This maximizes the area of the weak junction area for structural processing. For example, 15 The strong bonding area 6 may be one (1) micrometer on the order of eight (8) inches.  Furthermore, Separate layers by layer 2! can, for example, Starting with other traditional methods such as money engraving (bordered surfaces), The last name engraved through the strong bonding area 6 is formed. In such an embodiment, This processing technology is particularly suitable,  For example, the strong bonding region 6 is treated with an oxide layer having a high selectivity to the overall material (ie, 20 is the layer m2). It is preferable that the weak bonding regions 5 do not require etching, And the layer 1 is separated by the layer 2 at the position of the weak junction area 5, Because of this selective treatment, Or its shortcomings, The bonding at the step of bonding layer i to layer 2 can be avoided.  on the other hand, Crack propagation may be used to initiate the separation of layers 1 and 2.  36 553891 玖, DESCRIPTION OF THE INVENTION Once again, The separation is preferably only at those strong joining areas 6, Because the joints in these weak joint areas 5 are limited. Furthermore, Separation can be started by etching (perpendicular to the surface), Is conventionally known, It is preferably confined to the position of area 4 (that is, partially or substantially overlaps with the strong joint area 6).  Layers 1 and 2 may be the same or different materials, And may contain materials, Including but not limited to, Plastic (e.g. carbonate), metal, Semiconductor, Insulator, Single crystal, Amorphous, No crystallization, Biological (such as a DNA-based film) or a combination comprising at least one of the foregoing types of materials. For example 1〇, Special material types include silicon (for example, Such as silicon nitride, SiC single crystal 'polycrystalline, No crystallization, Polysilicon and derivatives),  Gallium arsenide, Indium phosphide, Cadmium selenide, Cadmium telluride, Silicon germanium, Gallium arsenic phosphide,  Gallium nitride, Carbide eve, Gallium Ming, Noodles, Recorded inscriptions, Deified marriage, gallium, Zinc sulfide, Aluminum nitride, Titanium nitride, Other three A-five A (IIIA-VA) family 15 materials, Three B (IIIB) materials, Six A (VIA) materials, sapphire, Quartz (crystal or glass), diamond, Silicon oxide and / or silicate-based materials or a combination comprising at least one of the foregoing materials. of course, Processing of other types of materials may benefit the methods described here, A multi-layer substrate 100 is provided with the required components. The preferred materials that are particularly suitable for the methods described herein include 20 semiconductor materials (for example, Shi Xi) as layer i, And semiconductor materials (for example, Shi Xi) as layer 2, Other combinations include, But not restricted, Semiconductor (layer υ or glass (layer 2), · Semiconductor (layer 1) on carbide eve (layer 2); Semiconductor (layer u; on sapphire (layer 2)) Nibbling on the Sapphire (layer magic (layer ^);  Gallium nitride (layer U) on glass (layer 2); Gallium nitride on carbide eve (layer 2) 37 553891 玖, Description of the invention (layer 1); Plastic (layer υ, The layers 丨 and 2 may be the same or different plastics; And plastic (layer 丨) on glass (layer 2).  Layers 1 and 2 may be derived from a variety of different materials, These include wafers or fluid materials that are deposited to form thin film and / or substrate structures. When the starting material 5 is in the shape of a wafer, Any conventional method can be used to produce layers 1 and / or 2. for example, Layer 2 may consist of a wafer, And layer i may contain part of the same or different wafers. Parts of the wafer's constituent layers 丨 may originate from mechanical thinning (for example, Mechanical grinding, Cutting, Throw light, Chemical mechanical grinding, Buff-stop or a combination comprising at least one of the foregoing grinds 10), Crack propagation, Ion implantation followed by mechanical separation (e.g. crack propagation, Perpendicular to the plane of the structure 100, Parallel to the plane of the structure, In the peeling direction, Or a combination thereof) followed by thermal implantation, Light and / or pressure induced layer separation, Chemical etching or the like. Furthermore, For example, one or both of layers 1 and 2 can be deposited by chemical meteorology, An epitaxial growth method or a similar method is used to deposit or grow.  An important benefit of this immediate method and the production of multilayer substrates with MEMS or other useful structures thereon is that the useful structures are formed in or on these regions 3, It partially or substantially overlaps this weak joint area 5. When this layer is removed by layer 2, This essentially makes it useful, The possibility of damage to the structure is minimized or eliminated. This separation step often requires intrusion (for example, Ion implantation), Applying force or other techniques needed to separate layers 1 and 2. because, In some embodiments, These structures in or on Area 3 do not require local intrusion, Applying force or other processing steps that may have repairable or irreparable damage to these structures,  38 553891 玖, Description of the invention Layer 1 can be removed, At the same time, specially derived structures do not require subsequent processing to repair these structures. The areas 4 which partially or substantially overlap the strong joining areas 6 usually have no structure thereon, These differences can therefore be inserted or applied without damaging the structures.  5 This layer 1 can be removed as a self-supporting film or as a supported film. for example, The lift layer is usually used to attach to the layer. So that layer 1 can be removed by layer 2, It is still supported by this lifting layer. usually, The pull-up layer may be used to substantially place the film or a portion thereof (eg, having one or more useful structures) on a desired substrate, Other processed 10 films or one of the two remained on the lift layer. One such lifting layer was disclosed in US Provisional Patent Application No. 60/326432, filed on October 02, 2001, Title "Apparatus and method for processing fragile objects and its manufacturing method", , It is here incorporated by reference.  The benefit of this urgent method is that the materials making up layer 2 can be reused 15 or recycled. for example, By any known method, A single wafer can be used to produce layer 1. The derived layer 1 can be selectively bonded to the remaining portion (layer 2) as described above. When the film is separated, Using the remaining portion of layer 2, a thin film to be used as the next layer can be obtained.  This can be repeated until it is no longer feasible or the remaining portion of layer 2 is actually used to generate a thin film for layer 1.  As discussed above, MEMS devices are a natural choice for vertical stacking. The challenge of 3D integration of the MEMS sensor suite is easier to deal with than in microelectronics. For MEMS devices, The critical size is large and the total number of inputs / outputs is small. Vertical interconnection 39 553891 玖, Invention description can be made bigger, It has a significant positive impact on the reliability of vertical connections between devices that do not adversely affect the increase in chip size. Wafer bonding is an established step in the fabrication of MEMS. For MEMS sensors, Electricity consumption can be quite low, Makes thermal management much easier. for example,  5 In some embodiments, The average power consumption can be less than 100 microwatts (3 volts, Average current consumption < 30 micro amps), except for the thermal management of stacking kits which are important issues. Now that the thin device layer is transferred, the vertical interconnection can be easily performed by through-hole technology for MEMS. The multilayer substrate can economically stack the rebuttal devices into a single package. The thinness of the devices can be peeled from the crystal circle scale of the multilayer substrate by the device layer. So 'according to the method here, the device layer can be completely removed from the bonded wafers. Due to the selective bonding method described above, this method does not require ion implantation through the completed wafer, post-polishing the wafer, or etching the 15 wafer. Toward the plane, controlled cracks (for example, peeling) will separate the thin, completed device layer by the wafer body. The transfer of this device can reach wafer scale. During thin layer transfer, the device layer is bonded to another wafer with the same or different devices, or to any surface. These devices can be other MEMS sensors, or the wafer may contain 20 ASIC controllers or memory chips. This method eliminates design constraints and allows the selection of the inductor to be discontinuously optimized. The agency has an open architecture that allows the selection of the best grade sensors. Design changes to the kit can be made with minimal cost by simply replacing one or more layers. The sensor may be provided as a commercially available sensor, 40 553891 玖, description of the invention, or may be designed to be used separately with a wafer size designed to conform to the substrate wafer with the commercial sensor Manufacturing of wafers or wafers. The starting wafer is designed to have a separation plane for easy removal of the device layer, and is transferred to the main crystal B, where it can be melted and bonded. If required, additional layers of the inductor and / or control circuitry can be added. Post-grinding is not necessary. The wafer bond pad is designed to be vertical. By designing parallel pins, the total number of pins can be reduced as much as possible. Because these layers are very thin, the through-hole groove is a practical solution for forming a three-dimensional interconnection. Furthermore, it can be an edge connection design. After optional passivation, the wafer is ready for backside fabrication (slicing, wire bonding, etc.). Referring now to Figures 29-34, the process steps for forming a vertically integrated MEMS-based device are shown. Figure 29 shows a release layer 51 (e.g. equivalent to the upper layer) having a majority of voids 52 (15 in these weakly bonded areas) intended to be marked with activatable micromirrors, actuations, or other MEMS. Side and top icon. It should be noted that some devices may not require empty areas to allow motion, and further such empty areas may be incorporated into layers containing the MEMS itself. Figure 30 shows a side and top illustration of a release layer 53 (e.g., equivalent to layer 1 above). For example, with a majority of activatable micromirrors (in these 20 weakly bonded areas), Actuators or other microelectromechanical systems 54 processed on it known in the art. Figure 31 shows another optional release layer 55 (e.g. equivalent to the above) having a plurality of cavities 56 (in these weakly bonded areas) intended to be labeled with activatable micromirrors, actuators, or other MEMS. The side and top of layer 1) are shown. Fig. 32 shows a side view and a top view of 41,553,891, description of the invention, peeling layer 57 (e.g., equivalent to layer 1 above). The majority of logic devices 58 (in these weak junction areas). Fig. 33 shows the side and top illustrations of a peeling layer 59 (e.g. equivalent to layer 1 above), for example 5 saying "has a snout and the MEMS shown in Figs. 30 and 32 respectively, and The logic device is coupled to operate a majority of the memory devices 60 (in these weakly bonded areas). Then, each of the individual device (or void) layers in Figures 29-33 are stacked as shown in Figure 34 to form a combination of logic and memory (10 and others that are obvious to those skilled in the art). Functionality) Most vertically integrated MEMS devices. The edges of the layers (equivalent to the strong junction area and shown by dotted line 21) can be removed, while the individual vertically integrated MEMS device (Figure 35) including joint logic and memory can be removed at dotted line 22 Die cutting. 15 Device integration must address the issue of mixed yield loss. Consider a stack with a number of layers equal to η. If each device in the stack is manufactured with a yield of γ%, the yield for this integrated system is an increase of η to the power of γ. As the number of layers increases, the yield of the system becomes very small very quickly. For a layer stack that makes up a device with a 90% yield, approximately 40% of the 20 stack will contain a non-functional die. This embodiment is similar when this embodiment considers the yield loss of stacking integration when integrating different types of processing flows on a single wafer area. MEMS integration plans are better by using a known good die (ICGD), by establishing a capacity that allows the package to be overwhelmed, even if a special 42 553891 发明, invention states that other devices are not functional, By having a cost structure that can support low yields, mixed yield losses are allowed. As mentioned previously, the use of known good grains is an expensive option limited to high reliability and costly applications. Designing extra devices can adversely affect chip area, power consumption, operation complexity, and total pin count. Vertical stacking can mitigate the adverse effects on the area by stacking the devices. By taking advantage of this vertical size, the devices can be stacked without increasing package size and cost. The advantages of the MEMS and the 10 methods used to form the MEMS described here include: economical, ability to use the best grade of sensors (no exchange during device processing), open architecture And they can be extended to hybrid MEMS_Microelectronics Kits. A vertically integrated machining process is provided that can make an open architecture MEMS sensor kit. In particular, a sensor kit with a combination of temperature, 15 pairs of humidity, and 3-axis vibration measurement will be designed, but the method is expected to be generally applied to the integration of all sensor types, as well as to MEMS plus electronic controllers Wafer combination. A 3D integrated sensor kit using these methods described here is also available. In one embodiment, a commercialized sensor may be selected for a base 20 (lift) wafer. The entire wafer can be processed, including the required die size and input / output planning. The remaining inductors may be designed for the actual size and bonding of commercial grains. A starting wafer is also provided after the device is manufactured, where the starting crystal is 43 553891 玖, the description of the circle includes a part of a 3D MEMS system such as a MEMS kit. Furthermore 'provides a method of manufacturing such a starting wafer to facilitate the removal and transfer of wafer-scale devices. The 3-dimensional MEMS may have through-hole connections or edge connections, as known to those skilled in the art. In addition to MEMS and hybrid MEMS kits, these methods and structures can be extended to high-density microelectronic stacks. Examples of the former are very high density memory stacks (petabytes) and a combination of memory and logic chips. 10 This method will enable rapid design prototypes and production of any type of sensor kit. This method can be extended to ultra-high-density electronic packages and high-density combinations of micro-electro-mechanical systems with ASIC controllers and memory chips. The electromechanical system has an open architecture that allows any individual component to be changed at any time with minimal redesign and mask changes. 15 The application of MEMS sensors has been discussed above. As discussed, MEMS sensors are expected to have a very high mixed growth rate of 35%. The cost-improved vertical integration structure will open many phase applications for MEMS technology. When the preferred embodiment has been shown and described in steel, various modifications and substitutions can be made without departing from the spirit and scope of the present invention. Therefore, it should be understood that the present invention has been described by way of illustration and not limitation. [Brief description of the drawings] FIG. 1 is a schematic diagram illustrating an embodiment of a layered structure of a microdevice which is suitable for forming a micro-electromechanical system and other unions. A layer suitable for inclusions in a micro-electromechanical system; Figure 3 depicts a support layer according to an embodiment; 5 Figure 4 depicts a layer for inclusions suitable for a MEMS system according to an embodiment; 5 is a description of a support layer according to an embodiment; FIG. 6 is a description of a content layer suitable for a micro-electromechanical system according to an embodiment; 10 FIG. 7 is a description of a support layer according to an embodiment; FIG. 8 FIG. 9 describes a layer of contents suitable for a micro-electro-mechanical system according to an embodiment; FIG. 9 illustrates a support layer according to an embodiment; FIG. 10 illustrates a content of a micro-electro-mechanical system according to an embodiment. Figure 11 depicts a support layer according to an embodiment; Figure 12 depicts a layer of inclusions suitable for a micro-electromechanical system according to an embodiment; Layer 13 depicts a support according to an embodiment Layer; 2〇 14 is one of the joint geometry used for the structure of Fig. 1 Fig. 15 is another embodiment of the joint geometry used for the structure of Fig. 丨 Fig. 16 is used for the joint structure of Fig. 丨Another aspect of the joint geometry of the structure of the figure; / 45 553891 发明, description of the invention Figure 17 describes a separation step by selectively planting one according to an embodiment; Figure 18 describes the step according to an embodiment An intermediate structure after the step 5 FIG. 19 is a step of peeling off the structure of FIG. 18; FIG. 20 illustrates a separation step by using selective implantation through a mask structure according to an embodiment; FIG. 21 is An intermediate structure after this step is described according to an embodiment; FIG. 22 illustrates the steps of stripping the structure from FIG. 21; FIG. 23 illustrates separation by using one of the non-selective implants according to an embodiment Fig. 24 illustrates an intermediate structure after the steps of Fig. 23 according to an embodiment, 15 Fig. 25 illustrates the steps of peeling off the structure of Fig. 24; Fig. 26 illustrates the use of an embodiment by Use selective planting around Fig. 27 illustrates an intermediate structure after the steps of Fig. 26 according to an embodiment; Fig. 28 illustrates the steps of peeling off the structure of Fig. 27; Fig. 29 shows a record to be recorded Side view and top view of a peelable layer of an activatable micromirror, actuator, or other microelectromechanical system; Figure 30 shows a side view and a top view of a peelable layer, such as a plurality of actuated micromirrors, actuated Device or other MEMS processing on it; 46. Description of the invention Figure 31 shows another peeling layer with a plurality of voids to record activatable micromirrors, actuators or other MEMS; Figure 2 shows a stripped layer with a plurality of logic devices to be operatively coupled to the combined MEMS device shown in Figure 30; Figure 33 shows a stripped layer with a plurality of memory devices to be operatively coupled to The combined MEMS device and logic device are shown in Figures 30 and 32, respectively; Figure 34 shows a plurality of vertically integrated MEMS devices, including a wafer-level combined logic and memory; and Figure 5 shows another vertically integrated MEMS device. [Representative symbol table of the main elements of the drawing] Layer 5 ... Weak bonding area 1A ... Surface 1B of layer 1 ... Back surface 2 of layer 1 ... Layer 2A ... Surface 2B of layer 2 ... Back surface of layer 2 ... Weak bonding area 4 ... Strongly bonded area

6···強接合區域 16…離子或粒子 17…強接合區域/微泡 2〇…結構1〇〇的旋轉方向 21…掃瞄裝置 22…掃瞄裝置的旋轉方向 100···多數層基材 476 ... Strongly bonded area 16 ... Ions or particles 17 ... Strongly bonded area / microbubble 20 ... Rotational direction of the structure 100 ... Scanning device 22 ... Rotational direction of the scanning device 100 ... Most bases Wood 47

Claims (1)

553891 拾、申請專利範圍 1· 一種微機電系統層,其中在該層上之該微機電系統的 製造之前,該微機電系統被選擇性地接合在一基材層 ’其中選擇性的接合包括在該微機電系統與該基材層 的界面處至少一個強接合的區域與至少一個弱接合的 5 區域,其中多數的微機電系統是形成在弱接合區域之 該微機電系統層的表面上或在其中,而且更進一步, 其中該微機電系統層可以藉由在該強接合區域之主要 地分離而由該基材上被移除。 2·如申請專利範圍第1項之微機電系統層,其中該微機電 10 系統層被選擇性地在該微機電系統層與該基材層之間 的界面周圍接合至該基材層。 3· —種垂直整合的微機電系統,包含··如申請專利範圍 第1項之微機電系統層以及一聯合的控制層。 4·如申請專利範圍第3項之垂直整合的微機電系統,其中 15 该聯合的控制層是由包含邏輯、記憶體、熱控制、一 形成在該微機電系統層上或其中之類似的微機電系統 、一幵> 成在該微機電系統層上或其中之不同的微機電 系統或包含至少一種前述的控制組件之任一組合組成 之群組選出。 20 5· 一種製造一微機電系統層的方法,包含: 提供一包含選擇性地接合在第二層之第一層,該 選擇性的接合包括一個或多個弱接合的區域以及一個 或多個強接合的區域;和 處理在該弱接合區域之該第一層中或其上的一微 48 553891 拾、申請專利範圍 私電系統的至少一部份。 6.如申請專利範圍第5項 貝的方法,進一步包含由該第二層 为離該第一層,並中兮八+ 八^刀離損害該微機電系統最少。 種製造一微機電系統裝置的方法,包含: 提供-個第-層與—個第二層; 處理用於弱接合之該第一層、該第二層落該第一 層與該第二層兩者的區域; 接合該第一與該第二層;和 10553891 Patent application scope 1. A micro-electro-mechanical system layer, in which the micro-electro-mechanical system is selectively bonded to a substrate layer before the fabrication of the micro-electro-mechanical system on the layer, wherein the selective bonding is included in At least one strongly bonded area and at least one weakly bonded area at the interface between the MEMS and the substrate layer, most of which are formed on the surface of the MEMS layer in the weakly bonded area or on the surface of the MEMS layer. Among them, and further, the MEMS layer can be removed from the substrate by mainly separating in the strong bonding area. 2. The micro-electro-mechanical system layer according to item 1 of the patent application scope, wherein the micro-electro-mechanical system layer is selectively bonded to the substrate layer around an interface between the micro-electro-mechanical system layer and the substrate layer. 3. A type of vertically integrated micro-electro-mechanical system, including the micro-electro-mechanical system layer such as item 1 of the scope of patent application and a joint control layer. 4. The vertically integrated micro-electro-mechanical system according to item 3 of the patent application scope, in which 15 the joint control layer is composed of logic, memory, thermal control, a micro-electro-mechanical system formed on or in the micro-electro-mechanical system layer. The electromechanical system is selected from the group consisting of different microelectromechanical systems on or in the microelectromechanical system layer or any combination including at least one of the foregoing control components. 20 5 · A method of manufacturing a micro-electromechanical system layer, comprising: providing a first layer including a selective bond on a second layer, the selective bond including one or more weakly bonded regions and one or more Strongly bonded area; and at least a portion of a private electrical system covered by a micro 48 553891 in or on the first layer of the weakly bonded area. 6. The method according to item 5 of the scope of patent application, further comprising separating the second layer from the first layer, and minimizing damage to the micro-electromechanical system. A method for manufacturing a micro-electromechanical system device, comprising: providing a first layer and a second layer; processing the first layer for weak bonding, the second layer falling between the first layer and the second layer A region of both; joining the first and second layers; and 10 在該弱接合區域之該第一層上形成一個或多個微 機電系統。 8· -種製造一微機電系統裝置的方法,包含·· 選擇性地將一個第—層接著在-個第二層上;和 在該弱接合區域之該第一層上形成一個或多個微 機電系統。 ρ 9·如申請專利範圍第8項的方法,其中該選擇性的接著包 含以接著劑材料或加工步驟處理在該第一層與該第二 層之間的界面提供強接合區域,同時更進一步,其中 留在第一層與該第二層之間的界面之該弱接合區域沒 有以接著劑材料或加工步驟處理。 〇·如申請專利範圍第8項的方法,其中該選擇性的接著包 含以接著劑材料或加工步驟處理在該第一層與該第二 層之間的界面提供強接合區域,同時更進一步,其中 留在第一層與該第二層之間的界面之該弱接合區域以 比該強接合區域更低程度之接著處理。 49 553891 拾、申請專利範圍 丨1.如申請專利範圍第8項的方法,其中該選擇性的接著包 合在該第-層與該第二層之間的界面提供具有比在該 第一層與該第二層之間的界面之強接合區域更大的多 孔性之弱接合區域。 12·如申請專利範圍第8項的方法,其中«擇性的接著包 含在該第-層與該第二層之間的界面提供具有多數柱 狀物的弱接合區域。 13·如申請專利範圍第 _ 貝的方法,其中該選擇性的接著包 ίο 在A第層與4第二層之間的界面提供具有多孔性 的碳材料之弱接合區域。 14·如申請專利範圍第8項的方法,其中該選擇性的接著包 合在該第-層與該第二層之間的界面提供被輕射以提 升接著性的弱接合區域。 15 15. 如申請專利範圍第8項的方法,其中該選擇性的接著包 t在該第一層與該第二層之間的界面提供具有源自於 包含該固艘材料與-可分解的組成物之泥衆的多孔性 固體材料的弱接合區域。 16. 如申請專利範圍第8項的方法,其中該選擇性的接著包 20 含在该第-層與該第二層之間的界面提供具有—空隙 的弱接合區域。 17. 如申請專利範圍第8項的方法,其中該選擇性的接著包 含在該第-層與該第二層之間的界面提供具有金屬的 弱接合區域’其中該第-層與該第二層包含半導趙、 絕緣體或半導體與絕緣體的組合。 50 553891 拾、申請專利範圍 18·如申請專利範圍第8項的方法,其中該選擇性的接著包 含在該第一層與該第二層之間的界面提供具有親水特 性的強接合區域。 19·如申請專利範圍第8項的方法,其中該選擇性的接著包 5 含在該第一層與該第二層之間的界面提供具有接著劑 的強接合區域,其中該界面可以藉由光線而被脫層。 20.如申明專利範圍第8項的方法,其中該選擇性的接著包 含在該第-層與該第二層之間的界面提供具有在該第 -層與該第二層之界面植人的離子或粒子之弱接合區 10 域。 15 20 2^.如申請專利範圍第8項的方法,其中該選擇性的接著包 含-由共晶、融合、陽極的、真空、凡德瓦爾、化學 接著、疏水現象、親水現象、氫接合、哥倫布力、毛 細力量、非常短程的力量或包含至少一種該些前述接 合技的組合組成之群組選出的接合技術。 22.如申請專利範圍第8項的方法, g 5亥苐一層與該第二層之間的 域0One or more microelectromechanical systems are formed on the first layer of the weak junction area. 8. A method of manufacturing a micro-electromechanical system device, comprising: selectively attaching a first layer to a second layer; and forming one or more layers on the first layer of the weakly bonded area MEMS. ρ 9. The method of claim 8 in which the selective bonding comprises treating the interface between the first layer and the second layer with an adhesive material or a processing step to provide a strong bonding area, while going further , Wherein the weak bonding area remaining at the interface between the first layer and the second layer is not treated with an adhesive material or a processing step. 〇. The method of claim 8 in which the selective bonding includes treating the interface between the first layer and the second layer with an adhesive material or a processing step to provide a strong bonding area, while further, The weak junction area remaining at the interface between the first layer and the second layer is then processed to a lower degree than the strong junction area. 49 553891 The scope of patent application 丨 1. The method according to item 8 of the scope of patent application, wherein the selective subsequent inclusion of the interface between the first layer and the second layer provides The strong bonding area of the interface with the second layer is larger and the weak bonding area is more porous. 12. The method of claim 8 in the scope of the patent application, wherein «selective bonding is included at the interface between the first layer and the second layer to provide a weak junction area with a large number of pillars. 13. The method according to the scope of the patent application, wherein the selective bonding includes providing a weak bonding region of a porous carbon material at the interface between the first layer A and the second layer 4. 14. The method of claim 8, wherein the selective bonding is included at the interface between the first layer and the second layer to provide a weak bonding area that is lightly fired to improve adhesion. 15 15. The method according to item 8 of the patent application, wherein the selective adhering t is provided at the interface between the first layer and the second layer to have a material derived from Weakly bonded areas of porous solid materials of the composition. 16. A method as claimed in claim 8 wherein the selective bonding comprises an interface between the first layer and the second layer to provide a weakly bonded region with a -void. 17. The method as claimed in claim 8, wherein the selective subsequent step comprises providing a weak bonding region with a metal at an interface between the first layer and the second layer, wherein the first layer and the second layer The layer contains a semiconductor, an insulator, or a combination of a semiconductor and an insulator. 50 553891 Patent application scope 18. The method according to item 8 of the patent application scope, wherein the selective bonding comprises an interface between the first layer and the second layer to provide a strong bonding region with hydrophilic properties. 19. The method of claim 8 in the scope of patent application, wherein the selective bonding package 5 includes an interface between the first layer and the second layer to provide a strong bonding region with an adhesive, wherein the interface can be obtained by The light is delaminated. 20. A method as claimed in item 8 of the patent scope, wherein the selective subsequent inclusion of an interface between the first layer and the second layer provides a 10 domains of weak junctions of ions or particles. 15 20 2 ^. The method according to item 8 of the patent application, wherein the selective bonding comprises-by eutectic, fusion, anode, vacuum, van der Waals, chemical bonding, hydrophobic phenomenon, hydrophilic phenomenon, hydrogen bonding, Columbus force, capillary force, very short-range force, or a joining technique selected from the group consisting of at least one of the foregoing joining techniques. 22. The method according to item 8 of the scope of patent application, the domain 0 between the first layer and the second layer. 其中該選擇性的接著包 界面周圍提供強接合區 …/戍,進一步包含藉由道 性地掃瞄該些強接合區域, 便4第一層由該第二層< 〇 51The selective bonding package provides a strong bonding area around the interface… / 戍, and further includes scanning the strong bonding areas in a logical manner, so that the first layer consists of the second layer < 〇 51
TW091118447A 2001-08-15 2002-08-15 MEMS and method of manufacturing TW553891B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US31265901P 2001-08-15 2001-08-15

Publications (1)

Publication Number Publication Date
TW553891B true TW553891B (en) 2003-09-21

Family

ID=23212437

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091118447A TW553891B (en) 2001-08-15 2002-08-15 MEMS and method of manufacturing

Country Status (5)

Country Link
EP (1) EP1417152A2 (en)
JP (1) JP2005500172A (en)
AU (1) AU2002327469A1 (en)
TW (1) TW553891B (en)
WO (1) WO2003016205A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486303B (en) * 2007-10-10 2015-06-01 Bosch Gmbh Robert Verbund aus mindestens zwei halbleitersubstraten sowie herstellungsverfahren

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867792B2 (en) * 2007-05-24 2012-02-01 パナソニック電工株式会社 Wafer level package structure and sensor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764950A (en) * 1972-07-17 1973-10-09 Fairchild Camera Instr Co Methods for making semiconductor pressure transducers and the resulting structures
FR2771852B1 (en) * 1997-12-02 1999-12-31 Commissariat Energie Atomique METHOD FOR THE SELECTIVE TRANSFER OF A MICROSTRUCTURE, FORMED ON AN INITIAL SUBSTRATE, TO A FINAL SUBSTRATE
MY118019A (en) * 1998-02-18 2004-08-30 Canon Kk Composite member, its separation method, and preparation method of semiconductor substrate by utilization thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486303B (en) * 2007-10-10 2015-06-01 Bosch Gmbh Robert Verbund aus mindestens zwei halbleitersubstraten sowie herstellungsverfahren

Also Published As

Publication number Publication date
WO2003016205A3 (en) 2004-02-12
WO2003016205A2 (en) 2003-02-27
JP2005500172A (en) 2005-01-06
EP1417152A2 (en) 2004-05-12
AU2002327469A1 (en) 2003-03-03

Similar Documents

Publication Publication Date Title
US6956268B2 (en) MEMS and method of manufacturing MEMS
US7033910B2 (en) Method of fabricating multi layer MEMS and microfluidic devices
US20040201012A1 (en) Method of fabricating vertical integrated circuits
US7056751B2 (en) Method and system for increasing yield of vertically integrated devices
US20070128827A1 (en) Method and system for increasing yield of vertically integrated devices
EP1253108B1 (en) Method of fabricating suspended microstructures
EP1198835B1 (en) Dual wafer attachment process
US7163826B2 (en) Method of fabricating multi layer devices on buried oxide layer substrates
JP4519804B2 (en) Method for manufacturing semiconductor device
JP2008194816A (en) Method of manufacturing cover for protecting component on substrate
JP2005505128A (en) Suction holding device and method for handling easily damaged objects, and method for manufacturing the same
KR20030093359A (en) Thin films and production methods thereof
JP2012506616A (en) MEMS device packaged at wafer level
JP2008288384A (en) Three-dimensional stacked device and its manufacturing method, and method of junction of three-dimensional stacked device
TW553891B (en) MEMS and method of manufacturing
US20090313808A1 (en) Electromechanical transducer and fabrication method of electromechanical transducing apparatus
US20140264647A1 (en) Method of forming monolithic cmos-mems hybrid integrated, packaged structures
JP2010517258A (en) Method for forming and controlling a rough interface
Kim et al. Development and applications of 3-dimensional integration nanotechnologies
JP2005039078A (en) Wafer substrate for sheet substrate structure formation, method for manufacturing the same, and method for manufacturing mems element
US8043931B1 (en) Methods for forming multi-layer silicon structures
JP2007152554A (en) Semiconductor device
Dompierre et al. A wafer-level process for bulk tungsten integration in MEMS vibration energy harvesters and inertial sensors
Mahajerin Thin Film Encapsulation Methods for Large Area MEMS Packaging
Gong Fabrication of pressure sensors using silicon direct bonding

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees