TWI264841B - Light-emitting device and its manufacturing method - Google Patents
Light-emitting device and its manufacturing method Download PDFInfo
- Publication number
- TWI264841B TWI264841B TW093123848A TW93123848A TWI264841B TW I264841 B TWI264841 B TW I264841B TW 093123848 A TW093123848 A TW 093123848A TW 93123848 A TW93123848 A TW 93123848A TW I264841 B TWI264841 B TW I264841B
- Authority
- TW
- Taiwan
- Prior art keywords
- coating
- light
- layer
- molecular
- emitting element
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000000576 coating method Methods 0.000 claims abstract description 117
- 229920000642 polymer Polymers 0.000 claims abstract description 55
- 239000002019 doping agent Substances 0.000 claims abstract description 32
- 239000002103 nanocoating Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims abstract 5
- 239000011248 coating agent Substances 0.000 claims description 103
- 230000032258 transport Effects 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 16
- 238000001704 evaporation Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 6
- 238000007641 inkjet printing Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 150000003384 small molecules Chemical class 0.000 claims description 6
- 241000894007 species Species 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims 1
- 235000017491 Bambusa tulda Nutrition 0.000 claims 1
- 241001330002 Bambuseae Species 0.000 claims 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims 1
- 239000011425 bamboo Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 235000012054 meals Nutrition 0.000 claims 1
- 239000010410 layer Substances 0.000 abstract description 71
- 239000011247 coating layer Substances 0.000 abstract description 9
- 239000002052 molecular layer Substances 0.000 abstract description 4
- 239000012044 organic layer Substances 0.000 abstract description 2
- 238000007740 vapor deposition Methods 0.000 abstract 2
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 230000005525 hole transport Effects 0.000 description 11
- 241000282320 Panthera leo Species 0.000 description 4
- 239000000370 acceptor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- RICKKZXCGCSLIU-UHFFFAOYSA-N 2-[2-[carboxymethyl-[[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl]methyl]amino]ethyl-[[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl]methyl]amino]acetic acid Chemical compound CC1=NC=C(CO)C(CN(CCN(CC(O)=O)CC=2C(=C(C)N=CC=2CO)O)CC(O)=O)=C1O RICKKZXCGCSLIU-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 description 2
- 239000011970 polystyrene sulfonate Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- ZCYVRKHVTDLBMB-UHFFFAOYSA-N 1-(3-methylphenyl)-1,2,2-triphenylhydrazine Chemical compound CC1=CC=CC(N(N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 ZCYVRKHVTDLBMB-UHFFFAOYSA-N 0.000 description 1
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 1
- JNGDCMHTNXRQQD-UHFFFAOYSA-N 3,6-dioxocyclohexa-1,4-diene-1,2,4,5-tetracarbonitrile Chemical compound O=C1C(C#N)=C(C#N)C(=O)C(C#N)=C1C#N JNGDCMHTNXRQQD-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- 241000270311 Crocodylus niloticus Species 0.000 description 1
- 241000282322 Panthera Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 210000000544 articulatio talocruralis Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/155—Hole transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/165—Electron transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/611—Charge transfer complexes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
1264841 九、發明說明: 成的分子塗層 本發明係-種具有有機塗層的發光元件,尤 發光二極體。本發明·光元件是由位於基材上的-個底= „二個頂部接點之間的多個塗層所構成,這些塗層包括= δ物構成㈣合物塗層,以及由在真空中敷鍍上摘小分子ς 本發明還包括-種製造這種發光元件的方法,這種方法日 先在基材上設置-個底部接點,紐在其上再設好個塗^ 最後再設置一個頂部接點。 曰 自 Tang et al· [C. W. Tang et al,Appl ~ ⑽ 913 (1987)]於1987年提出低工作電壓的有機發光二_後,, 發光二極體就魏為-種可用來製造大尺寸齡器及在其他 許多應用範圍(例如照明元件的製造)都極有潛力的元件。發光 二極體是由-系列很薄(典型厚度為^七⑻的有機材^塗 層賴成,且這些有機材料最好是在真空中則、分子的型^ 被療鑛上去(也就是形成所謂的QLED)、從溶液巾以離心塗佈 的方式塗佈上去、被印刷上去、或是以其他適當的方式被^錢 上去(聚合物,也就是形成所謂的PLED)。只要施以外加電壓 將載子流從接齡人(-邊是電子H邊是空穴)位於接點 之間的有機塗層’即可經由在—個主祕巾形成的激子(電子_ 空穴對)及這些激子的發光性再組合產生光線,並從發光二極 管中將這些光線發射出去。 PLED型有機發光二極體通常具有以下的塗層結構: 1·基材(透明基材,例如玻璃) 1264841 2·陽極(透明陽極,通常是銦錫氧化物(IT〇)) 3·空穴輸送層或空穴注入層(通常是pED〇T:pss或是含 有知雜物(例如 PSS)的 PANI-POLYANILIN ; PEDOT = Polyethyienedioxythiophene (聚乙二氧撐噻吩),pss = Polystyrenesulfonate(聚苯乙烯磺酸鹽) 4·主動聚合物(發射光線) 5.陰極(通常是以逸出功較小的金屬(例如名巴或妈)作為陰 極) 合物塗層(也就是空穴輸送層或空穴注入層)及主動聚 合物都是從-觀態絲(溶聽核其他溶劑喊的溶 製造而成。接點(陽極及陰極)通常是以真空製程製造而成。 以顯示器為例,上述塗層結構在應用上的優點是有多樣化 的製程可以用來製作聚合物塗層,其巾有些製程能夠製作出簡 單的PLED橫向結構,也就是所謂的喷墨(Ink_Jet)印刷。噴墨 印刷是將作為三原色的不同聚合物印刷在事先設定好的位 置,這樣就可以在與之相鄰的區域形成各種不同的輻射色。 不過’上述塗層結構的缺點是不同聚合物塗層的數量若超 過兩個就會變得沒有意義,這是因為襯底材料不能受到溶細 侵襲,因此必須選擇不會彼此影響的溶劑作為聚合物的溶劑的 關係。這表示除了發光外,發光聚合物還必須適於從陰極發出 的電子輸送及電子注入,而這個要求會對聚合物的材料選擇及 結構的最佳化設計造成很大的限制。 另外一個缺點是已給定的材料系統的排列順序是报難改 變的,例如在上述的例子中就必須從陽極開始。這個缺點對於 1264841 k 。又置在活性基體顯示基材Display Substrate) 上並以11溝道電晶體作為電路元件的PLED尤為明顯。另外, 使用透明頂部接點(作為陰極)通常也是一件困難的事,因為透 明頂口P接點(例如IT〇)的製作通常是採用滅射製程。但是滅射 製程會破壞有娜料。由於PLED的最上—層是—個發光塗 層’因此會使有機發光二極體的發光效率降低。為了改善對減 射皮私的承又此力,可以另外加上一層在真空中以蒸鑛方式塗 佈上摘小分子塗層。獨這樣做來自陰極的f子注入仍會造 成問題。上4塗層結構的另外一個缺點是只有使用很不穩定的 接點材料(例如1巴或妈)才能達到足夠效率的電子注入。但是這 些不穩定的接點材料(例如把或約)卻具有易於與氧或水作用 的缺Ek。 、丄OLED型有機發光二極體是由真空驗的小分子構成。只 要,些構成OLED的塗層的小分子的尺稍小,大部分的分 :就可以毫髮無傷的經由熱處理被塗佈上去。由於自由路徑很 長,因此是以真空蒸鑛的方式將分子塗佈上去。 j =善魏點進入有機塗層的注入情況,以及提高輸送 运丄、%、可以用有機或無機摻雜物作為受體(對空穴摻雜 而言)及/或《(㈣子_的)經域合 進行 =雜。在開始進行混合蒸錢,—直到所使用的前導材 鍍(也相加_改,例如使㈣ 物之前,摻雜物絕對不能以其最終型式出現。_ 通常是㈣混合㈤纖鍍㈣絲達成。 。心成 根據德咖则Q 58 578(M. pfdffo贫* "具有有機 1264841 里層的發光兀件”),除了摻雜的輪 有特定的動能特性的固有中Μ # f 、以加上一個具 層)。 川有中間層(也就是-個未摻雜的中間 因此OLED的結構就是—個_異質結構: 1·載體,基材; 【空:f入電極(陽極=正極),而且最好是透明電極; 3.P型摻雜空穴,注入及輸送層; 的被復物㊉能夠與環繞其四周之塗層的被覆物相配合; 5·發光塗層; 6.電子端聯鎖層(厚度通常小於下面提及的塗層),構成這 種電子端卿層㈣制被覆物需㈣與環 的被覆物相配合; 層 7· η型摻雜電子,注入及輸送層; 8·電子注人電極,通當是—種具有較低之逸出功的金屬 (陰極=負極)。 上述塗層結構的優點包括各個塗層都可以分開進行最佳 化處理、發光塗層與接點相隔的距離可以調整到很大、載子流 注入有機塗層的效果很好、以及導電性不良的塗層(4,5,6) 的厚度很小。因此可1264841 IX. Description of the invention: Molecular coating formed The present invention is a light-emitting element having an organic coating, particularly a light-emitting diode. The optical component of the present invention is composed of a plurality of coatings on the substrate between the bottoms and the two top contacts, the coatings comprising = δ composition (tetra) coating, and by vacuum The present invention also includes a method for manufacturing such a light-emitting element. This method firstly sets a bottom contact on the substrate, and the button is further coated thereon. Set a top contact. Since Tang et al. [CW Tang et al, Appl ~ (10) 913 (1987)] proposed a low-voltage organic light-emitting diode in 1987, the light-emitting diode is Wei-species. It can be used to manufacture large-scale ageing devices and components that have great potential in many other applications, such as the manufacture of lighting components. Light-emitting diodes are made of - very thin (typical thickness of seven (8) organic materials ^ coating Lai Cheng, and these organic materials are preferably in a vacuum, the molecular type is treated (that is, forming a so-called QLED), coated from a solution towel by centrifugation, printed, or In other appropriate ways, the money is gone (polymer, that is, the so-called PLE) D). As long as the applied voltage is applied to the carrier from the ageing person (the side is the electron H is a hole), the organic coating between the contacts can be formed via the exciton formed in the master wipe. (Electron_hole pairs) and the luminosity of these excitons are combined to generate light, and these light rays are emitted from the light emitting diode. The PLED type organic light emitting diode generally has the following coating structure: Transparent substrate, such as glass) 1264841 2 · Anode (transparent anode, usually indium tin oxide (IT〇)) 3. Hole transport layer or hole injection layer (usually pED〇T: pss or contains miscellaneous (eg PSS) PANI-POLYANILIN; PEDOT = Polyethyienedioxythiophene (polyethylenedioxythiophene), pss = Polystyrenesulfonate (polystyrene sulfonate) 4. Active polymer (light emission) 5. Cathode (usually Metals with less work (such as Mamba or Ma) as cathode coatings (that is, hole transport layers or hole injection layers) and active polymers are all from the observational filaments (dissolved core other solvents) Made by shouting solution. The contacts (anode and cathode) are usually made of vacuum. In the case of a display, the application of the above coating structure has the advantage that a variety of processes can be used to make the polymer coating, and some processes of the towel can produce a simple PLED lateral structure, which is also called Ink_Jet printing. Inkjet printing is to print different polymers as the three primary colors in a predetermined position, so that different kinds of radiation colors can be formed in the adjacent regions. The disadvantage is that if the number of different polymer coatings exceeds two, it becomes meaningless because the substrate material cannot be affected by the solute, so it is necessary to select a solvent which does not affect each other as a solvent of the polymer. This means that in addition to luminescence, the luminescent polymer must also be suitable for electron transport and electron injection from the cathode, and this requirement imposes significant limitations on the material selection and structural optimization of the polymer. Another disadvantage is that the order of the given material systems is difficult to change, for example in the above examples it is necessary to start from the anode. This shortcoming is for 1264841 k. PLEDs which are placed on the active substrate display substrate Display Substrate) and have 11-channel transistors as circuit elements are particularly noticeable. In addition, the use of transparent top contacts (as cathodes) is often a difficult task, as transparent top P contacts (such as IT〇) are typically fabricated using an off-premise process. However, the killing process will destroy the ingredients. Since the uppermost layer of the PLED is a luminescent coating layer, the luminous efficiency of the organic light emitting diode is lowered. In order to improve the resistance to the reduction of the skin, an additional layer of a small molecule coating can be applied by steaming in a vacuum. Doing so alone from the cathode can still cause problems. Another disadvantage of the upper 4 coating structure is that only a very unstable contact material (such as 1 bar or mother) can be used to achieve a sufficiently efficient electron injection. However, these unstable joint materials (e.g., about or about) have a lack of Ek that is easy to interact with oxygen or water.丄 OLED type organic light-emitting diodes are composed of small molecules that are vacuum-tested. As long as the small molecules constituting the coating of the OLED are slightly smaller, most of the fractions can be coated without any damage through heat treatment. Since the free path is long, the molecules are coated by vacuum distillation. j = the injection of the organic layer into the organic coating, as well as the improvement of transport transport, %, organic or inorganic dopants can be used as acceptors (for hole doping) and / or "(four) sub_ ) by the combination of the field = miscellaneous. At the beginning of the mixed steaming, until the fronting of the used material is plated (also added, for example, before (4), the dopant must not appear in its final form. _ Usually (4) mixing (5) fiber plating (four) wire reaching According to Decai Q 58 578 (M. pfdffo poor * " with organic 1246841 inner layer of light-emitting elements"), in addition to the doping wheel has a specific kinetic energy characteristics of the inherent Μ # f, to add The upper layer has a middle layer (that is, an undoped intermediate so the structure of the OLED is - a heterostructure: 1 · carrier, substrate; [empty: f into the electrode (anode = positive), Moreover, it is preferably a transparent electrode; 3. P-doped hole, injection and transport layer; the object 10 can be matched with the coating surrounding the coating; 5. luminescent coating; The interlocking layer (the thickness is usually smaller than the coating mentioned below), the coating of the electronic end layer (4) is required to be (4) matched with the coating of the ring; layer 7 · n-type doping electron, injection and transport layer; 8. Electron injection electrode, which is a kind of metal with low work function (cathode = negative) The advantages of the above coating structure include that each coating can be separately optimized, the distance between the luminescent coating and the joint can be adjusted to a large extent, and the carrier flow is injected into the organic coating very well, and The poorly conductive coating (4, 5, 6) has a small thickness.
Blochwitz,Sh. Liu,Κ· Leo, Appl· Phys· Lett·,80, 139-141 (2002)Blochwitz, Sh. Liu, Κ· Leo, Appl· Phys· Lett·, 80, 139-141 (2002)
在使用pin結構的低電墨有機電子發光元件"一文中描述的工 作電壓極小(光密度100 cd/m2,工作電壓小於2.6V)、但發光 效率卻很鬲的效果。此外,德國專利DE 101 35 513.0及X.Q 1264841The working voltage described in the article "Low-electrolytic organic electroluminescent element using a pin structure" is extremely small (optical density: 100 cd/m2, operating voltage is less than 2.6 V), but the luminous efficiency is very low. In addition, the German patents DE 101 35 513.0 and X.Q 1264841
Zha〇 et a1·,Αρρ1· Lett. 81,922 (2002)亦指出利用這種塗 層結構很容易就可以製造出德國專利DE l〇2 15 210.1提出二 反型且發光特強或完全透明的OLED ◦ 、 不過,上述塗層結構的缺點是只能經由掩模才能在顯示器 上形成構成不同顏色晝素(Pixd)所需的橫向〇LED結構。但是 這個程序會受到所能夠達到的最小晝素尺寸(<5〇m副晝素)$ 限制。在整個製造過程中,掩模程序是一道相當耗日寺的程序。 不過由於小分子無法溶解,因此喷墨(Ink_Jet)程序是無法使用 的0 ,美國專利US 2〇_2〇〇73A1有關於將蒸鑛聯鎖層及電子 輸送層應用絲合物空穴輸送層的描述。這種配置方式的優點 是可以橫向結構化聚合物塗層,讀製造出全軸示器。不過 這種配置方式的缺點是載子_注人(電子從陰極注人分子電 子輸送層)會有問題,因此會導致混合聚合物小型分子 OLED(hybriden p〇lymer侧u m〇lecule 〇LED)的工作電壓提 高。 土 明的目的是在保持塗層良好的可結構化性的前提 下,提南發光元件構造的靈活性,以及提高載子流注入有機塗 層的效率。 本發明是經φ塗層結構的配置達到上述的目的,其具體作 法是至少配置一個聚合物塗層及兩個分子塗層,並分為以下雨 種情況:如果頂部接點是_ ’也就是構成最#近了貞部接點之 塗層的-個輸送電子的分子塗層並被—種有機或無機施體# 雜,這種物包含—财機主物f及—種施體型推雜物 1264841 質,而且摻雜物的分子量大於200 g/m〇l ;如果頂部接點是陽 極’也就疋構成最罪近頂部接點之塗層的一個輸送P型摻雜空 穴的分子塗層並被一種有機或無機受體摻雜,這種摻雜物包含 -種有機主物質及-種受體型獅物f,而且_物的分子量 大於200 g/mol。經由分子塗層的加入可以大幅提高塗層結構 的靈活性,而聚合物塗層的存在又可以在不需使用掩模^況 下達到提高可結構化性的目的。 摻雜物應由一種有機分子、無機分子、或是金屬—有機分 子構成,這種分子的分子量需大於2〇〇 g/md,且最好是大於 400 g/md。1¾且重要的是在塗層中的活性摻雜㈣分子量要具 有這麼大的分子量(大於 g/md,且最好是大於彻咖冲。 例如以CS2C〇3(碳酸铯,分子量約324 g/m〇1)作為n型換雜之 電子輸送層的摻雜物就不符合本發明的要求。原因是 CSfO3(碳酸铯)是一種相對而言相當穩定的化合物,因此無法 $-個或數個電子娜到另外—個分子(基體材料)上。不過當 =錢程序的溫度超過615t:(分裂溫度)就可以從礙酸錄中將絶 刀子分裂出來,理論上此時鉋分子就可以作為摻雜物將一個電 子軏私、、、6基體材料。但是鉋的分子量大約只有132 ,因 絲以鉋作為摻雜物,由⑽分子/原子相#的小,因此在换 4入基體層後容祕散,這對於有機發光元件的使用壽命會造 成不利的衫響。同樣的,以一種很強的受體(反型p〇LED構造) 作為空穴輸送層的P娜_摻_也是同樣的情況。 在兩個以蒸鍍方式形成的分子塗層中,一個是未經摻雜的 中間層(在町制的實施例巾的元件符號5),另外—個是務 1264841 雜的輸送層◦由於對常見的發光聚合物(例如 Poly-phenylenvinylen,PPV)而言,從摻雜的輸送層到聚合物發 光塗層的載子流注入的動能勢壘(如果是以設置在基材上的聚 合物空穴輸送層構成的傳統式塗層結構,則是指電子注入的勢 憂)過高,因此必須加入一個未經摻雜的中間層,這個中間層 的厚度比摻雜的輸送層小很多,且其LUMO(最低未被佔用分 子軌道)能階必須位於摻雜的輸送層及發光聚合物層的lUM0 能階之間(如果是使用空穴輸送層,則這個中間層的ή〇μ〇(最 高被佔用分子軌道)能階必須位於位於摻雜的輸送層及發光聚 合物層的HOMO能階之間)。這獅置方式的伽是一方面可 以使載子流更容易被注人發光聚合物塗層,另外—方面又可以 促使在發光聚合物層與摻_輸送層的交界面出現㈣畐射的 再組合過程,這種純射的触合過程麵能 下通常是幾乎一定會發生的。 配置方式有關的獨立項之附屬中。 至於在製造方法方面,本發明提出的 式設置-個聚合物塗層及至少以蒸鍍方式:置::: 層,而且這個分子塗層是—轉雜的分子㈣ 分子塗層的摻雜最好是在真 :曰。 來源以混合蒸鍍的方式進行。 “個分離控制的摻| 只需使用簡單的方法即可精確的取 工作。這個結構即可同時作為後續之^ /物塗層賴; 用到費事的結構化步驟或方法。八 /、兀件的結構,而無$Zha〇et a1·, Αρρ1· Lett. 81,922 (2002) also pointed out that it is easy to manufacture the German patent DE l〇2 15 210.1 using the coating structure to propose a two-inversion type and that the light is extremely strong or completely transparent. OLED 、 However, the above coating structure has the disadvantage that the lateral 〇 LED structure required to constitute different color bismuth (Pixd) can be formed only on the display via the mask. However, this program is limited by the minimum size (<5〇m adverbine) $ that can be achieved. Throughout the manufacturing process, the masking process is a fairly time-consuming program. However, the inkjet (Ink_Jet) program is unusable because the small molecule cannot be dissolved. The US patent US 2〇_2〇〇73A1 relates to the application of the wire-forming hole transport layer to the vapor-mine interlocking layer and the electron transport layer. description of. The advantage of this configuration is that the polymer coating can be structured laterally and the full-axis display can be read and manufactured. However, the disadvantage of this configuration is that there is a problem with the carrier (electron from the cathode injection electron transport layer), which leads to the hybrid polymer small molecule OLED (hybriden p〇lymer side um〇lecule 〇 LED) The working voltage is increased. The purpose of the soil is to increase the flexibility of the construction of the illuminating element and to increase the efficiency of the carrier stream injection into the organic coating while maintaining the good structurability of the coating. The invention achieves the above object through the configuration of the φ coating structure, and the specific method is to configure at least one polymer coating and two molecular coatings, and is divided into the following rain conditions: if the top joint is _ 'that is The molecular coating that constitutes the coating of the most close to the contact of the ankle joint is coated with an organic or inorganic donor, which contains the main body of the financial institution f and the type of the application type. The material is 1246841, and the molecular weight of the dopant is greater than 200 g/m〇l; if the top contact is the anode, it also constitutes the most sin-like top contact coating. The layer is doped with an organic or inorganic acceptor which contains an organic host species and an acceptor species, and the molecular weight of the material is greater than 200 g/mol. The addition of the molecular coating can greatly increase the flexibility of the coating structure, and the presence of the polymer coating can achieve the purpose of improving the structurability without using a mask. The dopant should consist of an organic molecule, an inorganic molecule, or a metal-organic molecule having a molecular weight greater than 2 〇〇 g/md, and preferably greater than 400 g/md. 13⁄4 and it is important that the active doping (iv) molecular weight in the coating has such a large molecular weight (greater than g/md, and preferably greater than cc. For example, CS2C〇3 (cerium carbonate, molecular weight of about 324 g/ M〇1) The dopant as the n-type impurity-transporting electron transport layer does not meet the requirements of the present invention. The reason is that CSfO3 (cerium carbonate) is a relatively stable compound, so it cannot be $- or several The electrons go to another molecule (base material). However, when the temperature of the = money program exceeds 615t: (the splitting temperature), the knife can be split from the acid record. In theory, the planer can be used as a blend. The sundries will be an electronic smuggling, and 6 matrix material. However, the molecular weight of the planer is only about 132. Because the wire is used as a dopant, it is small by (10) molecules/atomic phase #, so after changing into the base layer, The secret, which will cause unfavorable shirting for the service life of the organic light-emitting element. Similarly, the Pna-doping__ is also the same as a hole transport layer with a strong acceptor (trans-p〇LED structure). Situation. In two molecular coatings formed by evaporation One is an undoped intermediate layer (component symbol 5 of the embodiment towel made in Machi), and the other is a 1268841 heterogeneous transport layer due to common luminescent polymers (eg Poly-phenylenvinylen, PPV). a kinetic energy barrier from the doped transport layer to the carrier stream of the polymer luminescent coating (if it is a conventional coating structure composed of a polymer hole transport layer disposed on a substrate, it means The potential for electron injection is too high, so an undoped intermediate layer must be added. The thickness of this intermediate layer is much smaller than that of the doped transport layer, and its LUMO (lowest unoccupied molecular orbital) energy level must be located. Between the doped transport layer and the lUM0 energy level of the luminescent polymer layer (if a hole transport layer is used, the ή〇μ〇 (highest occupied molecular orbital) energy level of this intermediate layer must be located at the doped transport The layer and the HOMO energy level of the luminescent polymer layer). This lion's way is to make the carrier stream easier to be injected into the luminescent polymer coating, and in addition to promote the luminescent polymer layer. Mixed with At the interface, there is a recombination process of (4) squirting, which is almost always happening under the surface energy of the pure shot. The configuration is related to the independent item. As for the manufacturing method, the method proposed by the present invention Set - a polymer coating and at least in the form of evaporation: set::: layer, and this molecular coating is - a hybrid molecule (4) The doping of the molecular coating is preferably in the true: 曰. Source to mix steam The plating method is carried out. “The separation of the control is controlled by a simple method. This structure can be used as a follow-up coating at the same time; using complicated structural steps or methods Eight/, the structure of the piece, without $
刀子塗層的設置則需避免因1J 1264841 $僅有兩種分離的溶劑而造成聚合物塗層的改變受到报大的 限制,以及避免提高出現差異極大的塗層結構的可能性。》 本發明之製造方法的其他特殊實施方式均載於從屬於盘 製造方法有關的獨立項之附屬中。 、/、 以下配合一個貫際的實施方式對本發明做進一步的說明 如圖1所示,在基材⑴上設有一個作為陽極的透明兄底部 接點(2)。在底部接點(2)上依序設有一個作為聚合物空穴輪、关 層(=第-個聚合物塗層,以及—個作為聚合物發光塗= 的第-個聚合物塗層。這個由第一個聚合物塗層及第二個聚合 物塗層構成的塗層結構是由PED〇T:pss(Baytr〇n—p,製造^口 德國H· C· Starck)製成。在第二個聚合物塗層之上是以墓梦方 ,設個作為中間層(5)的第—個分子塗層,這個中間祁) 疋由個10 nm厚的Bphen(Batophenanthrolin)的塗層所構 成。再為則是一個作為電子輸送及注入層(6)的第二個分子 塗層,這個電子輸送及注入層⑹是由Bphen:Cs(分子換雜濃度 、、、勺10 1至1 · 1)所構成。最後再加上一個位於頂端的鋁製頂 部接點(7)即構成一個如圖}所示的有機發光二極體。 由於鉋分子的分子量太小,無法在獅層内制穩定 擴散的狀態,因此在此齡層、_巾,齡子並不是一種適常 的摻雜物(負責供應電子)。本發明建議以分子量大於· 咖〇1(最好是大於400 g/m〇D且氧化€原電位與鉋位於同一範 圍,材料作為摻雜物。_標準氧化it原電位為_2.922 V,電 離能為3.88 eV ◦摻雜物的電離能應小於〜。 例如w〇m,am_Paddiewheel[W2(hppW就是適當的推雜物: 1264841The setting of the knife coating is to avoid the limitation of the polymer coating due to the only two separate solvents of 1J 1264841, and to avoid the possibility of increasing the coating structure that is extremely different. Other specific embodiments of the manufacturing method of the present invention are contained in the subordinates of the independent items pertaining to the disc manufacturing method. Further, the present invention will be further described below in conjunction with a continuous embodiment. As shown in Fig. 1, a transparent brother bottom contact (2) as an anode is provided on the substrate (1). A polymer hole wheel, a layer (= first polymer coating, and a first polymer coating as a polymer luminescent coating = ) are sequentially disposed on the bottom contact ( 2 ). This coating structure consisting of the first polymer coating and the second polymer coating is made of PED〇T:pss (Baytr〇n-p, manufactured by H. C. Starck, Germany). The second polymer coating is based on the tomb, and the first molecular coating is used as the intermediate layer (5). The intermediate layer is made of a 10 nm thick Bphen (Batophenanthrolin) coating. Composition. Further, it is a second molecular coating as an electron transporting and injecting layer (6). This electron transporting and injecting layer (6) is composed of Bphen:Cs (molecular exchange concentration, and scoop 10 1 to 1 · 1). Composition. Finally, an aluminum top contact (7) at the top is used to form an organic light-emitting diode as shown in Fig.}. Since the molecular weight of the planing molecule is too small to be stably diffused in the lion layer, the age layer, the towel, and the age are not an appropriate dopant (responsible for supplying electrons). The present invention suggests that the molecular weight is greater than · curry 1 (preferably greater than 400 g/m 〇 D and the oxidation of the original potential is in the same range as the planer, the material acts as a dopant. _ standard oxidation of the original potential is 2.9.222 V, ionization The ionization energy of a 3.88 eV antimony dopant should be less than ~. For example, w〇m, am_Paddiewheel [W2 (hppW is the appropriate tumbler: 1264841
Wolfmm-Paddlewheel的電離電勢約為3·75 eV。帶負電的 單一 hpp陰離子的結構如下: 庠攸鉋刀子的氣怨電離電勢為3·9 eV及Bphen塗層的電子 ^和力約為2_4 eV可以推估OLED輸送材料之施體型推雜物 的電離電勢需小於4 leV。 S/cm至^層(在上例中為Bphen:Cs)的導電性必須介於IE·7 之間。夫3//Cm之間,而且最好是在1E-6 S/cm至5E-5 S/cm 勺中間層(在上例中為BPhen)的導電性必須在 5E 8 S/cm之間。也就是說未摻雜的塗層的 導電 1264841 性至少要比獅缝層的導紐小—料上。獅的塗層的厚 度應介於40臟至5〇〇 nm之間,且最好是在5〇誰至3〇〇腿 之^未摻雜的中間層的厚度應在2職至3〇麵之間,且最 好是^ 5 _至15 llm之間。由於未換雜的塗層的導電性較差, 因此其厚度必須遠小於摻_塗層的厚度。以上關於塗層厚度 及導€性的要求亦適用於以下說_$ 2種實施方式中的空 穴輸送層的p型摻雜。 2將上賴實施:將^穴輸送層⑶ 及^物發光塗層(4)合併成—個單—的塗層,也就是以一個 同曰守具有兩種功能的單-塗層來取代這兩個塗層。此外,也可 =使用不透明的材料(例如:金,銘)來製作底部接點(2),並以 透明的頂部接點⑺作為陰極,例如以錢射程序製造的IT0層 ^頂:接點⑺。由於塗層⑹有摻雜,因此可以從ιτ〇將電 =二⑹。如果是使用有機摻雜物,則摻麵濃度應 n至1 ·2Q之間’如果是使用無機摻雜物,則摻雜物 的浪度應在1 : 1000至3 : 1之間。 μ^中可看出,本發明的有機發光二極體是由聚合物塗 層及分子塗相構成,目此稱之為咖ED錢合0LED。 圖2顯示本發明之發Μ件的糾—種實财式。圖2 ==&結構與圖丨顯示的實施方式電性相反。在圖 齡方式中,在基材⑴設有—個作為陰 =?接:?可以是一個不透明的陰極(純,糊, =以疋^_陰極_)。在底部接點⑺上依序設有一 *乍為聚合物電子輸送層⑻的第—個聚合物塗層,以及一個 •Π64841 作為聚合物發光塗層(4)的第二個聚合物塗層。在第二個聚合 物塗層之上是以蒸鍍方式設置的一個作為中間層(9)的第一個 分子塗層,例如由一個10 nm厚的TPD(tri_phenyldiamin,三 苯二胺)塗層所構成的中間層(9) ◦再上面則是一個作為空穴輸 送及〉主入層(10)的第二個分子塗層,例如由以分子比為50 : 1 之摻雜 F4-TCNQ(Tetrafl麵姑acyanoquin〇dimethane ^ 四 氰 醌 二甲烷 ) 的 m-MTDATA(tris(3 姻 hylpl迎 ylphenylami_^ (3甲基笨基苯基氨基)-二苯基胺)構成的空穴輸送及注入層 · G〇)。最後再加上一個位於頂端的以透明材料(例如汀〇)製成 的頂部接點(7)作為陽極即構成一個如圖2所示的有機發光二 極體。 X 一 本發明的其他未在此處詳細說明的實施方式包括將聚合 物塗層及分子㈣的排列順序對調,也就是說先在基材⑴上 的底部接點(2)之上設置一個摻雜的分子塗層(1〇或6),然後再 設^可橫向結構化的聚合物塗層(4及8 A 3卜另外一種可行 的貫施方式是以有機分子塗層將一個活性聚合物發光塗 φ 包圍住。 ’ 如果疋以底部接點(2)作為陽極,則接下來的塗層排列順 序依序是分子摻雜的空穴注入及輸送層(1〇)、中間層(9)、聚人 物塗層(4)、中間層(5)、分子摻雜的電子輸送層(1〇)、以及^ 陰極的頂雜點⑺。如果是以設置在基材⑴上的底部接點⑺ 作為陰極’取上的塗層排剩序就應鋪倒過來。 15 1264841 【圖式簡單說明】 圖1本發明之一種有機發光二極體的第一種塗層結構。 圖2本發明之一種有機發光二極體的第二種塗層結構(與 圖1之塗層結構電性相反)( 【主要元件符號說明】 2底部接點 4聚合物發光塗層 1基材 3 聚合物空穴輸送層 5中間層(分子塗層) 6摻雜的電子輸送及注入層(分子塗層) 7頂部接點 8聚合物電子輸送層 9中間層(分子塗層) 10摻雜的空穴輸送及注入層(分子層) 16The ionization potential of the Wolfmm-Paddlewheel is approximately 3.75 eV. The structure of a negatively charged single hpp anion is as follows: The entanglement potential of the knives is 3·9 eV and the electrons of the Bphen coating are about 2_4 eV, which can be used to estimate the donor type of OLED transport materials. The ionization potential needs to be less than 4 leV. The conductivity of the S/cm to layer (Bphen:Cs in the above example) must be between IE·7. Between 3/Cm, and preferably in the middle layer of 1E-6 S/cm to 5E-5 S/cm scoop (BPhen in the above example), the conductivity must be between 5E 8 S/cm. That is to say, the undoped coating has a conductivity of 1264841 which is at least smaller than that of the lion's layer. The thickness of the lion's coating should be between 40 and 5 〇〇nm, and preferably the thickness of the undoped intermediate layer from 5 to 3 legs should be between 2 and 3 Between, and preferably between ^ 5 _ and 15 llm. Since the unintercalated coating is less conductive, its thickness must be much smaller than the thickness of the doped coating. The above requirements regarding coating thickness and conductivity also apply to the p-type doping of the hole transport layer in the following two embodiments. 2 will be implemented: the combination of the hole transport layer (3) and the luminescent coating (4) into a single-coat, which is replaced by a single-coat with two functions. Two coatings. In addition, you can also use the opaque material (for example: gold, Ming) to make the bottom contact (2), and the transparent top contact (7) as the cathode, for example, the IT0 layer manufactured by the money injection program: the contact (7). Since the coating (6) is doped, it is possible to charge from the ιτ〇 = two (6). If an organic dopant is used, the doping concentration should be between n and 1 · 2Q. If an inorganic dopant is used, the dopant should have a wavelength of between 1:1000 and 3:1. As can be seen from the μ, the organic light-emitting diode of the present invention is composed of a polymer coating layer and a molecular coating phase, and is hereinafter referred to as a coffee OLED. Fig. 2 shows the correction of the hair piece of the present invention. Figure 2 ==& structure is electrically opposite to the embodiment shown in Figure 。. In the age-old mode, the substrate (1) is provided with a cathode as a cathode: ? can be an opaque cathode (pure, paste, = 疋^_cathode_). A first polymer coating of the polymer electron transport layer (8) and a second polymer coating of the polymer light-emitting coating (4) are sequentially disposed on the bottom contact (7). Above the second polymer coating is a first molecular coating of the intermediate layer (9) which is deposited by evaporation, for example by a 10 nm thick TPD (tri-phenyldiamin, triphenyldiamine) coating. The intermediate layer (9) is formed on top of a second molecular coating as a hole transporting and >main entry layer (10), for example by doping F4-TCNQ with a molecular ratio of 50:1 ( Tetrafl face acyanoquin〇dimethane ^ tetracyanoquinone dimethane) m-MTDATA (tris (3 sylphyl ylphenylami yylphenylami) (3 methyl phenylphenylamino)-diphenylamine) hole transport and injection layer · G〇). Finally, a top contact (7) made of a transparent material (e.g., Tingyu) at the top is used as an anode to form an organic light-emitting diode as shown in Fig. 2. X. Other embodiments of the invention not specifically described herein include the alignment of the polymer coating and the arrangement of the molecules (4), that is, first an admixture is placed on the bottom contact (2) of the substrate (1). a heterogeneous molecular coating (1〇 or 6), and then a laterally structured polymer coating (4 and 8 A 3). Another possible way to apply is to apply a living polymer with an organic molecular coating. The luminescent coating is surrounded by φ. ' If the bottom contact (2) is used as the anode, the next coating sequence is sequentially molecularly doped hole injection and transport layer (1〇), intermediate layer (9) , a poly-person coating (4), an intermediate layer (5), a molecularly doped electron transport layer (1〇), and a cathode top impurity point (7). If it is a bottom contact (7) disposed on the substrate (1) The remaining order of the coating as the cathode 's should be laid down. 15 1264841 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a first coating structure of an organic light-emitting diode of the present invention. a second coating structure of the organic light-emitting diode (as opposed to the coating structure of FIG. 1) (main Component symbol description] 2 bottom contact 4 polymer luminescent coating 1 substrate 3 polymer hole transport layer 5 intermediate layer (molecular coating) 6 doped electron transport and injection layer (molecular coating) 7 top contact 8 polymer electron transport layer 9 intermediate layer (molecular coating) 10 doped hole transport and injection layer (molecular layer) 16
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10339772A DE10339772B4 (en) | 2003-08-27 | 2003-08-27 | Light emitting device and method for its production |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200509431A TW200509431A (en) | 2005-03-01 |
TWI264841B true TWI264841B (en) | 2006-10-21 |
Family
ID=34089248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093123848A TWI264841B (en) | 2003-08-27 | 2004-08-09 | Light-emitting device and its manufacturing method |
Country Status (7)
Country | Link |
---|---|
US (3) | US7355197B2 (en) |
EP (1) | EP1511094B1 (en) |
JP (1) | JP5184736B2 (en) |
KR (1) | KR100685108B1 (en) |
CN (1) | CN100559627C (en) |
DE (1) | DE10339772B4 (en) |
TW (1) | TWI264841B (en) |
Families Citing this family (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100026176A1 (en) | 2002-03-28 | 2010-02-04 | Jan Blochwitz-Nomith | Transparent, Thermally Stable Light-Emitting Component Having Organic Layers |
DE10339772B4 (en) * | 2003-08-27 | 2006-07-13 | Novaled Gmbh | Light emitting device and method for its production |
WO2005064994A1 (en) | 2003-12-25 | 2005-07-14 | Fujitsu Limited | Organic el element, organic el display, process for fabricating organic el element, and system for fabricating organic el element |
US7540978B2 (en) * | 2004-08-05 | 2009-06-02 | Novaled Ag | Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component |
EP1789994A1 (en) | 2004-08-13 | 2007-05-30 | Novaled AG | Layer arrangement for a light-emitting component |
DE602004006275T2 (en) * | 2004-10-07 | 2007-12-20 | Novaled Ag | Method for doping a semiconductor material with cesium |
FR2878652A1 (en) * | 2004-11-29 | 2006-06-02 | Thomson Licensing Sa | ORGANIC ELECTROLUMINESCENT DIODE WITH DOPED LAYERS |
KR101267040B1 (en) * | 2004-12-06 | 2013-05-23 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting element and light-emitting device using the composite compound, and manufacturing method of the light-emitting element |
DE502005002342D1 (en) * | 2005-03-15 | 2008-02-07 | Novaled Ag | Light-emitting component |
ATE381117T1 (en) | 2005-04-13 | 2007-12-15 | Novaled Ag | ARRANGEMENT FOR A PIN-TYPE ORGANIC LIGHT-EMITTING DIODE AND METHOD FOR PRODUCING IT |
US7777407B2 (en) | 2005-05-04 | 2010-08-17 | Lg Display Co., Ltd. | Organic light emitting devices comprising a doped triazine electron transport layer |
US8487527B2 (en) | 2005-05-04 | 2013-07-16 | Lg Display Co., Ltd. | Organic light emitting devices |
US7811679B2 (en) | 2005-05-20 | 2010-10-12 | Lg Display Co., Ltd. | Display devices with light absorbing metal nanoparticle layers |
US7943244B2 (en) | 2005-05-20 | 2011-05-17 | Lg Display Co., Ltd. | Display device with metal-organic mixed layer anodes |
US7750561B2 (en) | 2005-05-20 | 2010-07-06 | Lg Display Co., Ltd. | Stacked OLED structure |
US7728517B2 (en) | 2005-05-20 | 2010-06-01 | Lg Display Co., Ltd. | Intermediate electrodes for stacked OLEDs |
US7795806B2 (en) | 2005-05-20 | 2010-09-14 | Lg Display Co., Ltd. | Reduced reflectance display devices containing a thin-layer metal-organic mixed layer (MOML) |
DE502005009415D1 (en) * | 2005-05-27 | 2010-05-27 | Novaled Ag | Transparent organic light emitting diode |
EP1729346A1 (en) * | 2005-06-01 | 2006-12-06 | Novaled AG | Light-emitting device with an electrode arrangement |
EP1739765A1 (en) * | 2005-07-01 | 2007-01-03 | Novaled AG | Organic light-emitting diode and stack of organic light emitting diodes |
TWI321968B (en) | 2005-07-15 | 2010-03-11 | Lg Chemical Ltd | Organic light meitting device and method for manufacturing the same |
US7635858B2 (en) * | 2005-08-10 | 2009-12-22 | Au Optronics Corporation | Organic light-emitting device with improved layer conductivity distribution |
JP2007059783A (en) * | 2005-08-26 | 2007-03-08 | Showa Denko Kk | Organic EL device, method for producing the same, and use thereof |
EP1786050B1 (en) * | 2005-11-10 | 2010-06-23 | Novaled AG | Doped organic semiconductor material |
EP1806795B1 (en) * | 2005-12-21 | 2008-07-09 | Novaled AG | Organic Device |
US7919010B2 (en) * | 2005-12-22 | 2011-04-05 | Novaled Ag | Doped organic semiconductor material |
EP1804308B1 (en) * | 2005-12-23 | 2012-04-04 | Novaled AG | An organic light emitting device with a plurality of organic electroluminescent units stacked upon each other |
EP1804309B1 (en) | 2005-12-23 | 2008-07-23 | Novaled AG | Electronic device with a layer structure of organic layers |
EP1808909A1 (en) | 2006-01-11 | 2007-07-18 | Novaled AG | Electroluminescent light-emitting device |
WO2007095061A2 (en) * | 2006-02-09 | 2007-08-23 | Qd Vision, Inc. | Device including semiconductor nanocrystals and a layer including a doped organic material and methods |
FR2897983A1 (en) * | 2006-02-27 | 2007-08-31 | Thomson Licensing Sa | ELECTROLUMINESCENT DIODE WITH INJECTION LAYER AND TRANSPORT OF CONDUCTIVE POLYMER HOLES |
EP1994580B1 (en) * | 2006-02-28 | 2012-05-02 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Electronic component comprising a p-doped organic semiconductor |
JP5064482B2 (en) * | 2006-03-14 | 2012-10-31 | エルジー・ケム・リミテッド | High-efficiency organic light-emitting device and manufacturing method thereof |
EP2008318B1 (en) * | 2006-03-21 | 2013-02-13 | Novaled AG | Method for preparing doped organic semiconductor materials |
EP1837927A1 (en) * | 2006-03-22 | 2007-09-26 | Novaled AG | Use of heterocyclic radicals for doping of organic semiconductors |
EP1837926B1 (en) | 2006-03-21 | 2008-05-07 | Novaled AG | Heterocyclic radicals or diradicals and their dimers, oligomers, polymers, di-spiro and polycyclic derivatives as well as their use in organic semiconductor materials and electronic devices. |
EP1848049B1 (en) | 2006-04-19 | 2009-12-09 | Novaled AG | Light emitting device |
KR100972895B1 (en) | 2006-04-20 | 2010-07-28 | 이데미쓰 고산 가부시키가이샤 | Organic light emitting device |
WO2007132704A1 (en) | 2006-05-11 | 2007-11-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence element |
EP2018090A4 (en) | 2006-05-11 | 2010-12-01 | Idemitsu Kosan Co | ORGANIC ELECTROLUMINESCENCE ELEMENT |
US20090243473A1 (en) | 2006-08-04 | 2009-10-01 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
DE102007012794B3 (en) * | 2007-03-16 | 2008-06-19 | Novaled Ag | New pyrido(3,2-h)quinazoline compounds useful to prepare doped organic semi-conductor, which is useful in an organic light-emitting diode, preferably organic solar cells, and modules for an electronic circuits, preferably displays |
DE102007019260B4 (en) * | 2007-04-17 | 2020-01-16 | Novaled Gmbh | Non-volatile organic storage element |
DE102007018456B4 (en) * | 2007-04-19 | 2022-02-24 | Novaled Gmbh | Use of main group element halides and/or pseudohalides, organic semiconducting matrix material, electronic and optoelectronic components |
EP1988587B1 (en) * | 2007-04-30 | 2016-12-07 | Novaled GmbH | Oxocarbon, pseudo oxocarbon and radialene compounds and their use |
EP1990847B1 (en) * | 2007-05-10 | 2018-06-20 | Novaled GmbH | Use of quinoid bisimidazoles and their derivatives as dopant for doping an organic semi-conductor matrix material |
DE102007031220B4 (en) * | 2007-07-04 | 2022-04-28 | Novaled Gmbh | Quinoid compounds and their use in semiconducting matrix materials, electronic and optoelectronic components |
JP2009076865A (en) | 2007-08-29 | 2009-04-09 | Fujifilm Corp | Organic electroluminescence device |
KR101548382B1 (en) | 2007-09-14 | 2015-08-28 | 유디씨 아일랜드 리미티드 | Organic electroluminescent device |
JP5489446B2 (en) | 2007-11-15 | 2014-05-14 | 富士フイルム株式会社 | Thin film field effect transistor and display device using the same |
JP5489445B2 (en) | 2007-11-15 | 2014-05-14 | 富士フイルム株式会社 | Thin film field effect transistor and display device using the same |
DE102008024517A1 (en) | 2007-12-27 | 2009-07-02 | Osram Opto Semiconductors Gmbh | Radiation-emitting body and method for producing a radiation-emitting body |
JP5243972B2 (en) | 2008-02-28 | 2013-07-24 | ユー・ディー・シー アイルランド リミテッド | Organic electroluminescence device |
JP4555358B2 (en) | 2008-03-24 | 2010-09-29 | 富士フイルム株式会社 | Thin film field effect transistor and display device |
JP4531836B2 (en) | 2008-04-22 | 2010-08-25 | 富士フイルム株式会社 | Organic electroluminescent device, novel platinum complex compound and novel compound that can be a ligand |
US8057712B2 (en) * | 2008-04-29 | 2011-11-15 | Novaled Ag | Radialene compounds and their use |
GB2461527B (en) * | 2008-07-01 | 2011-08-03 | Limited Cambridge Display Technology | Organic electronic device |
DE102008036063B4 (en) | 2008-08-04 | 2017-08-31 | Novaled Gmbh | Organic field effect transistor |
DE102008036062B4 (en) | 2008-08-04 | 2015-11-12 | Novaled Ag | Organic field effect transistor |
DE102008056391B4 (en) | 2008-09-26 | 2021-04-01 | Osram Oled Gmbh | Organic electronic component and process for its manufacture |
DE102008054052A1 (en) * | 2008-10-30 | 2010-05-06 | Osram Opto Semiconductors Gmbh | Organic, radiation-emitting component and method for producing such |
JP2010153820A (en) | 2008-11-21 | 2010-07-08 | Fujifilm Corp | Organic electroluminescent element |
DE102008061843B4 (en) | 2008-12-15 | 2018-01-18 | Novaled Gmbh | Heterocyclic compounds and their use in electronic and optoelectronic devices |
JP2010182449A (en) | 2009-02-03 | 2010-08-19 | Fujifilm Corp | Organic electroluminescent display device |
JP2010186723A (en) | 2009-02-13 | 2010-08-26 | Fujifilm Corp | Organic el device and method of manufacturing the same |
JP2010205650A (en) | 2009-03-05 | 2010-09-16 | Fujifilm Corp | Organic el display device |
US20100295445A1 (en) | 2009-05-22 | 2010-11-25 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US20100295444A1 (en) | 2009-05-22 | 2010-11-25 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
KR101859346B1 (en) | 2009-07-31 | 2018-05-17 | 유디씨 아일랜드 리미티드 | Organic electroluminescent element |
JP2011060549A (en) | 2009-09-09 | 2011-03-24 | Fujifilm Corp | Optical member for organic el device, and organic el device |
JP5657243B2 (en) | 2009-09-14 | 2015-01-21 | ユー・ディー・シー アイルランド リミテッド | Color filter and light emitting display element |
KR101094282B1 (en) * | 2009-12-04 | 2011-12-19 | 삼성모바일디스플레이주식회사 | Organic light emitting device |
ES2642386T3 (en) | 2009-12-18 | 2017-11-16 | Arcelormittal | Large surface electroluminescent device comprising organic electroluminescent diodes |
JPWO2011102249A1 (en) * | 2010-02-17 | 2013-06-17 | コニカミノルタ株式会社 | Organic electronic device manufacturing method and organic electronic device |
EP2367215A1 (en) * | 2010-03-15 | 2011-09-21 | Novaled AG | An organic photoactive device |
JP2011222831A (en) | 2010-04-12 | 2011-11-04 | Idemitsu Kosan Co Ltd | Organic electroluminescent element |
WO2011131185A1 (en) | 2010-04-21 | 2011-10-27 | Novaled Ag | Mixture for producing a doped semiconductor layer |
KR101766709B1 (en) | 2010-04-27 | 2017-08-09 | 노발레드 게엠베하 | Organic semiconducting material and electronic component |
KR20120119981A (en) | 2010-07-09 | 2012-11-01 | 이데미쓰 고산 가부시키가이샤 | Imidazopyridine derivative and organic electroluminescent element comprising the same |
JPWO2012017680A1 (en) | 2010-08-05 | 2013-10-03 | 出光興産株式会社 | Organic electroluminescence device |
DE102010046040B4 (en) | 2010-09-22 | 2021-11-11 | Novaled Gmbh | Process for the production of fullerene derivatives |
CN102574797B (en) | 2010-10-08 | 2017-03-01 | 出光兴产株式会社 | Benzo[k]fluoranthene derivatives and organic electroluminescence elements containing them |
TW201232864A (en) | 2010-11-22 | 2012-08-01 | Idemitsu Kosan Co | Organic electroluminescence device |
EP2672540A4 (en) | 2011-02-02 | 2015-06-24 | Idemitsu Kosan Co | HETEROCYCLIC NITROGEN DERIVATIVE, ELECTRON-TRANSPORTING MATERIAL FOR ORGANIC ELECTROLUMINESCENT ELEMENTS, AND ORGANIC ELECTROLUMINESCENT ELEMENT USING THE SAME |
TWI526418B (en) | 2011-03-01 | 2016-03-21 | 諾瓦發光二極體股份公司 | Organic semiconductor materials and organic compositions |
JP2013033872A (en) * | 2011-08-03 | 2013-02-14 | Sumitomo Chemical Co Ltd | Organic electroluminescent element |
JP6107605B2 (en) * | 2013-11-05 | 2017-04-05 | コニカミノルタ株式会社 | Organic electroluminescence element and lighting device |
CN105874575B (en) | 2013-12-16 | 2019-04-16 | 国立大学法人北陆先端科学技术大学院大学 | Semiconductor devices and its manufacturing method and fatty poly-ester carbonate |
KR102388398B1 (en) | 2014-05-08 | 2022-04-20 | 유니버셜 디스플레이 코포레이션 | Stabilized imidazophenanthridine materials |
EP3002797B1 (en) | 2014-09-30 | 2020-04-29 | Novaled GmbH | A light emitting organic device and an active OLED display |
TWI566028B (en) * | 2015-02-17 | 2017-01-11 | Zao-Lun Zhang | Flashing device for electronic equipment |
KR102584846B1 (en) | 2015-05-05 | 2023-10-04 | 유니버셜 디스플레이 코포레이션 | Organic electroluminescent materials and devices |
WO2017078182A1 (en) | 2015-11-04 | 2017-05-11 | Idemitsu Kosan Co., Ltd. | Benzimidazole fused heteroaryls |
CN108699058B (en) | 2015-12-21 | 2022-07-08 | 出光兴产株式会社 | Hetero-fused phenylquinazolines and their use in electronic devices |
WO2017221999A1 (en) | 2016-06-22 | 2017-12-28 | Idemitsu Kosan Co., Ltd. | Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes |
US10930864B2 (en) | 2017-05-10 | 2021-02-23 | Universal Display Corporation | Organic electroluminescent materials and devices |
EP3418285B1 (en) | 2017-06-20 | 2020-05-06 | Idemitsu Kosan Co., Ltd. | Composition comprising a substituted ir complex and a phenylquinazoline bridged with a heteroatom |
EP3466954A1 (en) | 2017-10-04 | 2019-04-10 | Idemitsu Kosan Co., Ltd. | Fused phenylquinazolines bridged with a heteroatom |
EP3492480B1 (en) | 2017-11-29 | 2021-10-20 | Universal Display Corporation | Organic electroluminescent materials and devices |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270171A (en) * | 1997-01-27 | 1998-10-09 | Junji Kido | Organic electroluminescent element |
US6850003B1 (en) | 1997-09-05 | 2005-02-01 | Cambridge Display Technology, Ltd. | Self-assembled transport layers for OLEDs |
JP3479642B2 (en) | 1998-03-13 | 2003-12-15 | ケンブリッジ ディスプレイ テクノロジー リミテッド | Electroluminescent device |
JP3468089B2 (en) | 1998-04-07 | 2003-11-17 | 松下電器産業株式会社 | Organic electroluminescent device |
JP3776600B2 (en) * | 1998-08-13 | 2006-05-17 | Tdk株式会社 | Organic EL device |
DE69841627D1 (en) * | 1998-12-15 | 2010-06-02 | Max Planck Inst Fuer Polymerfo | Functional material-containing polyimide layer, device using it, and method of making this device |
JP2000196140A (en) * | 1998-12-28 | 2000-07-14 | Sharp Corp | Organic electroluminescent device and manufacturing method thereof |
US6639357B1 (en) | 2000-02-28 | 2003-10-28 | The Trustees Of Princeton University | High efficiency transparent organic light emitting devices |
DE10058578C2 (en) * | 2000-11-20 | 2002-11-28 | Univ Dresden Tech | Light-emitting component with organic layers |
AU2002221012A1 (en) * | 2000-11-29 | 2002-06-11 | Ran Erhard | Method and system for condcuting fully automated survey research |
ATE415802T1 (en) * | 2000-12-20 | 2008-12-15 | Koninkl Philips Electronics Nv | ELECTROLUMINESCENCE COLOR DISPLAY PANEL |
JP3898442B2 (en) | 2000-12-25 | 2007-03-28 | 三星エスディアイ株式会社 | Organic electroluminescence device |
US6998487B2 (en) * | 2001-04-27 | 2006-02-14 | Lg Chem, Ltd. | Double-spiro organic compounds and organic electroluminescent devices using the same |
AU2002320158A1 (en) * | 2001-06-21 | 2003-01-08 | The Trustees Of Princeton University | Organic light-emitting devices with blocking and transport layers |
KR100915126B1 (en) * | 2001-06-25 | 2009-09-03 | 쇼와 덴코 가부시키가이샤 | Organic light-emitting device |
US6908695B2 (en) * | 2001-07-13 | 2005-06-21 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and manufacturing method thereof |
DE10135513B4 (en) * | 2001-07-20 | 2005-02-24 | Novaled Gmbh | Light-emitting component with organic layers |
US7163831B2 (en) * | 2001-11-22 | 2007-01-16 | Canon Kabushiki Kaisha | Light-emitting element, production method thereof, and light-emitting apparatus |
JP3742054B2 (en) * | 2001-11-30 | 2006-02-01 | 株式会社半導体エネルギー研究所 | Display device |
US7141817B2 (en) * | 2001-11-30 | 2006-11-28 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US7956349B2 (en) * | 2001-12-05 | 2011-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Organic semiconductor element |
JP2003264076A (en) | 2002-03-08 | 2003-09-19 | Sharp Corp | Coating solution for forming organic luminous layer, donor film for organic led, manufacturing method of organic led display panel using the same, and organic led display panel |
DE10215210B4 (en) | 2002-03-28 | 2006-07-13 | Novaled Gmbh | Transparent, thermally stable light-emitting component with organic layers |
US6806491B2 (en) * | 2002-04-03 | 2004-10-19 | Tsinghua University | Organic light-emitting devices |
US20030230980A1 (en) * | 2002-06-18 | 2003-12-18 | Forrest Stephen R | Very low voltage, high efficiency phosphorescent oled in a p-i-n structure |
US6916554B2 (en) * | 2002-11-06 | 2005-07-12 | The University Of Southern California | Organic light emitting materials and devices |
US6858327B2 (en) * | 2002-11-08 | 2005-02-22 | Universal Display Corporation | Organic light emitting materials and devices |
US6891326B2 (en) * | 2002-11-15 | 2005-05-10 | Universal Display Corporation | Structure and method of fabricating organic devices |
KR20040084470A (en) * | 2003-03-28 | 2004-10-06 | 주식회사 하이닉스반도체 | A method for forming a contact of a semiconductor device |
DE10339772B4 (en) * | 2003-08-27 | 2006-07-13 | Novaled Gmbh | Light emitting device and method for its production |
-
2003
- 2003-08-27 DE DE10339772A patent/DE10339772B4/en not_active Expired - Fee Related
-
2004
- 2004-08-09 TW TW093123848A patent/TWI264841B/en not_active IP Right Cessation
- 2004-08-10 EP EP04018867.4A patent/EP1511094B1/en not_active Expired - Lifetime
- 2004-08-27 US US10/928,976 patent/US7355197B2/en not_active Ceased
- 2004-08-27 CN CNB2004100683207A patent/CN100559627C/en not_active Expired - Lifetime
- 2004-08-27 JP JP2004247705A patent/JP5184736B2/en not_active Expired - Fee Related
- 2004-08-27 KR KR1020040068001A patent/KR100685108B1/en not_active IP Right Cessation
-
2008
- 2008-02-08 US US12/028,143 patent/US8263429B2/en active Active
-
2009
- 2009-11-04 US US12/612,396 patent/USRE43319E1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2005072012A (en) | 2005-03-17 |
DE10339772B4 (en) | 2006-07-13 |
KR20050021919A (en) | 2005-03-07 |
EP1511094B1 (en) | 2017-02-22 |
US20050110009A1 (en) | 2005-05-26 |
US8263429B2 (en) | 2012-09-11 |
US7355197B2 (en) | 2008-04-08 |
EP1511094A3 (en) | 2005-07-27 |
CN100559627C (en) | 2009-11-11 |
EP1511094A2 (en) | 2005-03-02 |
KR100685108B1 (en) | 2007-02-22 |
US20080160669A1 (en) | 2008-07-03 |
JP5184736B2 (en) | 2013-04-17 |
DE10339772A1 (en) | 2005-04-14 |
TW200509431A (en) | 2005-03-01 |
CN1619854A (en) | 2005-05-25 |
USRE43319E1 (en) | 2012-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI264841B (en) | Light-emitting device and its manufacturing method | |
US7911129B2 (en) | Arrangement for an organic pin-type light-emitting diode and method for manufacturing | |
JP3488474B2 (en) | Anode modification for organic light-emitting diodes | |
JP3695714B2 (en) | Light emitting device with organic layer | |
CN1535485B (en) | Light-radiating member with organic layer | |
CN1602556B (en) | Transparent, thermally stable light-emitting component comprising organic layers | |
Zang et al. | Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics | |
JPH11504754A (en) | Organic / inorganic alloys used to improve organic electroluminescent devices | |
US20060134317A1 (en) | Method for making multifunctional organic thin films | |
TW201248964A (en) | Organic electroluminescence element | |
US8569743B2 (en) | Light-emitting component | |
KR100777099B1 (en) | High efficiency organic light emitting diodes and manufacturing method | |
KR101419809B1 (en) | Inverted organic light-emitting diode and display apparatus including the same | |
KR100752383B1 (en) | Organic electroluminescent device and manufacturing method thereof | |
JP2007227117A (en) | Organic electroluminescent element | |
KR20100117749A (en) | Organic light emitting diode and method of manufacturing the same | |
GB2528906A (en) | Organic light emitting devices and methods | |
KR20120003547A (en) | Organic light-emitting device comprising a metallocene compound and a method of manufacturing the same | |
JP2003007465A (en) | Organic luminescence array or display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |