US2921888A - Electroplating titanium ano titanium alloys - Google Patents
Electroplating titanium ano titanium alloys Download PDFInfo
- Publication number
- US2921888A US2921888A US618656A US61865656A US2921888A US 2921888 A US2921888 A US 2921888A US 618656 A US618656 A US 618656A US 61865656 A US61865656 A US 61865656A US 2921888 A US2921888 A US 2921888A
- Authority
- US
- United States
- Prior art keywords
- titanium
- solution
- nickel
- sulfate
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims description 32
- 239000010936 titanium Substances 0.000 title claims description 32
- 229910052719 titanium Inorganic materials 0.000 title claims description 32
- 238000009713 electroplating Methods 0.000 title description 6
- 229910001069 Ti alloy Inorganic materials 0.000 title description 3
- 238000007747 plating Methods 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 15
- 230000001464 adherent effect Effects 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 239000010941 cobalt Substances 0.000 claims description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 9
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 8
- 229940044175 cobalt sulfate Drugs 0.000 claims description 8
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 4
- 229910000531 Co alloy Inorganic materials 0.000 claims description 3
- -1 HALOGEN ACIDS Chemical class 0.000 claims description 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 19
- 229910052759 nickel Inorganic materials 0.000 description 11
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 4
- 241000080590 Niso Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical group [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/38—Pretreatment of metallic surfaces to be electroplated of refractory metals or nickel
Definitions
- This invention relates to the plating of metals and more particularly to an aqueous electrolyte and process for electrodepositing an adherent nickel and/or cobalt coating on titanium and its alloys.
- Titanium exhibits severe galling tendencies and lacks wear resistance thus presenting many problems in its fabrication. It is also an unusual characteristic of titanium that the most commonly used lubricants do not adhere to its surface and quite moderate loads are sufficient to cause high friction and galling between the parts. Further, when titanium and some of its alloys are heated in air to F., they are subject to embrittlement by oxygen and nitrogen.
- a still further object of this invention is to provide a plating bath comprising an aqueous solution of a nickel and/or cobalt salt and a soluble inorganic acid wherein the composition agents are readily controllable at room operating temperature of the solution.
- an adherent coating of nickel could be electrodeposited on titanium and its alloys from an aqueous electrolyte containing the sulfate salt of nickel in an amount approximately equivalent to that obtained with 70 to 375 grams per liter of nickel sulfate (NiSO -6H O) with the addition of sulfuric acid in quantity suflicient to adjust the solution pH value from about to 2.
- cobalt or a nickel-cobalt alloy can be electrodeposited from an electrolyte solution essentially similar to that set forth for nickel except that the sulfate salt of cobalt (CoSO -7H O) is substituted for the nickel sulfate or added thereto in proportion to the percentage of deposited cobalt desired.
- the preferred proportion of the constituents per liter of plating solution consists of 300 grams of nickel and/ or cobalt sulfate dissolved in distilled or deionized water with the addition of sulfuric acid in a quantity sutlicient to adjust the solution pH value to about 1.7.
- the electrolyte temperature is preferably maintained at room temperature and a plating current is passed through the member to provide thereon a current density of from 5 to 40 amperes per square foot, hereinafter referred to as A.S.F.
- the member For preparing the surface of titanium and its alloys prior to electroplating operations, the member should be thoroughly cleaned and may be so cleaned by a standard vapor degreasing solvent such as trichlorethylene or perchlorethylene followed by immersion in an alkaline solution containing 8 to 12 oz./gal. of caustic soda and 4 oz./ gal. of trisodium phosphate or other standard alkaline cleaner. This should be followed by immersion in a deoxidizing solution comprising 15 milliliters of hydrofluoric acid (48% concentrate) per liter of water until the evolution of gas from the surface of the titanium takes place and a violet or purple film believed to be titanium fluoride forms on the surface. The titanium member is then removed from the deoxidizing bath, thoroughly rinsed in water and then made the cathode in the electrolyte.
- a standard vapor degreasing solvent such as trichlorethylene or perchlorethylene
- an alkaline solution containing 8 to 12 oz./gal. of caustic
- a soluble anode member of commercially pure nickel is used in order that the metal ion concentration in the plating solution is replenished as the metal ions in solution are converted into a solid crystalline deposit on the titanium surface.
- the soluble sulfate salt of the deposited metal may be introduced into the plating solution for replenishing the supply of ions as they are plated out so as to maintain the desired metal ion concentration of the solution.
- a plating current density of approximately 20 A.S.F. applied to a titanium member immersed in the electrolyte at room temperature results in a visually noticeable deposited coating within approximately 3 minutes. Although longer plating times may be desired for depositing proportionately thicker coatings, it was found that a 5 minute plating time produced an adherent coating of thickness sufl'icient to function as an undercoat for subsequent coatings of other metals applied by standard plating methods. Similarly, a plating current density of approximately 35 A.S.F. applied to a titanium alloy member immersed in the electrolyte at a temperature of F.
- said bath being substantially free of metal salts of halogen acids, and then passing a plating current through the member at a current density of 5 to A.S.F., thereby depositing on the titanium member a metal coating which remains firmly adherent at a temperature of 1000 F.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
temperatures above 1000 United States Patent O ELECTROPLATING TITANIUM ANO TITANIUM ALLOYS David Halpert, Philadelphia, Pa., assignor to Vertol Aircraft Corporation, Morton, Pa., a corporation of Pennsylvania No Drawing. Application October 26, 1956 Serial No. 618,656
2 Claims. (Cl. 204-32) This invention relates to the plating of metals and more particularly to an aqueous electrolyte and process for electrodepositing an adherent nickel and/or cobalt coating on titanium and its alloys.
Titanium exhibits severe galling tendencies and lacks wear resistance thus presenting many problems in its fabrication. It is also an unusual characteristic of titanium that the most commonly used lubricants do not adhere to its surface and quite moderate loads are sufficient to cause high friction and galling between the parts. Further, when titanium and some of its alloys are heated in air to F., they are subject to embrittlement by oxygen and nitrogen.
It is therefore a primary object of this invention to apply an adherent protective coating on titanium and its alloys that will provide a hard bearing surface which is abrasion resistant and easily lubricated and which will protect the titanium from contamination when subjected to temperatures above 1000 F.
It is a further object to electrodeposit an adherent nickel and/or cobalt coating on titanium and its alloys that may be utilized as an undercoat upon which subsequent coatings can be applied by any of the standard plating processes.
A still further object of this invention is to provide a plating bath comprising an aqueous solution of a nickel and/or cobalt salt and a soluble inorganic acid wherein the composition agents are readily controllable at room operating temperature of the solution.
Further objects and advantages of the invention will become apparent from the following description.
It was found that conventional methods of plating were not successful when used with titanium and that the present known electrolytic plating solutions for depositing nickel coatings on metals did not form a completely adherent protective coating on titanium that would remain intact when subjected to flexing, bending and sustained heating at temperatures above 1000 F. This failure in forming the desired adherent coating may have been due to the presence of fluoride or chloride ions in the electrolyte since is was discovered that a firmly adherent coating could be applied to titanium and its alloys when the fluoride and chloride ions were generally absent from the electroplating solution.
It was further discovered that an adherent coating of nickel could be electrodeposited on titanium and its alloys from an aqueous electrolyte containing the sulfate salt of nickel in an amount approximately equivalent to that obtained with 70 to 375 grams per liter of nickel sulfate (NiSO -6H O) with the addition of sulfuric acid in quantity suflicient to adjust the solution pH value from about to 2. Also, cobalt or a nickel-cobalt alloy can be electrodeposited from an electrolyte solution essentially similar to that set forth for nickel except that the sulfate salt of cobalt (CoSO -7H O) is substituted for the nickel sulfate or added thereto in proportion to the percentage of deposited cobalt desired. The preferred proportion of the constituents per liter of plating solution consists of 300 grams of nickel and/ or cobalt sulfate dissolved in distilled or deionized water with the addition of sulfuric acid in a quantity sutlicient to adjust the solution pH value to about 1.7. During plating operations the electrolyte temperature is preferably maintained at room temperature and a plating current is passed through the member to provide thereon a current density of from 5 to 40 amperes per square foot, hereinafter referred to as A.S.F.
Increasing the temperature of the electrolyte up to as much as 160 F., with the composition thereof remaining the same or being varied by means of lesser quantities of sulfuric acid to adjust the pH value to as much as 6.2 accelerates the rate of covering and permits the use of higher current densities, in the neighborhood of A.S.F., Without burning the deposit.
For preparing the surface of titanium and its alloys prior to electroplating operations, the member should be thoroughly cleaned and may be so cleaned by a standard vapor degreasing solvent such as trichlorethylene or perchlorethylene followed by immersion in an alkaline solution containing 8 to 12 oz./gal. of caustic soda and 4 oz./ gal. of trisodium phosphate or other standard alkaline cleaner. This should be followed by immersion in a deoxidizing solution comprising 15 milliliters of hydrofluoric acid (48% concentrate) per liter of water until the evolution of gas from the surface of the titanium takes place and a violet or purple film believed to be titanium fluoride forms on the surface. The titanium member is then removed from the deoxidizing bath, thoroughly rinsed in water and then made the cathode in the electrolyte.
Preferably, a soluble anode member of commercially pure nickel is used in order that the metal ion concentration in the plating solution is replenished as the metal ions in solution are converted into a solid crystalline deposit on the titanium surface. However, if an insoluble anode is employed, the soluble sulfate salt of the deposited metal may be introduced into the plating solution for replenishing the supply of ions as they are plated out so as to maintain the desired metal ion concentration of the solution.
A plating current density of approximately 20 A.S.F. applied to a titanium member immersed in the electrolyte at room temperature results in a visually noticeable deposited coating within approximately 3 minutes. Although longer plating times may be desired for depositing proportionately thicker coatings, it was found that a 5 minute plating time produced an adherent coating of thickness sufl'icient to function as an undercoat for subsequent coatings of other metals applied by standard plating methods. Similarly, a plating current density of approximately 35 A.S.F. applied to a titanium alloy member immersed in the electrolyte at a temperature of F. and comprising 300 grams of cobalt sulfate per liter of solution and sulfuric acid in quantity sufiicient to adjust the pH value thereof to 6, resulted in a visually noticeable coating within approximately 30 seconds. A longer plating time of approximately 2 minutes resulted in an adherent cobalt coating of thickness sufficient to function as an undercoat for a subsequent coating of chromium applied by a standard plating method.
Having thus described by invention, what I claim is:
l. The process of electrodepositing nickel on titanium and titanium base alloy members which consists of immersing the titanium member in a solution of hydrofluoric acid for a time suflicient to form a violet film, rinsing said titanium member in water, and then immersing the member in an aqueous electrolyte consisting of from 70 to 375 grams of nickel sulfate (NiSO -6H O) per liter of solution and sulfuric acid in quantity suflicient to Patented Jan. 19, 19.60.
adjust the solution pl-I value from about to said bath remains firmly adherent at a temperature of 1000 2. The process of electrodepositing metal selected from the group consisting of nickel, cobalt and alloys of nickel and cobalt on titanium and'titanium base alloy members which consists of immersing the titanium member in a solution of hydrofluoric acid for a time sufficient to form aviolet film, rinsing said titanium member in water and then immersing the member in an aqueous electrolyte consisting of at least one sulfate salt selected from the group consisting of nickel sulfate and cobalt sulfate, the nickel sulfate in an amount corresponding, to from 70 to 375-grams of nickel sulfate (NiSO -6H 0) per liter of solution, the cobalt sulfate in an amount corresponding to" from 70 to 375 grams of cobalt sulfate (CoSO -7-l-I 'O) per liter of solution, and sulfuric acid in quantity suflicient to adjust the solution pH value from about 0 to 6.2,
said bath being substantially free of metal salts of halogen acids, and then passing a plating current through the member at a current density of 5 to A.S.F., thereby depositing on the titanium member a metal coating which remains firmly adherent at a temperature of 1000 F.
References Cited in the file of this patent UNITED STATES PATENTS 665,915 Kugel Jan. 15, 1901 1,003,092 a Dow etal Sept. 12, 1911' 1,371,414 Edison Mar. 15, 1921 2,240,805 Semon May 6, 1941 2,619,454 Zipponi Nov. 25, 1952 2,646,396 Dean July 21, 1953 2,654,703 Brown .v Oct. 6, 1953 2,711,364 Beach June 21, 1955 2,711,389 Beach et a1 June 21, 1955 OTHER REFERENCES Principles of Electroplating and Electroforrning, Second- Edition; Blum et a1. (1930). McGraw-Hill Book Company Inc., N.Y., pages 240-248.
Claims (1)
- 2. THE PROCESS OF ELECTRODEPOSITING METAL SELECTED FROM THE GROUP CONSISTING OF NICKEL, COBALT AND ALLOYS OF NICKEL AND COBALT ON TITANIUM AND TITANIUM BASE ALLOY MEMBERS WHICH CONSISTS OF IMMERSING THE TITANIUM MEMBER IN A SOLUTION OF HYDROFLUORIC ACID FOR A TIME SUFFICIENT TO FORM A VIOLET FILM, RINSING SAID TITANIUM MEMBER IN WATER AND THEN IMMERSING THE MEMBER IN AN AQUEOUS ELECTROLYTE CONSISTING OF AT LEAST ONE SULFATE SALT SELECTED FROM THE GROUP CONSISTING OF NICKEL SULFATE AND COBALT SULFATE, THE NICKEL SULFATE IN AN AMOUNT CORRESPONDING TO FROM 70 TO 375 GRAMS OF NICKEL SULFATE (NISO4.6H2O) PER LITER OF SOLUTION, THE COBALT SULFATE IN AN AMOUNT CORRESPONDING TO FROM 70 TO 375 GRAMS OF COBALT SULFATE (C3SO4.7H2O) PER LITER OF SOLUTION, AND SULFURIC ACID IN QUANTITY SUFFICIENT TO ADJUST THE SOLUTION PH VALUE FROM ABOUT 0 TO 6.2, SAID BATH BEING SUBSTANTIALLY FREE OF METAL SALTS OF HALOGEN ACIDS, AND THEN PASSING A PLATING CURRENT THROUGH THE MEMBER AT A CURRENT DENSITY OF 5 TO 100 A.S.F., THEREBY DEPOSITING ON THE TITANIUM MEMBER A METAL COATING WHICH REMAINS FIRMLY ADHERENT AT A TEMPERATURE OF 1000*F.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US618656A US2921888A (en) | 1956-10-26 | 1956-10-26 | Electroplating titanium ano titanium alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US618656A US2921888A (en) | 1956-10-26 | 1956-10-26 | Electroplating titanium ano titanium alloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US2921888A true US2921888A (en) | 1960-01-19 |
Family
ID=24478592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US618656A Expired - Lifetime US2921888A (en) | 1956-10-26 | 1956-10-26 | Electroplating titanium ano titanium alloys |
Country Status (1)
Country | Link |
---|---|
US (1) | US2921888A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3368951A (en) * | 1964-02-17 | 1968-02-13 | Union Carbide Corp | Metal plating process and article made thereby |
US3637471A (en) * | 1969-01-29 | 1972-01-25 | Burroughs Corp | Method of electrodepositing ferromagnetic alloys |
US3876513A (en) * | 1972-06-26 | 1975-04-08 | Oxy Metal Finishing Corp | Electrodeposition of bright cobalt plate |
US4416739A (en) * | 1980-04-16 | 1983-11-22 | Rolls-Royce Limited | Electroplating of titanium and titanium base alloys |
FR2601044A1 (en) * | 1986-04-11 | 1988-01-08 | Rolls Royce Plc | METHOD FOR DEPOSITING A PROTECTIVE LAYER AND PIECE PROVIDED WITH SUCH A LAYER |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US665915A (en) * | 1900-03-24 | 1901-01-15 | Moritz Kugel | Process of electrolytic production of nickel or allied metals. |
US1003092A (en) * | 1907-04-11 | 1911-09-12 | Ontario Nickel Company Ltd | Method of electrolyzing nickel-sulfate solutions. |
US1371414A (en) * | 1919-06-17 | 1921-03-15 | Thomas A Edison | Nickel-plating |
US2240805A (en) * | 1936-10-20 | 1941-05-06 | Goodrich Co B F | Composite article and method of making same |
US2619454A (en) * | 1945-08-30 | 1952-11-25 | Brush Dev Co | Method of manufacturing a magnetic recording medium by electrodeposition |
US2646396A (en) * | 1949-03-17 | 1953-07-21 | Reginald S Dean | Method of making electroformed articles |
US2654703A (en) * | 1950-09-09 | 1953-10-06 | Udylite Corp | Electrodeposition of bright nickel, cobalt, and alloys thereof |
US2711364A (en) * | 1953-12-31 | 1955-06-21 | John G Beach | Polishing metals and composition therefor |
US2711389A (en) * | 1953-05-15 | 1955-06-21 | John G Beach | Method of applying adherent electroplates to zirconium surfaces |
-
1956
- 1956-10-26 US US618656A patent/US2921888A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US665915A (en) * | 1900-03-24 | 1901-01-15 | Moritz Kugel | Process of electrolytic production of nickel or allied metals. |
US1003092A (en) * | 1907-04-11 | 1911-09-12 | Ontario Nickel Company Ltd | Method of electrolyzing nickel-sulfate solutions. |
US1371414A (en) * | 1919-06-17 | 1921-03-15 | Thomas A Edison | Nickel-plating |
US2240805A (en) * | 1936-10-20 | 1941-05-06 | Goodrich Co B F | Composite article and method of making same |
US2619454A (en) * | 1945-08-30 | 1952-11-25 | Brush Dev Co | Method of manufacturing a magnetic recording medium by electrodeposition |
US2646396A (en) * | 1949-03-17 | 1953-07-21 | Reginald S Dean | Method of making electroformed articles |
US2654703A (en) * | 1950-09-09 | 1953-10-06 | Udylite Corp | Electrodeposition of bright nickel, cobalt, and alloys thereof |
US2711389A (en) * | 1953-05-15 | 1955-06-21 | John G Beach | Method of applying adherent electroplates to zirconium surfaces |
US2711364A (en) * | 1953-12-31 | 1955-06-21 | John G Beach | Polishing metals and composition therefor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3368951A (en) * | 1964-02-17 | 1968-02-13 | Union Carbide Corp | Metal plating process and article made thereby |
US3637471A (en) * | 1969-01-29 | 1972-01-25 | Burroughs Corp | Method of electrodepositing ferromagnetic alloys |
US3876513A (en) * | 1972-06-26 | 1975-04-08 | Oxy Metal Finishing Corp | Electrodeposition of bright cobalt plate |
US4416739A (en) * | 1980-04-16 | 1983-11-22 | Rolls-Royce Limited | Electroplating of titanium and titanium base alloys |
FR2601044A1 (en) * | 1986-04-11 | 1988-01-08 | Rolls Royce Plc | METHOD FOR DEPOSITING A PROTECTIVE LAYER AND PIECE PROVIDED WITH SUCH A LAYER |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3108006A (en) | Plating on aluminum | |
US4765871A (en) | Zinc-nickel electroplated article and method for producing the same | |
US2085543A (en) | Process for coating metals | |
US2984604A (en) | Platinum plating composition and process | |
US2746915A (en) | Electrolytic metal treatment and article | |
US2313756A (en) | Method of electroplating magnesium | |
US1971761A (en) | Protection of metals | |
US2541083A (en) | Electroplating on aluminum | |
US6258415B1 (en) | Iron-plated aluminum alloy parts and method for planting same | |
US2805192A (en) | Plated refractory metals | |
US2921888A (en) | Electroplating titanium ano titanium alloys | |
US2457059A (en) | Method for bonding a nickel electrodeposit to a nickel surface | |
US2078868A (en) | Electroplating process | |
US2679475A (en) | Metal blackening composition and method | |
US2811484A (en) | Electrodeposition of zinc on magnesium and its alloys | |
US3594288A (en) | Process for electroplating nickel onto metal surfaces | |
US3207679A (en) | Method for electroplating on titanium | |
US2285549A (en) | Process of electrodepositing an adherent layer of copper from copper refinery electrolyte on alloys of iron and/or nickel containing chromium | |
US3093556A (en) | Electro-depositing stainless steel coatings on metal surfaces | |
US2970090A (en) | Plating nickel on aluminum | |
US2975073A (en) | Corrosion resistance of electroless nickel plate | |
US3515650A (en) | Method of electroplating nickel on an aluminum article | |
US4167459A (en) | Electroplating with Ni-Cu alloy | |
US2769774A (en) | Electrodeposition method | |
NO811602L (en) | BATH COMPOSITION AND PROCEDURE FOR ELECTRICAL DISPOSAL OF COBALT-ZINC ALLOYS. |