US2699427A - Mineral oil compositions containing amidic acids or salts thereof - Google Patents
Mineral oil compositions containing amidic acids or salts thereof Download PDFInfo
- Publication number
- US2699427A US2699427A US312844A US31284452A US2699427A US 2699427 A US2699427 A US 2699427A US 312844 A US312844 A US 312844A US 31284452 A US31284452 A US 31284452A US 2699427 A US2699427 A US 2699427A
- Authority
- US
- United States
- Prior art keywords
- mineral oil
- oil
- amines
- acid
- salts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002480 mineral oil Substances 0.000 title claims description 44
- 239000000203 mixture Substances 0.000 title claims description 39
- 235000010446 mineral oil Nutrition 0.000 title claims description 38
- 239000002253 acid Substances 0.000 title description 35
- 150000003839 salts Chemical class 0.000 title description 16
- 150000007513 acids Chemical class 0.000 title description 14
- 230000007797 corrosion Effects 0.000 claims description 25
- 238000005260 corrosion Methods 0.000 claims description 25
- 230000002401 inhibitory effect Effects 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 29
- 239000000654 additive Substances 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 239000003921 oil Substances 0.000 description 14
- 235000019198 oils Nutrition 0.000 description 14
- 150000001412 amines Chemical class 0.000 description 13
- -1 Cyclic acid anhydrides Chemical class 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 150000003141 primary amines Chemical class 0.000 description 11
- 239000000446 fuel Substances 0.000 description 10
- 150000003335 secondary amines Chemical class 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 9
- 239000000314 lubricant Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 239000010687 lubricating oil Substances 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 239000008186 active pharmaceutical agent Substances 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000002283 diesel fuel Substances 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 239000004519 grease Substances 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- 238000007112 amidation reaction Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- RTWNYYOXLSILQN-UHFFFAOYSA-N methanediamine Chemical class NCN RTWNYYOXLSILQN-UHFFFAOYSA-N 0.000 description 4
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 4
- LGRFSURHDFAFJT-UHFFFAOYSA-N phthalic anhydride Chemical compound C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 4
- 239000010723 turbine oil Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000009435 amidation Effects 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BHHGXPLMPWCGHP-UHFFFAOYSA-N Phenethylamine Chemical compound NCCC1=CC=CC=C1 BHHGXPLMPWCGHP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 210000003298 dental enamel Anatomy 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000008098 formaldehyde solution Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- CDULGHZNHURECF-UHFFFAOYSA-N 2,3-dimethylaniline 2,4-dimethylaniline 2,5-dimethylaniline 2,6-dimethylaniline 3,4-dimethylaniline 3,5-dimethylaniline Chemical class CC1=CC=C(N)C(C)=C1.CC1=CC=C(C)C(N)=C1.CC1=CC(C)=CC(N)=C1.CC1=CC=C(N)C=C1C.CC1=CC=CC(N)=C1C.CC1=CC=CC(C)=C1N CDULGHZNHURECF-UHFFFAOYSA-N 0.000 description 1
- JBIJLHTVPXGSAM-UHFFFAOYSA-N 2-naphthylamine Chemical compound C1=CC=CC2=CC(N)=CC=C21 JBIJLHTVPXGSAM-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 101100298295 Drosophila melanogaster flfl gene Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000272168 Laridae Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003974 aralkylamines Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002311 glutaric acids Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- YTTITLNGCSHAAB-UHFFFAOYSA-N heptanedioic acid 2-propan-2-ylbutanedioic acid Chemical compound C(CCCCCC(=O)O)(=O)O.C(C)(C)C(C(=O)O)CC(=O)O YTTITLNGCSHAAB-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002689 maleic acids Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005649 metathesis reaction Methods 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000005063 tetradecenyl group Chemical group C(=CCCCCCCCCCCCC)* 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 150000004992 toluidines Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 125000005065 undecenyl group Chemical group C(=CCCCCCCCCC)* 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/224—Amides; Imides carboxylic acid amides, imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M1/00—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
- C10M1/08—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/08—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
- C23F11/10—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
- C23F11/14—Nitrogen-containing compounds
- C23F11/145—Amides; N-substituted amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
- C10M2215/122—Phtalamic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/06—Groups 3 or 13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/08—Groups 4 or 14
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/10—Groups 5 or 15
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/16—Groups 8, 9, or 10
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/12—Gas-turbines
- C10N2040/13—Aircraft turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/135—Steam engines or turbines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/10—Semi-solids; greasy
Definitions
- This invention relates to mineral oil compositions and particularly to improved mineral oil compositions which comprise a major amount of a mineral oil and a minor amount of an improvement agent sufiicient to confer thereupon useful and advantageous properties, such as rust or corrosion prevention and other desirable properties.
- An object of this invention is the provision of mineral oil compositions having improved rust and corrosion inhibiting properties as well as other desirable characteristics. Other objects appear hereinafter.
- the present invention includes new mineral oil compositions containing a major amount of a mineral oil and a minor, corrosion inhibiting amount of an agent having the formula R1 R2 -N-CHr-N-Ri x z o-o-- (l where CifiG embodiments of the invention and matters ancillary thereto have been described. It is understood that these are by way of illustration only and are not to be considered as limiting.
- the various mineral oils in which the novel improvement agents may be incorporated include both the fuel and lubricant type.
- fuel type mineral oils are gasoline, kerosene, diesel fuel, and furnace oil.
- lubricant type mineral oils are engine oils, turbine oils, and greases.
- the invention also includes mineral oil compositions where the mineral oil constituent is not employed as a fuel or lubricant but merely as a solvent vehicle. Exemplary of this type of composition are light naphtha or like mineral oil solvents containing the novel additives of this invention.
- the improved mineral oil compositions of the invention are conveniently prepared by simply dissolving a minor proportion, sufiicient to confer corrosion-inhibiting properties on the composition, of the desired oil soluble improvement agent in the particular mineral oil to be used. Elevated temperatures may be employed to assist in dissolving the additive.
- the compounding of our mineral oil compositions may involve preparation of the additive in a mineral oil solvent to provide a concentrate of the additive. This concentrate may be dissolved subsequently in the particular mineral oil to be used. The latter method is preferred in view of the relative ease in obtaining a solution.
- novel additives of this invention may be conveniently designated as amidic acids or the substantially neutral salts thereof.
- amidic acids of this invention involves the partial amidation at conventional conditions of a cyclic dicarboxylic acid anhydride with an N,N'-
- Any cyclic dicarboxylic acid anhydride is suitable for the purposes of this invention. These substances, as known in the art, are capable of reacting with primary or secondary amines to form amides.
- Cyclic acid anhydrides of aliphatic dicarboxylic acids are formed from acids having two carboxyl groups attached to adjacent carbon atoms or to carbon atoms separated by a third carbon atom. Examples of such acids are maleic, succinic, and glutaric acids. Alkyl substitution products of these acids, such as isopropyl succinic acid (pimelic acid) behave similarly as the unsubstituted acids. Aromatic dicarboxylic acid anhydrides such as O-phthalic acid anhydride are also suitable for the purposes of the invention.
- the conditions of amidation may vary somewhat according to the particular starting materials.
- the reaction takes place satisfactorily at temperatures of about 200 F. Somewhat higher or lower temperatures may be used with no undesirable results.
- the reaction is normally complete in from about 60 to about 120 minutes, depending largely on the temperature employed.
- the amidation reaction may be conducted simply by mixing equimolar proportions of the acid or anhydride and the N,N'-substituted methylene diamine and heating,
- amidic acid product may be recovered in the form of a solution, or alternatively,
- the solvent may be removed by evaporation to provide gthe-amidic acid per se.
- the amidic acid need not be prepared se arately, but the methylene diamine, the dicarboxylic acid anhydride and a suitable metal hydroxide can all be reacted simultaneously.
- the alkali metal hydroxides and the alkaline earth metal hydroxides can be'added 1 directly to the reacting mass in the form of an aqueous solution or slurry.
- the alkali metal salt of the Illustrative of metals which give desirable amidic acid salts according to this invention are sodium, lithium, potassium, barium, calcium, magnesium, strontium, lead, copper, iron, nickel, mercury, zinc, bismuth, aluminum, chromium, tin, manganese,.silver and cadmium.
- Amine or ammonium salts of the novel amidic acids are also included in the invention. These can be prepared, for example, by simple reaction of the amidic acid with an appropriate nitrogen base,'such as a primary, secondary or tertiary amine,. or ammonium hydroxide. The neutralization reaction occurs easily at room temperature or moderately elevated temperature.
- N,N'-substituted methylene diamines employed in the amidation reaction described above are prepared conveniently by condensation of a suitable primary amine or mixture of primary and secondary amines with formaldehyde in the proportion of 2 mols of amine to 1 mol of formaldehyde. Where a mixture of primary and secondary amines is employed, at least one-half of the mixture on a molar basis should be primary amines.
- thesubstituents of the primary and secondary amines employed in the condensation reaction may vary widely.
- primary or secondary amines having alkyl, alkenyl, cycloalkyl, aryl, alkaryl, and aralkyl substituents are suitable.
- Illustrative of primary, acyclic, aliphatic amines suitable for condensation with formaldehyde to form N,N'-substituents methylene diamines are alkyl amines having at least 8 carbon atoms, and preferably from 8 to 26 carbon atoms, such as octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, octadecyl and eicosyl.
- alkenyl amines such as octenyl, nonenyl, undecenyl, tetradecenyl, octadecenyl (oleyl) and eicosenyl amines are also suitable.
- Aniline, alphanaphthylamine and beta naphthylamine are illustrative of suitable aryl amines, just as the toluidines and xylidines are illustrative of suitable alkaryl amines. Satisfactory aralkyl amines are exemplified by benzylamine, betaphenylethylamine and the like.
- Secondary amines corresponding to all these classes of amines also produce advantageous compounds and include not only amines containing substituents from "the' same class such as diphenylamine, phenyl alphanaphthylamine and dicyclohexvlamine, but also amines containing substituents from different classes such'as octyl-phenyl amine and the like. N;lT-oleyl propanol amine and N,N-dodecyl' ethanol amme.
- cocoamine is prepared by converting the mixed acids of coconut oil to the corresponding amines by well known methods. average molecular weight of 200-210 and contains pre- Other suitable secondary amines are The commercial cocoaminehas an.
- the novel additives of this invention are preferably prepared by condensation of the desired primary amines or mixtures of primary or secondary amines with formaldehyde in the proportion of 2 mols of amine to 1 mol offormaldehyde ata temperature of about'160"-- F., followed by dehydration of the product at-a temperature of between about 260 F. and 400 F.
- a dicarboxylic. acid anhydridevin an" amount sufiicie'nt to provide equimolar' proportions of acid 'anhydride-and the methylenediaminex Heat of'a degree sufficient to effect the amidation is employed. Normally, a temperature of about 200 F. is satisfactory.
- the salts' of the amidic acid may be prepared by subsequent, or in many instances, simultaneous neutralization of the amidic acid with a suitable basic material.
- the resulting product either alone or in the form of a'solutionconcentrate may .thenbe incorporated in the desired mineral oil in a minor proportion, sufficient to confercorrosion inhibiting propertiesand other desirable Normally from about 0.01 l per cent to about 1.0 per cent of the additive by weight of" properties upon the latter.
- composition is sufiicient for this purpose.
- Example '1 Four mols of cocoamine. were introduced into a reac- 4 droxide were then dispersed in an equal weight of lubricating oil. Two mols of phthalic anhydride, the acid anhydride of O-phthalic acid, were then added and the temperature held at 200 F. for two hours. The temperature was. subsequently raised to 270' F. to dry the product and the-product was filtered.
- the mineral oil solution of the product formed by this process had the following properties:
- coco radical as used herein is meant the mixture of coconut oil fatty acid alkyl groups present as N-substituents in commercial cocoamine.
- the salt formed in this example had the following formula:
- R represents the coco radical or residuew-of the cocoamine.
- Example II The salt described in'Example I was also-formed by" metathesis. According to this method, 4 mols of coco-1 amine were introduced into a reaction vessel, and-2 mols of formaldehyde in a 37 per cent by weight aqueous solution were slowly added with constant stirring, while maintalning'the temperature below F. When the reactlon was completed, after about 60 minutes, the temperature was raised to 350"" F. to remove all water, both. that'added with'the formaldehyde and that formed with the reaction. The methylenezdiamine product so formed was dispersed in an equal weight of lubricating oil and 2 mols'of a 40 per cent aqueous solution of sodium hydroxidewere added.
- the mineral oil solution of the product formed by this process had the following properties:
- Example 111 In an open enamel lined reaction vessel, 1260 parts by weight ofcocoamine and 255 parts by weight of a 37 per cent by weight aqueous formaldehyde solution were reacted for about 60 minutes, while maintaining a temperature below about 160 F. The temperature was then raised to 300 F. in order to remove the water which was formed and which was added with the formaldehyde. The mixture was subsequently cooled to 180 F. and 444 parts by weight of phthalic anhydride were added. The reaction was allowed to proceed for half an hour at 200: F. The product obtained had the following properties:
- amidic acid formed in this example had the following formula:
- Example IV In an enamel lined reaction vessel, 1260 parts by weight of cocoamine and 255 parts by weight of a 37 per cent by weight aqueous formaldehyde solution were reacted for about 60 minutes, while maintaining a temperature below about 160 F. The temperature was then raised to 300 F. in order to remove the water of reaction and that in which the formaldehyde had been dissolved. The mixture was subsequently cooled to 180 F. and .294 parts by weight of maleic anhydride were added. The temperature was held at 160200 F. until completion of the reaction, i. e., about 90 minutes. The product had the following properties:
- amidic acid formed in this example had the formula:
- R represents the coco radical or residue of the .cocoamme.
- Example V Into an-enamel lined reaction vessel, 4 mols of dicyclohexylamine and 4 mols of a 37 per cent aqueous solution of formaldehyde were introduced. The mixture was-re- 5 Flas Characteristics Clear colored, low-meltingsolid of fat-like consistency. Molecular weight 551.
- R represents the coco radical or residue of the cocoamine.
- any of the primary amines .ormixtures of primary and secondary amines described also can be utilizedto form the methylene .diamines according to the procedure described in Examples I-V, inclusive.
- any of the previously described class of acid anhydrides can be substituted in the above examples with satisfactory results.
- amidic acids and salts of this invention are useful 1n many arts, particularly thosewhere corrosion and rust inhibiting properties are desired. Their solubility in .oil permits their use in lubricating oils where'it is desirable to inhibit rust and corrosion. Moreover, these compounds produce excellent results when used in lubricating oils which encounter severe operating conditions. The eilectiveness of our new compounds as mineral oil additives is clearly illustrated vby the following examples.
- Example Vlll An improved diesel fuel was prepared by treating a diesel fuel (light) with the additive prepared in accordance with Example I above in the ratio of 100 pounds of the additive per 1000 barrels of fuel.
- the properties of the untreated and treated diesel fuel appear below:
- Example IX An improved turbine lubricating oil was prepared by treating a turbine lubricating oil base with 0.1 per cent by weight of the addition agent prepared according to Example IV above.
- the properties of the unimproved turbine oil and the improved turbine oil were as follows:
- Example XI An improved turbine lubrication oil was prepared by treating a turbine lubricating oil base with 0.1 per cent by weight of the addition agent prepared according to Example III above.
- the properties of the unimproved turbine and the improved turbine oil were as follows:
- the described amidic acids and salts thereof can be used in a large number of compositions to improve the rust and corrosion inhibiting properties thereof.
- the described additives can be employed in conjunction with gasoline, furnace oil, slushing oil and other oils.
- the described amidic acids and salts thereof can also be incorporated in mineral oil products such as light naphtha, which are not employed as either a fuel or a lubricant.
- our compositions find use in the coating art, whereby a metallic article subject to corrosion is brushed, dipped or sprayed with the composition comprising the solvent vehicle and the additive. Subsequent evaporation of the solvent leaves an adherent corrosion resistant coating of the additive on the metallic article.
- the improved mineral oil compositions of this invention can be additionally improved by incorporation therein of other known additives in order to confer other desirable properties such as increased resistance to oxidation, increased stability, etc. thereon.
- other known additives such as increased resistance to oxidation, increased stability, etc. thereon.
- a mineral oil composition comprising a maior amount of a mineral oil and a minor, corrosion inhibiting amount of an agent having the formula:
- R1 and R2 represent radicals selected from the group consisting of acyclic aliphatic radicals having at least eight carbon atoms, cycloalkyl, aryl, alkaryl, and aralkyl radicals
- R3 is selected from the group consisting of hydrogen and a radical of the same kind as R1 and R2
- Z is selected from the group consisting of hydrogen and a salt-forming radical
- n is an integer equal to the valence of Z.
- composition of claim 1 where is the acyl residue of maleic acid.
- a mineral oil composltion comprising a ma or amount of a mineral oil and a minor, corrosion inhibiting amount of an amidic acid having the formula:
- R is lauryl
- composition of claim 9 where the amidic acid is present in the amount of from about 0.01 per cent to about 1.0 per cent by weight of the composition.
- a mineral oil composition containing a major amount of a mineral oil and a minor, corrosion inhibiting amount of an amidic acid having the formula:
- a mineral oil composition comprising a major amount of mineral oil and a minor, corrosion inhibiting amount of an amidic acid having the formula:
- R is lauryl
- composition of claim 13 where the amidic acid is present in the amount of from about 0.01 per cent to about 1.0 per cent by weight of the composition.
- a mineral oil composition comprising a major amount of a mineral oil and a minor, corrosion inhibiting amount of a salt of an amidic acid having the formula:
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Lubricants (AREA)
Description
United States Patent MINERAL OIL COMPOSITIONS CONTAINING AlVIlDIC ACIDS OR SALTS THEREOF Herschel G. Smith, Wallingford, and Troy L. Cantrell, Drexel Hill, Pa., and John G. Peters, Audubon, N. J., assignors to Gulf Oil Corporation, Pittsburgh, Pa., a corporation of Pennsylvania No Drawing. Application October 2, 1952, Serial No. 312,844
16 Claims. (Cl. 25233.6)
This invention relates to mineral oil compositions and particularly to improved mineral oil compositions which comprise a major amount of a mineral oil and a minor amount of an improvement agent sufiicient to confer thereupon useful and advantageous properties, such as rust or corrosion prevention and other desirable properties.
With the advancing refinement of various devices in which mineral oils of the fuel and lubricant type are employed, increasingly severe demands have been made of the particular fuels or lubricants used therein. As is well known in the art, the straight or uncompounded" mineral oils are often deficient in one or more respects for the particular use to which they are put. For example, a high resistance to rust or corrosion is important in the case of fuels or lubricants which are required to function in the presenceof water. Fuels or lubricants for internal combustion engines and for gas or steam turbines and lubricants for various bearing members which are subjected to moisture are examples of mineral oil products which may operate under conditions highly conducive to rusting or corrosion.
Faflure to provide sufficient resistance to rust or corrosion by the mineral oil may result in extensive wear or damage tov costly, highly machined moving parts. To overcome this and other deficiencies various agents known as addition agents, additives, or improvement agents are commonly incorporated into the particular mineral oil to be used.
An object of this invention is the provision of mineral oil compositions having improved rust and corrosion inhibiting properties as well as other desirable characteristics. Other objects appear hereinafter.
These and additional objects are accomplished by the present invention which includes new mineral oil compositions containing a major amount of a mineral oil and a minor, corrosion inhibiting amount of an agent having the formula R1 R2 -N-CHr-N-Ri x z o-o-- (l where CifiG embodiments of the invention and matters ancillary thereto have been described. It is understood that these are by way of illustration only and are not to be considered as limiting.
The various mineral oils in which the novel improvement agents may be incorporated include both the fuel and lubricant type. Examples of fuel type mineral oils are gasoline, kerosene, diesel fuel, and furnace oil. Examples of lubricant type mineral oils are engine oils, turbine oils, and greases. The invention also includes mineral oil compositions where the mineral oil constituent is not employed as a fuel or lubricant but merely as a solvent vehicle. Exemplary of this type of composition are light naphtha or like mineral oil solvents containing the novel additives of this invention.
The improved mineral oil compositions of the invention are conveniently prepared by simply dissolving a minor proportion, sufiicient to confer corrosion-inhibiting properties on the composition, of the desired oil soluble improvement agent in the particular mineral oil to be used. Elevated temperatures may be employed to assist in dissolving the additive. Alternatively, the compounding of our mineral oil compositions may involve preparation of the additive in a mineral oil solvent to provide a concentrate of the additive. This concentrate may be dissolved subsequently in the particular mineral oil to be used. The latter method is preferred in view of the relative ease in obtaining a solution.
The novel additives of this invention, the chemical nature of which has been indicated above, may be conveniently designated as amidic acids or the substantially neutral salts thereof.
The preparation of these additives has been described fully in copending application Serial No. 312,843, filed in the names of Smith, Cantrell and Peters on October 2, 1952. For the sake of clarity, certain preferred methods of preparation have been set forth briefly below.
The preparation of the amidic acids of this invention involves the partial amidation at conventional conditions of a cyclic dicarboxylic acid anhydride with an N,N'-
substituted methylene diamine having the formula r r N-C Ha-N-Ra standpoint of color, purity, and oil-solubility.
Any cyclic dicarboxylic acid anhydride is suitable for the purposes of this invention. These substances, as known in the art, are capable of reacting with primary or secondary amines to form amides.
Cyclic acid anhydrides of aliphatic dicarboxylic acids are formed from acids having two carboxyl groups attached to adjacent carbon atoms or to carbon atoms separated by a third carbon atom. Examples of such acids are maleic, succinic, and glutaric acids. Alkyl substitution products of these acids, such as isopropyl succinic acid (pimelic acid) behave similarly as the unsubstituted acids. Aromatic dicarboxylic acid anhydrides such as O-phthalic acid anhydride are also suitable for the purposes of the invention.
The conditions of amidation may vary somewhat according to the particular starting materials. The reaction takes place satisfactorily at temperatures of about 200 F. Somewhat higher or lower temperatures may be used with no undesirable results. The reaction is normally complete in from about 60 to about 120 minutes, depending largely on the temperature employed.
The amidation reaction may be conducted simply by mixing equimolar proportions of the acid or anhydride and the N,N'-substituted methylene diamine and heating,
' or alternatively, by first dissolving the reactants in a solvent (preferably a mineral oil solvent) and conducting the reaction in solution. The amidic acid product may be recovered in the form of a solution, or alternatively,
the solvent may be removed by evaporation to provide gthe-amidic acid per se.
When a metal salt of the amidic acid is the desired final product, the amidic acid need not be prepared se arately, but the methylene diamine, the dicarboxylic acid anhydride and a suitable metal hydroxide can all be reacted simultaneously. Thus, the alkali metal hydroxides and the alkaline earth metal hydroxidescan be'added 1 directly to the reacting mass in the form of an aqueous solution or slurry. In the case of certain diflicultly reacting metal hydroxides, the alkali metal salt of the Illustrative of metals which give desirable amidic acid salts according to this invention are sodium, lithium, potassium, barium, calcium, magnesium, strontium, lead, copper, iron, nickel, mercury, zinc, bismuth, aluminum, chromium, tin, manganese,.silver and cadmium.
Amine or ammonium salts of the novel amidic acids are also included in the invention. These can be prepared, for example, by simple reaction of the amidic acid with an appropriate nitrogen base,'such as a primary, secondary or tertiary amine,. or ammonium hydroxide. The neutralization reaction occurs easily at room temperature or moderately elevated temperature.
The particular N,N'-substituted methylene diamines employed in the amidation reaction described above are prepared conveniently by condensation of a suitable primary amine or mixture of primary and secondary amines with formaldehyde in the proportion of 2 mols of amine to 1 mol of formaldehyde. Where a mixture of primary and secondary amines is employed, at least one-half of the mixture on a molar basis should be primary amines.
As will be evident from the generic formula for the methylene diamine set forth above, thesubstituents of the primary and secondary amines employed in the condensation reaction may vary widely. Thus, primary or secondary amines having alkyl, alkenyl, cycloalkyl, aryl, alkaryl, and aralkyl substituents are suitable. Illustrative of primary, acyclic, aliphatic amines suitable for condensation with formaldehyde to form N,N'-substituents methylene diamines are alkyl amines having at least 8 carbon atoms, and preferably from 8 to 26 carbon atoms, such as octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, octadecyl and eicosyl. The corresponding alkenyl amines such as octenyl, nonenyl, undecenyl, tetradecenyl, octadecenyl (oleyl) and eicosenyl amines are also suitable. The primary alkyl or alkenyl amines having more than 26 carbon atoms, such as wax amines, are also suitable. Examples of suitable primary cycloalkyl amines include cyclopentyl, cyclohexyl, cycloheptyl amines and the like. Aniline, alphanaphthylamine and beta naphthylamine are illustrative of suitable aryl amines, just as the toluidines and xylidines are illustrative of suitable alkaryl amines. Satisfactory aralkyl amines are exemplified by benzylamine, betaphenylethylamine and the like.
Secondary amines corresponding to all these classes of amines also produce advantageous compounds and include not only amines containing substituents from "the' same class such as diphenylamine, phenyl alphanaphthylamine and dicyclohexvlamine, but also amines containing substituents from different classes such'as octyl-phenyl amine and the like. N;lT-oleyl propanol amine and N,N-dodecyl' ethanol amme.
In the class of primary alkyl amines the use of commercial mixtures of fatty amines ispreferred. One commercially available mixture of amines is the so.-called cocoamine which is prepared by converting the mixed acids of coconut oil to the corresponding amines by well known methods. average molecular weight of 200-210 and contains pre- Other suitable secondary amines are The commercial cocoaminehas an.
of 400 F. are undesirable, since they may result in the formation-of color-forming bodies andinsome decomposition of products.
Thus, the novel additives of this invention are preferably prepared by condensation of the desired primary amines or mixtures of primary or secondary amines with formaldehyde in the proportion of 2 mols of amine to 1 mol offormaldehyde ata temperature of about'160"-- F., followed by dehydration of the product at-a temperature of between about 260 F. and 400 F. To the dehydrated product is added a dicarboxylic. acid anhydridevin an" amount sufiicie'nt to provide equimolar' proportions of acid 'anhydride-and the methylenediaminex Heat of'a degree sufficient to effect the amidation is employed. Normally, a temperature of about 200 F. is satisfactory. The salts' of the amidic acid may be prepared by subsequent, or in many instances, simultaneous neutralization of the amidic acid with a suitable basic material.
The resulting product either alone or in the form of a'solutionconcentrate may .thenbe incorporated in the desired mineral oil in a minor proportion, sufficient to confercorrosion inhibiting propertiesand other desirable Normally from about 0.01 l per cent to about 1.0 per cent of the additive by weight of" properties upon the latter.
the compositionis sufiicient for this purpose.
The following illustrative examples will serve to illus-- trate more clearly the preparation of the novel amidic acids and salts thereof included in this invention, as well as the desirable results obtained by their use in various mineral oils.
Example '1 Four mols of cocoamine. were introduced into a reac- 4 droxide were then dispersed in an equal weight of lubricating oil. Two mols of phthalic anhydride, the acid anhydride of O-phthalic acid, were then added and the temperature held at 200 F. for two hours. The temperature was. subsequently raised to 270' F. to dry the product and the-product was filtered. The mineral oil solution of the product formed by this process had the following properties:
dominantly lauryl amine together with lesser proportions 1 of various homologues thereof. By coco radical as used herein is meant the mixture of coconut oil fatty acid alkyl groups present as N-substituents in commercial cocoamine.
The condensation of the amines described above with Temperatures -materially in "excess Sp. gr., 60/60 F 0.8969 Viscosity, SUV, F'. 279 Color, NPA 1.75 Neutralization No 1.74 Ash, per cent 1.6 0 pH value; 9.9
The salt formed in this example had the following formula:
where R represents the coco radical or residuew-of the cocoamine.
The salt formed as described above except using a volatile solvent instead of alubricating oil solvent, exhillaited the following characteristics after removal of so vent.
Characteristics -Q Clear solid.
Molecular weight 1200.
Ash, per cent by weight 4.66.
Example II The salt described in'Example I was also-formed by" metathesis. According to this method, 4 mols of coco-1 amine were introduced into a reaction vessel, and-2 mols of formaldehyde in a 37 per cent by weight aqueous solution were slowly added with constant stirring, while maintalning'the temperature below F. When the reactlon was completed, after about 60 minutes, the temperature was raised to 350"" F. to remove all water, both. that'added with'the formaldehyde and that formed with the reaction. The methylenezdiamine product so formed was dispersed in an equal weight of lubricating oil and 2 mols'of a 40 per cent aqueous solution of sodium hydroxidewere added. Two mols of phthalic anhydride were added and the temperature held at 200 F. for two hours. Then 1 mol of an aqueous solution of calcium chloride was added continuing agitation for two hours. The temperature was subsequently raised to 270 F. to dry, and the product was filtered to remove the salts and extraneous material. The mineral oil solution of the product formed by this process had the following properties:
Sp. gr., 60/60 F 0.8969 Viscosity, SUV, 100 F 279 Color, NPA 1.75 Neutralization No. 1.74 Ash, per cent 1.6 pH value 9.9
Example 111 In an open enamel lined reaction vessel, 1260 parts by weight ofcocoamine and 255 parts by weight of a 37 per cent by weight aqueous formaldehyde solution were reacted for about 60 minutes, while maintaining a temperature below about 160 F. The temperature was then raised to 300 F. in order to remove the water which was formed and which was added with the formaldehyde. The mixture was subsequently cooled to 180 F. and 444 parts by weight of phthalic anhydride were added. The reaction was allowed to proceed for half an hour at 200: F. The product obtained had the following properties:
The amidic acid formed in this example had the following formula:
CH ll where R represents the coco radical or residue of the cocoamine.
Example IV .In an enamel lined reaction vessel, 1260 parts by weight of cocoamine and 255 parts by weight of a 37 per cent by weight aqueous formaldehyde solution were reacted for about 60 minutes, while maintaining a temperature below about 160 F. The temperature was then raised to 300 F. in order to remove the water of reaction and that in which the formaldehyde had been dissolved. The mixture was subsequently cooled to 180 F. and .294 parts by weight of maleic anhydride were added. The temperature was held at 160200 F. until completion of the reaction, i. e., about 90 minutes. The product had the following properties:
Characteristics Dark-colored liquid. Molecular weight 530.
Neutralization No 105.8.
Gravity, API 20.9.
Viscosity, SUV, 210 F 80.2.
Color, NPA 3.0.
The amidic acid formed in this example had the formula:
Where R represents the coco radical or residue of the .cocoamme.
Example V Into an-enamel lined reaction vessel, 4 mols of dicyclohexylamine and 4 mols of a 37 per cent aqueous solution of formaldehyde were introduced. The mixture was-re- 5 Flas Characteristics Clear colored, low-meltingsolid of fat-like consistency. Molecular weight 551.
Neutralization No 101.7. Gravity, API 15.8. Color, NPA 7.5.
The amidic acid formed in this example hadqthe formula:
where R represents the coco radical or residue of the cocoamine.
As will be obvious to one skilled in the art, any of the primary amines .ormixtures of primary and secondary amines described also can be utilizedto form the methylene .diamines according to the procedure described in Examples I-V, inclusive. Also, any of the previously described class of acid anhydrides can be substituted in the above examples with satisfactory results.
The amidic acids and salts of this invention are useful 1n many arts, particularly thosewhere corrosion and rust inhibiting properties are desired. Their solubility in .oil permits their use in lubricating oils where'it is desirable to inhibit rust and corrosion. Moreover, these compounds produce excellent results when used in lubricating oils which encounter severe operating conditions. The eilectiveness of our new compounds as mineral oil additives is clearly illustrated vby the following examples.
Example V] Treated Untreated Oil Oil Gravity, API visclosityfi SUV:
210 F Viscosity Lndex.
r, NPA Carbon Residue, percent. Precipitation N 0 ur, B, percent Copper Strip Test, 212 F 3 Corrosion Test, ASTM D 66547 T, Distilled Example VII An improved cup grease was prepared by treating a conventional cup grease with 0.3 per centby weight of the product prepared according to Example 1 above. The properties of the untreated cup grease and the cup grease improved with the additive of this invention are illustrated below:
Untreated Grease Treated Grease Sp. Gr., 60l60 F Melting Point, F., I-Iawxhurst Dropping Point, F., ASTM D 566-42" Flfl/GPfint, F., Navy Dept. Specifi Corrosion Test, Method 423, Gulf, cc. Syn.
Sea Water, 140 F., 12 Days, Steel Strip, Appearance.
Example Vlll An improved diesel fuel was prepared by treating a diesel fuel (light) with the additive prepared in accordance with Example I above in the ratio of 100 pounds of the additive per 1000 barrels of fuel. The properties of the untreated and treated diesel fuel appear below:
Untreated Treated Diesel Diesel Fuel Fuel (Light) (Light) Gravity, API 42.6.- 42.5. Viscosity, SUV, 100 F, 31.6. Flash, P-M, F 146. Clou F 40. Pour, F 45. Color, Saybolt. +19. Doctor good. Odor normal. Sulfur, L, Percent Water A: Sediment, Percent Copper Strip Test, 122 F., 3 Hr Corrosion Test, Method 412, Gull 4 cc. Water,
36 cc./Oil, 12 Days:
Steel Strip, Appearance rusted-.." bright. Area Rusted, Percent 100 0.
Example IX An improved turbine lubricating oil was prepared by treating a turbine lubricating oil base with 0.1 per cent by weight of the addition agent prepared according to Example IV above. The properties of the unimproved turbine oil and the improved turbine oil were as follows:
Unimproved Improved Oil Oil Gravity, API Viscosity, SUV:
Vi m ity Index Corrosion Test, ASTM D 665-47 T, Distilled Water:
Steel Rod, App r n ruste bright. Area Rusted, Percent 100 0. Neutralization N o 0.02- 0.03.
Example X Unimproved Improved Oil Oil Gravity, API 31.7 31.3. visclosigy, SUV:
Viscosity Index Color, NPA Corrosion Test, ASTM D 665-47 T, Distilled Water:
Steel Rod, Appearance rusted bright. Area Rusted, Percent.. 100 0.
Example XI An improved turbine lubrication oil was prepared by treating a turbine lubricating oil base with 0.1 per cent by weight of the addition agent prepared according to Example III above. The properties of the unimproved turbine and the improved turbine oil were as follows:
Unimproved Improved Oil Oil Gravity: API..- 31.7-. 31.7. Viscosity, SUV:
210 F 43.8" 43.8. Viscosity Index. 110. Color, NPA 1.25-- 1.25. Corrosion Test, ASIM D 665-47 '1, Distilled Water:
Steel Rod, Appearance rusted bright.
Area Rusted, Percent 100 0. Neutralization N n 0.02. 0.04.
A description of the procedure to be followed in Gulf Corrosion Test, Method 412, mentioned in Example VIII above, is found in U. S. Patent No. 2,378,442, to Smith et al., at page 4, column 1, lines 35 to 53, inclusive. A description of Gulf Corrosion Test, Method 423, mentioned in Example VII above, is presented in our 8above-identified copending application Serial No. 312, 3.
From the foregoing it is evident that the described amidic acids and salts thereof can be used in a large number of compositions to improve the rust and corrosion inhibiting properties thereof. Thus, in addition to mineral lubricating oils, greases and diesel fuels, the described additives can be employed in conjunction with gasoline, furnace oil, slushing oil and other oils. As has been indicated, the described amidic acids and salts thereof can also be incorporated in mineral oil products such as light naphtha, which are not employed as either a fuel or a lubricant. In such instances our compositions find use in the coating art, whereby a metallic article subject to corrosion is brushed, dipped or sprayed with the composition comprising the solvent vehicle and the additive. Subsequent evaporation of the solvent leaves an adherent corrosion resistant coating of the additive on the metallic article.
It is to be understood that the improved mineral oil compositions of this invention can be additionally improved by incorporation therein of other known additives in order to confer other desirable properties such as increased resistance to oxidation, increased stability, etc. thereon. Thus, there can be added viscosity index improvers, thickeners, bearing corrosion inhibitors, antioxidants, dyes, etc.
Resort may be had to such modifications and variations as fall within the spirit of the invention and the scope of the claims appended hereto.
What we claim is:
1. A mineral oil composition comprising a maior amount of a mineral oil and a minor, corrosion inhibiting amount of an agent having the formula:
where represents the acyl residue of a dicarboxylic acid capable of forming a cyclic acid anhydride, R1 and R2 represent radicals selected from the group consisting of acyclic aliphatic radicals having at least eight carbon atoms, cycloalkyl, aryl, alkaryl, and aralkyl radicals, R3 is selected from the group consisting of hydrogen and a radical of the same kind as R1 and R2, Z is selected from the group consisting of hydrogen and a salt-forming radical, and n is an integer equal to the valence of Z.
is the acyl residue of phthalic acid.
8. The composition of claim 1 where is the acyl residue of maleic acid.
9. A mineral oil composltion comprising a ma or amount of a mineral oil and a minor, corrosion inhibiting amount of an amidic acid having the formula:
where R is lauryl.
10. The composition of claim 9, where the amidic acid is present in the amount of from about 0.01 per cent to about 1.0 per cent by weight of the composition.
11. A mineral oil composition containing a major amount of a mineral oil and a minor, corrosion inhibiting amount of an amidic acid having the formula:
o-orr where R is lauryl.
12. The composition of claim 11, where the amidic acid is present in the amount of from about 0.01 per cent to about 1.0 per cent by weight of the composition.
13. A mineral oil composition comprising a major amount of mineral oil and a minor, corrosion inhibiting amount of an amidic acid having the formula:
where R is lauryl.
14. The composition of claim 13 where the amidic acid is present in the amount of from about 0.01 per cent to about 1.0 per cent by weight of the composition.
15. A mineral oil composition comprising a major amount of a mineral oil and a minor, corrosion inhibiting amount of a salt of an amidic acid having the formula:
0 0 g C "a n where R is lauryl.
16. The composition of claim 15 where the salt is present in the amount of from about 0.01 per cent to about 1.0 per cent by weight of the composition.
References Cited in the file of this patent UNITED STATES PATENTS 2,191,738 Balle Feb. 27, 1940 2,349,817 Farrington et a1 May 30, 1944 2,408,103 Smith et al Sept. 24, 1946
Claims (1)
1. A MINERAL OIL COMPOSITION COMPRISING A MAJOR AMOUNT OF A MINERAL OIL AMD A MINOR, CORROSION INHIBITING AMOUNT OF AN AGENT HAVING THE FORMULA:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US312844A US2699427A (en) | 1952-10-02 | 1952-10-02 | Mineral oil compositions containing amidic acids or salts thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US312844A US2699427A (en) | 1952-10-02 | 1952-10-02 | Mineral oil compositions containing amidic acids or salts thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US2699427A true US2699427A (en) | 1955-01-11 |
Family
ID=23213263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US312844A Expired - Lifetime US2699427A (en) | 1952-10-02 | 1952-10-02 | Mineral oil compositions containing amidic acids or salts thereof |
Country Status (1)
Country | Link |
---|---|
US (1) | US2699427A (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2742498A (en) * | 1952-10-02 | 1956-04-17 | Gulf Oil Corp | Amidic acids |
US2820012A (en) * | 1954-12-14 | 1958-01-14 | California Research Corp | High temperature phthalamate grease compositions |
US2841555A (en) * | 1956-03-02 | 1958-07-01 | Texas Co | Metal nu-acyl sarcosinate thickened lubricating oils |
US2915464A (en) * | 1957-09-03 | 1959-12-01 | Gulf Oil Corp | Compounded lubricant compositions and composite addition agents therefor |
US2977309A (en) * | 1955-04-21 | 1961-03-28 | Monsanto Chemicals | Lubricating oil containing branched chain alkyl amine derivatives of dicarboxylic acids |
US2982629A (en) * | 1958-01-07 | 1961-05-02 | Socony Mobil Oil Co | Inhibition of carburetor icing |
US3003858A (en) * | 1958-01-07 | 1961-10-10 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US3017257A (en) * | 1957-09-06 | 1962-01-16 | Sinclair Refining Co | Anti-corrosive mineral oil compositions |
US3031282A (en) * | 1958-01-07 | 1962-04-24 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US3035907A (en) * | 1956-06-14 | 1962-05-22 | Gulf Research Development Co | Hydrocarbon composition containing an itaconic acid-amine reaction product |
US3039860A (en) * | 1959-06-18 | 1962-06-19 | Socony Mobil Oil Co Inc | N-substituted-alkenylsuccinimides in distillate fuels |
US3046102A (en) * | 1958-10-06 | 1962-07-24 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US3095286A (en) * | 1958-05-07 | 1963-06-25 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US3146079A (en) * | 1960-09-13 | 1964-08-25 | Standard Oil Co | Fuel oil composition |
US3192022A (en) * | 1961-09-08 | 1965-06-29 | Socony Mobil Oil Co Inc | Distillate fuels |
US3192160A (en) * | 1962-06-01 | 1965-06-29 | Socony Mobil Oil Co Inc | Mineral oil compositions containing metal salts of citramic acids |
US3235495A (en) * | 1962-03-12 | 1966-02-15 | Socony Mobil Oil Co Inc | Stabilized fluid silicones |
US3247110A (en) * | 1963-05-16 | 1966-04-19 | Socony Mobil Oil Co Inc | Fuel oil and lubricating oil compositions containing metal salts of the mono-amidesof tetrapropenyl succinic acid |
US3249540A (en) * | 1964-01-20 | 1966-05-03 | Socony Mobil Oil Co Inc | Stabilized mineral oil compositions |
US3249541A (en) * | 1963-12-23 | 1966-05-03 | Socony Mobil Oil Co Inc | Stabilized mineral oil compositions |
US3262955A (en) * | 1962-06-01 | 1966-07-26 | Socony Mobil Oil Co Inc | Metal salts of citramic acids |
US3264075A (en) * | 1962-07-06 | 1966-08-02 | Mobil Oil Corp | Metal salts of succinamic acids in distillate fuel oil |
US3280033A (en) * | 1962-08-30 | 1966-10-18 | Exxon Research Engineering Co | Alkenyl succinamic acids as rust inhibitors and dispersants |
US3296130A (en) * | 1965-11-29 | 1967-01-03 | Mobil Oil Corp | Organic compositions |
US3387953A (en) * | 1966-05-05 | 1968-06-11 | Exxon Research Engineering Co | Rust-inhibited hydrocarbon fuels |
US3396106A (en) * | 1966-01-10 | 1968-08-06 | Mobil Oil Corp | Lubricants and liquid hydrocarbon fuels containing synergistic mixtures of substituted tetrahydropyrimidines and amine salts of succinamic acids |
US3522022A (en) * | 1966-10-07 | 1970-07-28 | Hoechst Ag | Corrosion inhibited fuel oils |
US4157336A (en) * | 1977-01-10 | 1979-06-05 | Jordan Robert K | Carboxylate transmetallation-esterification process |
EP0002780A1 (en) * | 1977-12-24 | 1979-07-11 | BASF Aktiengesellschaft | Use of corrosion inhibitors in aqueous systems |
FR2427400A1 (en) * | 1978-06-02 | 1979-12-28 | Snam Progetti | ANTI-RUST AGENT FOR AQUEOUS SYSTEMS AND LUBRICATING COMPOSITIONS PREVENT RUST |
US4299979A (en) * | 1979-06-21 | 1981-11-10 | Desoto, Inc. | Polymerizable monoethylenic carboxylic acids which decarboxylate on heating |
US4505718A (en) * | 1981-01-22 | 1985-03-19 | The Lubrizol Corporation | Organo transition metal salt/ashless detergent-dispersant combinations |
US4552677A (en) * | 1984-01-16 | 1985-11-12 | The Lubrizol Corporation | Copper salts of succinic anhydride derivatives |
US4637886A (en) * | 1982-12-27 | 1987-01-20 | Exxon Research & Engineering Co. | Macrocyclic polyamine and polycyclic polyamine multifunctional lubricating oil additives |
EP0301448A1 (en) * | 1987-07-30 | 1989-02-01 | BASF Aktiengesellschaft | Fuels for an internal combustion engine |
US4867890A (en) * | 1979-08-13 | 1989-09-19 | Terence Colclough | Lubricating oil compositions containing ashless dispersant, zinc dihydrocarbyldithiophosphate, metal detergent and a copper compound |
US4997455A (en) * | 1988-11-03 | 1991-03-05 | Texaco Inc. | Diesel fuel injector cleaning additive |
US5043083A (en) * | 1988-06-16 | 1991-08-27 | Exxon Chemical Patents, Inc. | Method for preparing salts of polyolefinic substituted dicarboxylic acids in oleaginous mixtures of reduced viscosity |
EP0555006A1 (en) * | 1992-02-07 | 1993-08-11 | Slovnaft A.S. | Derivatives of dicarboxylic acids as additives in unleaded automobile gasolines |
US5578091A (en) * | 1990-04-19 | 1996-11-26 | Exxon Chemical Patents Inc. | Chemical compositions and their use as fuel additives |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2191738A (en) * | 1934-09-01 | 1940-02-27 | Ig Farbenindustrie Ag | High-molecular polycarboxylic acid amides and their production |
US2349817A (en) * | 1940-03-08 | 1944-05-30 | Standard Oil Co | Polycarboxylic acid salts in lube oil compounding |
US2408103A (en) * | 1945-03-19 | 1946-09-24 | Gulf Oil Corp | Mineral oil composition |
-
1952
- 1952-10-02 US US312844A patent/US2699427A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2191738A (en) * | 1934-09-01 | 1940-02-27 | Ig Farbenindustrie Ag | High-molecular polycarboxylic acid amides and their production |
US2349817A (en) * | 1940-03-08 | 1944-05-30 | Standard Oil Co | Polycarboxylic acid salts in lube oil compounding |
US2408103A (en) * | 1945-03-19 | 1946-09-24 | Gulf Oil Corp | Mineral oil composition |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2742498A (en) * | 1952-10-02 | 1956-04-17 | Gulf Oil Corp | Amidic acids |
US2820012A (en) * | 1954-12-14 | 1958-01-14 | California Research Corp | High temperature phthalamate grease compositions |
US2977309A (en) * | 1955-04-21 | 1961-03-28 | Monsanto Chemicals | Lubricating oil containing branched chain alkyl amine derivatives of dicarboxylic acids |
US2841555A (en) * | 1956-03-02 | 1958-07-01 | Texas Co | Metal nu-acyl sarcosinate thickened lubricating oils |
US3035907A (en) * | 1956-06-14 | 1962-05-22 | Gulf Research Development Co | Hydrocarbon composition containing an itaconic acid-amine reaction product |
US2915464A (en) * | 1957-09-03 | 1959-12-01 | Gulf Oil Corp | Compounded lubricant compositions and composite addition agents therefor |
US3017257A (en) * | 1957-09-06 | 1962-01-16 | Sinclair Refining Co | Anti-corrosive mineral oil compositions |
US3031282A (en) * | 1958-01-07 | 1962-04-24 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US3003858A (en) * | 1958-01-07 | 1961-10-10 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US2982629A (en) * | 1958-01-07 | 1961-05-02 | Socony Mobil Oil Co | Inhibition of carburetor icing |
US3095286A (en) * | 1958-05-07 | 1963-06-25 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US3046102A (en) * | 1958-10-06 | 1962-07-24 | Socony Mobil Oil Co Inc | Stabilized distillate fuel oil |
US3039860A (en) * | 1959-06-18 | 1962-06-19 | Socony Mobil Oil Co Inc | N-substituted-alkenylsuccinimides in distillate fuels |
US3146079A (en) * | 1960-09-13 | 1964-08-25 | Standard Oil Co | Fuel oil composition |
US3192022A (en) * | 1961-09-08 | 1965-06-29 | Socony Mobil Oil Co Inc | Distillate fuels |
US3235495A (en) * | 1962-03-12 | 1966-02-15 | Socony Mobil Oil Co Inc | Stabilized fluid silicones |
US3262955A (en) * | 1962-06-01 | 1966-07-26 | Socony Mobil Oil Co Inc | Metal salts of citramic acids |
US3192160A (en) * | 1962-06-01 | 1965-06-29 | Socony Mobil Oil Co Inc | Mineral oil compositions containing metal salts of citramic acids |
US3264075A (en) * | 1962-07-06 | 1966-08-02 | Mobil Oil Corp | Metal salts of succinamic acids in distillate fuel oil |
US3280033A (en) * | 1962-08-30 | 1966-10-18 | Exxon Research Engineering Co | Alkenyl succinamic acids as rust inhibitors and dispersants |
US3247110A (en) * | 1963-05-16 | 1966-04-19 | Socony Mobil Oil Co Inc | Fuel oil and lubricating oil compositions containing metal salts of the mono-amidesof tetrapropenyl succinic acid |
DE1284010B (en) * | 1963-12-23 | 1968-11-28 | Mobil Oil Corp | Inhibitor against rust, sludge and emulsion formation in distallate fuel oils |
US3249541A (en) * | 1963-12-23 | 1966-05-03 | Socony Mobil Oil Co Inc | Stabilized mineral oil compositions |
US3249540A (en) * | 1964-01-20 | 1966-05-03 | Socony Mobil Oil Co Inc | Stabilized mineral oil compositions |
US3296130A (en) * | 1965-11-29 | 1967-01-03 | Mobil Oil Corp | Organic compositions |
US3396106A (en) * | 1966-01-10 | 1968-08-06 | Mobil Oil Corp | Lubricants and liquid hydrocarbon fuels containing synergistic mixtures of substituted tetrahydropyrimidines and amine salts of succinamic acids |
US3387953A (en) * | 1966-05-05 | 1968-06-11 | Exxon Research Engineering Co | Rust-inhibited hydrocarbon fuels |
US3522022A (en) * | 1966-10-07 | 1970-07-28 | Hoechst Ag | Corrosion inhibited fuel oils |
US4157336A (en) * | 1977-01-10 | 1979-06-05 | Jordan Robert K | Carboxylate transmetallation-esterification process |
EP0002780A1 (en) * | 1977-12-24 | 1979-07-11 | BASF Aktiengesellschaft | Use of corrosion inhibitors in aqueous systems |
FR2427400A1 (en) * | 1978-06-02 | 1979-12-28 | Snam Progetti | ANTI-RUST AGENT FOR AQUEOUS SYSTEMS AND LUBRICATING COMPOSITIONS PREVENT RUST |
US4273664A (en) * | 1978-06-02 | 1981-06-16 | Snamprogetti S.P.A. | Rust-preventing agent for aqueous systems and rust-inhibiting lubricating compositions |
US4388199A (en) * | 1978-06-02 | 1983-06-14 | Snamprogetti S.P.A. | Aqueous rust-inhibiting and lubricating compositions |
US4299979A (en) * | 1979-06-21 | 1981-11-10 | Desoto, Inc. | Polymerizable monoethylenic carboxylic acids which decarboxylate on heating |
US4867890A (en) * | 1979-08-13 | 1989-09-19 | Terence Colclough | Lubricating oil compositions containing ashless dispersant, zinc dihydrocarbyldithiophosphate, metal detergent and a copper compound |
US4505718A (en) * | 1981-01-22 | 1985-03-19 | The Lubrizol Corporation | Organo transition metal salt/ashless detergent-dispersant combinations |
US4637886A (en) * | 1982-12-27 | 1987-01-20 | Exxon Research & Engineering Co. | Macrocyclic polyamine and polycyclic polyamine multifunctional lubricating oil additives |
US4552677A (en) * | 1984-01-16 | 1985-11-12 | The Lubrizol Corporation | Copper salts of succinic anhydride derivatives |
EP0301448A1 (en) * | 1987-07-30 | 1989-02-01 | BASF Aktiengesellschaft | Fuels for an internal combustion engine |
US4871375A (en) * | 1987-07-30 | 1989-10-03 | Basf Aktiensellschaft | Fuels for Otto engines |
US5043083A (en) * | 1988-06-16 | 1991-08-27 | Exxon Chemical Patents, Inc. | Method for preparing salts of polyolefinic substituted dicarboxylic acids in oleaginous mixtures of reduced viscosity |
US4997455A (en) * | 1988-11-03 | 1991-03-05 | Texaco Inc. | Diesel fuel injector cleaning additive |
US5578091A (en) * | 1990-04-19 | 1996-11-26 | Exxon Chemical Patents Inc. | Chemical compositions and their use as fuel additives |
EP0555006A1 (en) * | 1992-02-07 | 1993-08-11 | Slovnaft A.S. | Derivatives of dicarboxylic acids as additives in unleaded automobile gasolines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2699427A (en) | Mineral oil compositions containing amidic acids or salts thereof | |
US2718503A (en) | Anticorrosion agents consisting of the monamides of dimerized fatty acids | |
CA1095057A (en) | Rust inhibitor and compositions thereof | |
US2604451A (en) | Mineral oil compositions | |
US2790779A (en) | Rust preventive compositions containing monoamidocarboxylic acids | |
US2458425A (en) | Oil compositions | |
US2497521A (en) | Oil compositions containing amine salts of boro-diol complexes | |
US3324032A (en) | Reaction product of dithiophosphoric acid and dibasic acid anhydride | |
US3227739A (en) | Boric-acid-alkylolamine reaction product | |
US2481372A (en) | Rust protective lubricants | |
US2908711A (en) | Itaconic acid-amine reaction product | |
US2587546A (en) | Rust inhibiting composition | |
US3903005A (en) | Corrosion inhibited compositions | |
US4096077A (en) | Wear-inhibiting composition and process | |
US2680094A (en) | Rust preventive oil composition | |
US3208939A (en) | Stabilization of organic substances | |
US2689828A (en) | Mineral oil compositions | |
US2742498A (en) | Amidic acids | |
US2830021A (en) | Lubricant containing an aliphatic amine salt of monoalkyl ester of a dimeric acid | |
US2568472A (en) | Oil compositions containing amine salts of acid compounds of boric acid and hydroxy carboxylic acids | |
US3121057A (en) | Succinamic metal salts in turbine oil | |
US2786812A (en) | Mineral oil compositions containing tincontaining dithiophosphate compounds | |
US3003960A (en) | Glycine amic acids in turbine oil | |
US2378442A (en) | Mineral oil composition | |
US2433243A (en) | Diesel fuel oils |