US2928859A - Alkylation of acids with alkyl orthocarboxylates - Google Patents
Alkylation of acids with alkyl orthocarboxylates Download PDFInfo
- Publication number
- US2928859A US2928859A US744002A US74400258A US2928859A US 2928859 A US2928859 A US 2928859A US 744002 A US744002 A US 744002A US 74400258 A US74400258 A US 74400258A US 2928859 A US2928859 A US 2928859A
- Authority
- US
- United States
- Prior art keywords
- acid
- acids
- alkyl
- grams
- sulfonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002253 acid Substances 0.000 title claims description 36
- 150000007513 acids Chemical class 0.000 title claims description 15
- 238000005804 alkylation reaction Methods 0.000 title description 13
- 230000029936 alkylation Effects 0.000 title description 11
- 125000000217 alkyl group Chemical group 0.000 title description 10
- 238000000034 method Methods 0.000 claims description 40
- 150000003460 sulfonic acids Chemical class 0.000 claims description 18
- 150000003009 phosphonic acids Chemical class 0.000 claims description 17
- 150000002905 orthoesters Chemical class 0.000 claims description 9
- 230000002152 alkylating effect Effects 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 23
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 18
- GKASDNZWUGIAMG-UHFFFAOYSA-N triethyl orthoformate Chemical compound CCOC(OCC)OCC GKASDNZWUGIAMG-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 13
- 125000005907 alkyl ester group Chemical group 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 10
- 238000004821 distillation Methods 0.000 description 9
- -1 phosphonyl halide Chemical class 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 7
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 7
- 239000002168 alkylating agent Substances 0.000 description 6
- 229940100198 alkylating agent Drugs 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 229940098779 methanesulfonic acid Drugs 0.000 description 5
- 229940116254 phosphonic acid Drugs 0.000 description 5
- ZGMNAIODRDOMEK-UHFFFAOYSA-N 1,1,1-trimethoxypropane Chemical compound CCC(OC)(OC)OC ZGMNAIODRDOMEK-UHFFFAOYSA-N 0.000 description 4
- QLZHNIAADXEJJP-UHFFFAOYSA-N Phenylphosphonic acid Chemical compound OP(O)(=O)C1=CC=CC=C1 QLZHNIAADXEJJP-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000012259 ether extract Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- DIZBQMTZXOUFTD-UHFFFAOYSA-N 2-(furan-2-yl)-3h-benzimidazole-5-carboxylic acid Chemical compound N1C2=CC(C(=O)O)=CC=C2N=C1C1=CC=CO1 DIZBQMTZXOUFTD-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- MWQBWSPPTQGZII-UHFFFAOYSA-N ethoxy(phenyl)phosphinic acid Chemical compound CCOP(O)(=O)C1=CC=CC=C1 MWQBWSPPTQGZII-UHFFFAOYSA-N 0.000 description 3
- 150000002560 ketene acetals Chemical class 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- VUQUOGPMUUJORT-UHFFFAOYSA-N methyl 4-methylbenzenesulfonate Chemical compound COS(=O)(=O)C1=CC=C(C)C=C1 VUQUOGPMUUJORT-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- AFAXGSQYZLGZPG-UHFFFAOYSA-N ethanedisulfonic acid Chemical compound OS(=O)(=O)CCS(O)(=O)=O AFAXGSQYZLGZPG-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229940045996 isethionic acid Drugs 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- OGNVQLDIPUXYDH-ZPKKHLQPSA-N (2R,3R,4S)-3-(2-methylpropanoylamino)-4-(4-phenyltriazol-1-yl)-2-[(1R,2R)-1,2,3-trihydroxypropyl]-3,4-dihydro-2H-pyran-6-carboxylic acid Chemical compound CC(C)C(=O)N[C@H]1[C@H]([C@H](O)[C@H](O)CO)OC(C(O)=O)=C[C@@H]1N1N=NC(C=2C=CC=CC=2)=C1 OGNVQLDIPUXYDH-ZPKKHLQPSA-N 0.000 description 1
- OXWXINKWKITCIH-UHFFFAOYSA-N (3-nitrophenyl)phosphonic acid Chemical compound OP(O)(=O)C1=CC=CC([N+]([O-])=O)=C1 OXWXINKWKITCIH-UHFFFAOYSA-N 0.000 description 1
- MVCIBABYNNIPFI-UHFFFAOYSA-N (4-chlorophenyl)phosphonic acid Chemical compound OP(O)(=O)C1=CC=C(Cl)C=C1 MVCIBABYNNIPFI-UHFFFAOYSA-N 0.000 description 1
- RAJUSMULYYBNSJ-IHWYPQMZSA-N (z)-prop-1-ene-1-sulfonic acid Chemical compound C\C=C/S(O)(=O)=O RAJUSMULYYBNSJ-IHWYPQMZSA-N 0.000 description 1
- NDQXKKFRNOPRDW-UHFFFAOYSA-N 1,1,1-triethoxyethane Chemical compound CCOC(C)(OCC)OCC NDQXKKFRNOPRDW-UHFFFAOYSA-N 0.000 description 1
- FGWYWKIOMUZSQF-UHFFFAOYSA-N 1,1,1-triethoxypropane Chemical compound CCOC(CC)(OCC)OCC FGWYWKIOMUZSQF-UHFFFAOYSA-N 0.000 description 1
- HDPNBNXLBDFELL-UHFFFAOYSA-N 1,1,1-trimethoxyethane Chemical compound COC(C)(OC)OC HDPNBNXLBDFELL-UHFFFAOYSA-N 0.000 description 1
- BFUFJIQCXYWATP-UHFFFAOYSA-N 1,1,1-tripropoxypropane Chemical compound CCCOC(CC)(OCCC)OCCC BFUFJIQCXYWATP-UHFFFAOYSA-N 0.000 description 1
- UEVZIKFSVBYKAC-UHFFFAOYSA-N 1-(1,1-dibutoxyethoxy)butane Chemical compound CCCCOC(C)(OCCCC)OCCCC UEVZIKFSVBYKAC-UHFFFAOYSA-N 0.000 description 1
- BQIKKNNMJKMBEQ-UHFFFAOYSA-N 1-(1,1-dibutoxypropoxy)butane Chemical compound CCCCOC(CC)(OCCCC)OCCCC BQIKKNNMJKMBEQ-UHFFFAOYSA-N 0.000 description 1
- JDQNNHFSSCEQPM-UHFFFAOYSA-N 1-(1,1-dipropoxyethoxy)propane Chemical compound CCCOC(C)(OCCC)OCCC JDQNNHFSSCEQPM-UHFFFAOYSA-N 0.000 description 1
- SGJBIFUEFLWXJY-UHFFFAOYSA-N 1-(dibutoxymethoxy)butane Chemical compound CCCCOC(OCCCC)OCCCC SGJBIFUEFLWXJY-UHFFFAOYSA-N 0.000 description 1
- AGQSMVCZSRTXFB-UHFFFAOYSA-N 1-(dihexoxymethoxy)hexane Chemical compound CCCCCCOC(OCCCCCC)OCCCCCC AGQSMVCZSRTXFB-UHFFFAOYSA-N 0.000 description 1
- NRRGKWUTVHJHCS-UHFFFAOYSA-N 1-(dipentoxymethoxy)pentane Chemical compound CCCCCOC(OCCCCC)OCCCCC NRRGKWUTVHJHCS-UHFFFAOYSA-N 0.000 description 1
- RWNXXQFJBALKAX-UHFFFAOYSA-N 1-(dipropoxymethoxy)propane Chemical compound CCCOC(OCCC)OCCC RWNXXQFJBALKAX-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical group CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- SWJVHJZZBCLYLA-UHFFFAOYSA-N 3,3-dimethylbutane-1-sulfonic acid Chemical compound CC(C)(C)CCS(O)(=O)=O SWJVHJZZBCLYLA-UHFFFAOYSA-N 0.000 description 1
- RJWBTWIBUIGANW-UHFFFAOYSA-N 4-chlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=C(Cl)C=C1 RJWBTWIBUIGANW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001351 alkyl iodides Chemical class 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QDHFHIQKOVNCNC-UHFFFAOYSA-N butane-1-sulfonic acid Chemical compound CCCCS(O)(=O)=O QDHFHIQKOVNCNC-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002844 continuous effect Effects 0.000 description 1
- ZHGASCUQXLPSDT-UHFFFAOYSA-N cyclohexanesulfonic acid Chemical compound OS(=O)(=O)C1CCCCC1 ZHGASCUQXLPSDT-UHFFFAOYSA-N 0.000 description 1
- YAIKGZQRXQYYJZ-UHFFFAOYSA-N cyclopentanesulfonic acid Chemical compound OS(=O)(=O)C1CCCC1 YAIKGZQRXQYYJZ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- MECSODHJJFVWLN-UHFFFAOYSA-N dicyclohexyloxymethoxycyclohexane Chemical compound C1CCCCC1OC(OC1CCCCC1)OC1CCCCC1 MECSODHJJFVWLN-UHFFFAOYSA-N 0.000 description 1
- SULWMEGSVQCTSK-UHFFFAOYSA-N diethyl hydrogen phosphite Chemical compound CCOP(O)OCC SULWMEGSVQCTSK-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- KFOZNPPBKHYHQD-UHFFFAOYSA-N ethenesulfonyl chloride Chemical compound ClS(=O)(=O)C=C KFOZNPPBKHYHQD-UHFFFAOYSA-N 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- GATNOFPXSDHULC-UHFFFAOYSA-N ethylphosphonic acid Chemical compound CCP(O)(O)=O GATNOFPXSDHULC-UHFFFAOYSA-N 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GJWAEWLHSDGBGG-UHFFFAOYSA-N hexylphosphonic acid Chemical compound CCCCCCP(O)(O)=O GJWAEWLHSDGBGG-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- NIXKBAZVOQAHGC-UHFFFAOYSA-N phenylmethanesulfonic acid Chemical compound OS(=O)(=O)CC1=CC=CC=C1 NIXKBAZVOQAHGC-UHFFFAOYSA-N 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- RZKYDQNMAUSEDZ-UHFFFAOYSA-N prop-2-enylphosphonic acid Chemical compound OP(O)(=O)CC=C RZKYDQNMAUSEDZ-UHFFFAOYSA-N 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012262 resinous product Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 150000003461 sulfonyl halides Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/38—Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
- C07F9/40—Esters thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/26—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
Definitions
- This invention relates to the alkylation of certain acids and to the preparation of alkyl esters thereof, and more particularly to the alkylation of sulfonic and phosphonic acids with alkyl orthocarboxylates.
- the primary object of the present invention is the provision of a method of directly alkylating sulfonic and phosphonic acids under mild reaction conditions.
- a further object is the provision of a method to directly alkylate sulfonic and phosphonic acids which does not alkylate other substituent groups sensitive to strong alkylating agents.
- a still further object is the provision of such a method which is economical and direct and does not involve several separate reactions.
- a further object is the provision of such a method which employs readily available and economical reagents.
- Trialkyl orthocarboxylates suitable as alkylating agents in the process. of the instant invention are the lower triatcnt ice formate, tri-i-propyl orthoformate, tri-n-butyl orthofor- 5 mate, tri-i-butyl orthoformate tri-n-amyl orthoformate,
- tri-n-amyl ortho-n-butyrate trimethyl ortho-n-valerate, triethyl ortho-n-valerate, tri-n-propyl ortho-n-valerate, tri-i-butyl ortho-n-valerate, tri-i-amyl ortho-n-valerate, tricyclohexyl ortho-n-valerate, and the like.
- All sulfonic and phosphonic acids may be alkylated by the process of the instant invention.
- the process has been found most useful in the alkylation of those of such acids that carry substituents which are sensitive to the usual alkylating agents and conditions.
- such acids as ethylenesulfonic acid, Z-propene-l-sulfonic acid,
- isethionic acid (Z-hydroxyethanesulfonic acid), 2-haloethanesulfonic acids, 1,2-ethanedisulfonic acid, p-phenolsulfonic acid, beta-styrenesulfonic acid, 2-propene-1- phosphonic acid, l-hydroxyethanephosphonic acid, l-hydroxy-l-methylethanephosphonic acid, and l-hydroxy-lphenylmethanephosphonic acid can be easily alkylated to their esters by this process.
- the instant process avoids substituting the normally sensitive substituent groups such as vinyl, and introducing side reactions such as the splitting out of water from isethionic acid.
- the process can produce esters which cannot be produced by normal methods such as the alkyl ester of 1,2-ethanedisulfonic acid which cannot be prepared from the disulfonyl chloride and sodium alkoxide because of decomposition of the acid chloride.
- the process of the instant invention has also been found useful to prepare high yields of the lower alkyl esters of sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, 3,3-dimethylbutanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, p-chlorobenzenesulfonic acid, cyclohexanesulfonic acid, alpha-toluenesulfonic acid, cyclopentanesulfonic acid, l-octanesulfonic acid, and the like.
- sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, 3,3-dimethylbutanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic
- the instant process has also been found useful to prepare the lower alkyl esters of phosphonic acids such as methanephosphonic acid, ethanephosphonic acid, n-hexanephosphonic acid, benzenephosphonic acid, beta-toluenephosphonic acid, p-chlorobenzenephosphonic acid, 3-nitrobenzenephosphonic acid, phosphorous acid, and the like.
- phosphonic acids such as methanephosphonic acid, ethanephosphonic acid, n-hexanephosphonic acid, benzenephosphonic acid, beta-toluenephosphonic acid, p-chlorobenzenephosphonic acid, 3-nitrobenzenephosphonic acid, phosphorous acid, and the like.
- the conditions under which the process of the instant invention is carried out are unexpectedly advantageous because of their comparative mildness in contrast to the severe conditions or strong reagents usually required for alkylations. It has been found that the alkylation of 0 sulfonic and phosphonic acids in general can be accomplished at temperatures of from about 0 C. to 200 C. in reasonable periods of time. With many of such acids the reaction can be carried out without additional heating because of its exothermic nature. With some of 55 the weaker acids the reaction is accomplished by heating the reaction mixture to a temperature higher than the boiling point of the alkyl carboxylate used with con tinuous reflux from an associated condenser.
- Example I There was added 13.2 grams (0.09 mole) of triethyl orthoformate to 11. grams (0.1 mole) of ethylenesulf'onic acid. Heat was immediately evolved and the flask was immersed in an ice water bath. When the reaction, mixture had turned a deep red-brown color a Claisen distillation head was fitted to the flask and ethyl formate and some ethanol distilled oil. at a head temperature of 55 C. Vacuum was applied to distill oil unreacted triethyl orthoformate and by-product ethanol. The reaction mixture was poured into water and formed a two phase system. The mixture was extracted three times with ether, the ether extract was washed with distilled water, and dried over calcium chloride.
- the dried ether extract was distilled after adding anhydrous potassium carbonate to yield 4.84 grams (0.0356 mole) of ethyl ethylenesulfonate for a 40 percent yield.
- the product boiled at 735-74 C. and analyzed 35.61 percent carbon and 5.86 percent hydrogen compared 'to a theoretical content of 35.28 percent carbon and 5.85 percent hydrogen.
- Example If I In the same manner as in Example I above 30.15 grams (0.2 mole) of triethyl orthoforma'te was added to 8.0 grams (0.05 mole) of benzenephosphonic acid and the. reaction mixture heated together for about 4 hours during which time a distillate of ethyl fol-mate was taken off at 54 C. At the end of this time vacuum was applied to the flask to strip off the remaining ethanol and the unreacted triethyl orthoformate. The product was distilled under a vacuum of 0.1 mm. of mercury to give 8.86 grams of ethyl benzenephosphonate boiling at 80- 84 C. for a yield of approximately 83 percent. The product had a refractive index at 25* C. of 1.4937 as compared to literature value for the refractive index at.
- Example III There. were reacted 8.24 grams (0.1 mole) of. .phos-- phorous acid with 39.2 grams (0.265 mole [of triethyl.
- ortho format'e by heating together for about four hours. During this time ethyl formate distilled at 54 C. After removing the ethanol and unreacted 'triethyl ortho'iormate.
- Example V distillation flask The pressure was reduced to 2 mm.
- Example IV In the same manner as in Example IV above there was reacted 15.8 grams (0.16 mole) of the crude methanes'ulfonic acid obtained above with 60 grams (0.4 mole) of triethyl orthoformate. The reaction proceeded in the same manner as described in Example IV above. Upon isolation and washing of the ether extract said extract was dried overnight over calcium chloride and potassium carbonate and the ether distilled from the extract. There was then distilled a total of 5 grams of ethyl 'me'thanes'ulfonate representing a yield of 25 percent based on the crude methanesulfonic acid employed boiling at -81" C. at 8 'mm. pressure.
- Example V1 In the same manner as Example above there was reacted 5.5 grams (0.05 mole) of p-toluenesulfonic acid monohydrate with 15- grams (0.11 mole) of trimethyl orthopropionate: The resulting mixture was heated in the same manner as described in Example IV above and the byproducts distilled. The reactionmixture residue was poured into water. extracted three "times With ether, the ether extract washed with potassium bicarbonate solution, and the ether evaporated. In this manner there was realized 8.8 grams of methyl p-toluenesulfonate which was practically water white in color and repre sented an 8'8 percent yield of the desired product. The crude -product melted at 26-27" C. Upon recrystallization from ethyl ether and ligroin the melting point of the product was 27-28 C. as compared with the recorded value in the literature of 28* C.
- Example VII There'was added to 17.4 grams (0.1 mole) of p-phenolsulroniea'cld .16 grams (0.115 mole) of 'triethyl' orthd format'e.
- the reaction mixture was heated on a water bath to approximately 54 C. in order to distill ethyl form'a'te. Two separate phases persisted in the reaction mixture but one decreased upon distillation of the byproduct. After a period of 60 minutes there was added 27 grams (0.18 mole) of additional 'triethyl orthoformate and distillation continued. At the end of an additional period of 50 minutes a small layer still persisted. A third portion of 21 grams (0.13 mole) of triethyl orthoformate was added. After distillation of by-product from the third addition the reaction mixture constituted a homogeneous solution. After the removal of the excess triethyl orthoformate and ethanol at reduced pres.
- the process of the instant invention is useful in preparing alkyl esters of sulfonic and phosphonic acids, including both saturated and unsaturated aliphatic and aromatic acids. Furthermore, the instant process is of unique utility in the direct preparation of alkyl esters of such acids bearing substituent groups sensitive to other means of alkylation such as the ethylenesulfonic and p-phenolsulfonic acids of the above examples.
- the alkyl esters of the sulfonic and phosphonic acids are suitable for a great variety of uses. Some of the esters are excellent plasticizing agents for the plasticization of synthetic resins. Others, including the alkyl ethylenesulfonates, are themselves polymerizable to such resinous products. Many of the sulfonates possess utility as surface active agents in the nature of detergents and the like.
- a process for alkylating acids which comprises reacting an acid selected from the group consisting of sulfonic acids and phosphonic acids with a trialkyl orthoester of a monocarboxylic acid of from one to five carbon atoms in which each alkyl group contains from one to six carbon atoms inclusive and recovering the alkyl ester of the said acid selected from the group consisting of sulfonic acids and phosphonic acids so produced.
- trialkyl orthoester is a trialkyl orthoformate in which each alkyl group contains from one to six carbon atoms inclusive.
- trialkyl ortho ester is a trialkyl orthoacetate in which each alkyl group contains from one to six carbon atoms inclusive.
- trialkyl ortho ester is a trialkyl orthopropionate in which each alkyl group contains from one to six carbon atoms inclusive.
- trialkyl orthoester is a trialkyl orthobutyrate in which each alkyl group contains from one to six carbon atoms inclusive.
- trialkyl orthoester is a trialkyl orthovalerate in which each alkyl group contains from one to six carbon atoms inclusive.
- a process for alkylating acids which comprises heating until reacted an acid selected from the group consisting of sulfonic acids and phosphonic acids with a trialkyl orthoester of a monocarboxylic acid of from one to five carbon atoms in which each alkyl group contains from one to six carbon atoms inclusive, distilling oif by-products of the said reaction and unreacted alkyl orthoester, and recovering the alkyl ester of the said acid selected from the group consisting of sulfonic acids and phosphonic acids so produced.
- a method for producing ethyl ethylenesulfonate which comprises reacting ethylenesulfonic acid with triethyl orthoformate, distilling oif ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl ethylenesulfonate thus produced.
- a method for producing ethyl methanesulfonate which comprises reacting methanesulfonic acid with triethyl orthoformate, distilling ofl? ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl methanesulfonate thus produced.
- a method for producing ethyl p-phenolsulfonate which comprises reacting p-phenolsulfonic acid with triethyl orthoformate, distilling ofi ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl p-phenolsulfonate thus produced.
- a method for producing ethyl benzenephosphonate which comprises reacting benzenephosphonic acid with triethyl orthoformate, distilling ofi ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl benzenephosphonate thus produced.
- a method for producing methyl p-toluenesulfonate which comprises reacting p-toluenesulfonic acid with trimethyl orthopropionate, distilling oflf methyl propionate, methanol, and unreacted trimethyl orthopropionate, and recovering the methyl p-toluenesulfonate thus produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
ALKYLATION OF ACIDS WITH ALKYL ORTHOCARBOXYLATES Jack Preston and Howard G. Clark III, Decatur, Ala., assignors to The Chemstrand Corporation, Decatur, Ala., a corporation of Delaware No Drawing. Application June 23, 1958 Serial No. 744,002
1'1 Claims. 01. 260-456) This invention relates to the alkylation of certain acids and to the preparation of alkyl esters thereof, and more particularly to the alkylation of sulfonic and phosphonic acids with alkyl orthocarboxylates.
In the past alkylations of sulfonic and phosphonic acids have been carried out by several diiferent methods. These have included the reaction of the appropriate sulfonyl or phosphonyl halide with. an appropriate sodium alkoxide in alcohol solution, by reacting the sulfonyl halide or phosphonyl halide with the appropriate alcohol in the presence of an acid acceptor such as pyridine or other tertiary amine, the reaction of the silver salt of the sulfonic or phosphonic acid with alkyl iodide, the reaction of the appropriate sulfonic or phosphonic acid with a diazoalkane and, the reaction of the appropriate sulfonic or phosphonic acid with a ketene acetal. None of these methods have been fully suitable for the preparation of estersof such acids carrying groups sensitive to strong alkylating agents or severe alkylating conditions. For example, inattempting to alkylate ethylenesulfonyl chloride to its ethyl ester by means of so- 35 dium ethoxide one finds the alcohol adding across the vinyl group as well as substituting on the sulfonic acid group, thus lowering the yields to uneconomic levels. The use of diazoalkanes as alkylating agents is dangerous due to the possibility of explosive decomposition. Furthermore, the preparation of the alkyl esters by means of ketene acetal is very difficult and expensive in that ketene acetal is most difiicult to prepare and must be employed immediatelyto prevent polymerization thereof before further reaction. These and other prior methods of alkylation have involved several steps which have been difiicult and expensive to carry out and involve losses of the desired products. A direct synthesis of alkyl esters of sulfonic and phosphonic acids under mild conditions has thus been desired by the art.
Accordingly, the primary object of the present invention is the provision of a method of directly alkylating sulfonic and phosphonic acids under mild reaction conditions. A further object is the provision of a method to directly alkylate sulfonic and phosphonic acids which does not alkylate other substituent groups sensitive to strong alkylating agents. A still further object is the provision of such a method which is economical and direct and does not involve several separate reactions. A further object is the provision of such a method which employs readily available and economical reagents. Other objects will be apparent from the description of the invention hereinafter.
It has now been found that the objects of this invention can be accomplished by a method of alkylation which comprises reacting an acid selected from the group consisting of sulfonic acids and phosphonic acids with a trialkyl orthoester of a monocarboxylic acid of from one to five carbon atoms and recovering the resulting ester.
Trialkyl orthocarboxylates suitable as alkylating agents in the process. of the instant invention are the lower triatcnt ice formate, tri-i-propyl orthoformate, tri-n-butyl orthofor- 5 mate, tri-i-butyl orthoformate tri-n-amyl orthoformate,
tri-i-amyl orthoformate, tri-n-hexyl orthoformate, tricyclohexyl orthoformate, trimethyl orthoacetate, triethyl orthoacetate, tri-n-propyl orthoacetate, tri-i-butyl orthoacetate, tri-n-amyl orthoacetate, tricyclohexyl orthoacel0 tate, trimethyl orthopropionate, triethyl orthopropionate, tri-i-propyl orthopropionate, tri-n-butyl orthopropionate, tri-i-amyl orthopropionate, tricyclohexyl orthopropionate, trimethyl ortho-n-butyrate, triethyl ortho-n-butyrate, trii-propyl ortho-n-butyrate, tri-n-butyl ortho-n-butyrate,
tri-n-amyl ortho-n-butyrate, trimethyl ortho-n-valerate, triethyl ortho-n-valerate, tri-n-propyl ortho-n-valerate, tri-i-butyl ortho-n-valerate, tri-i-amyl ortho-n-valerate, tricyclohexyl ortho-n-valerate, and the like.
All sulfonic and phosphonic acids may be alkylated by the process of the instant invention. The process has been found most useful in the alkylation of those of such acids that carry substituents which are sensitive to the usual alkylating agents and conditions. Thus, such acids as ethylenesulfonic acid, Z-propene-l-sulfonic acid,
isethionic acid (Z-hydroxyethanesulfonic acid), 2-haloethanesulfonic acids, 1,2-ethanedisulfonic acid, p-phenolsulfonic acid, beta-styrenesulfonic acid, 2-propene-1- phosphonic acid, l-hydroxyethanephosphonic acid, l-hydroxy-l-methylethanephosphonic acid, and l-hydroxy-lphenylmethanephosphonic acid can be easily alkylated to their esters by this process. The instant process avoids substituting the normally sensitive substituent groups such as vinyl, and introducing side reactions such as the splitting out of water from isethionic acid. The process can produce esters which cannot be produced by normal methods such as the alkyl ester of 1,2-ethanedisulfonic acid which cannot be prepared from the disulfonyl chloride and sodium alkoxide because of decomposition of the acid chloride. In addition, the process of the instant invention has also been found useful to prepare high yields of the lower alkyl esters of sulfonic acids such as methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, 3,3-dimethylbutanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, p-chlorobenzenesulfonic acid, cyclohexanesulfonic acid, alpha-toluenesulfonic acid, cyclopentanesulfonic acid, l-octanesulfonic acid, and the like. The instant process has also been found useful to prepare the lower alkyl esters of phosphonic acids such as methanephosphonic acid, ethanephosphonic acid, n-hexanephosphonic acid, benzenephosphonic acid, beta-toluenephosphonic acid, p-chlorobenzenephosphonic acid, 3-nitrobenzenephosphonic acid, phosphorous acid, and the like.
The conditions under which the process of the instant invention is carried out are unexpectedly advantageous because of their comparative mildness in contrast to the severe conditions or strong reagents usually required for alkylations. It has been found that the alkylation of 0 sulfonic and phosphonic acids in general can be accomplished at temperatures of from about 0 C. to 200 C. in reasonable periods of time. With many of such acids the reaction can be carried out without additional heating because of its exothermic nature. With some of 55 the weaker acids the reaction is accomplished by heating the reaction mixture to a temperature higher than the boiling point of the alkyl carboxylate used with con tinuous reflux from an associated condenser. Although yields are increased by the use of an excess of the orthocarboxylate alkylating agents, such is not necessary, since it has been found that when reacted in less than equi- 3 molar quantities of the alkyl carboxylates good yields are realized.
The application of the process of the instant invention is illustrated by the following examples. It is to be understood that the invention is not limited to any specific reagents or conditions as set forth herein, but is commensurate with the entire specification and the. appended claims.
Example I There was added 13.2 grams (0.09 mole) of triethyl orthoformate to 11. grams (0.1 mole) of ethylenesulf'onic acid. Heat was immediately evolved and the flask was immersed in an ice water bath. When the reaction, mixture had turned a deep red-brown color a Claisen distillation head was fitted to the flask and ethyl formate and some ethanol distilled oil. at a head temperature of 55 C. Vacuum was applied to distill oil unreacted triethyl orthoformate and by-product ethanol. The reaction mixture was poured into water and formed a two phase system. The mixture was extracted three times with ether, the ether extract was washed with distilled water, and dried over calcium chloride. The dried ether extract was distilled after adding anhydrous potassium carbonate to yield 4.84 grams (0.0356 mole) of ethyl ethylenesulfonate for a 40 percent yield. The product boiled at 735-74 C. and analyzed 35.61 percent carbon and 5.86 percent hydrogen compared 'to a theoretical content of 35.28 percent carbon and 5.85 percent hydrogen.
Example If I In the same manner as in Example I above 30.15 grams (0.2 mole) of triethyl orthoforma'te was added to 8.0 grams (0.05 mole) of benzenephosphonic acid and the. reaction mixture heated together for about 4 hours during which time a distillate of ethyl fol-mate was taken off at 54 C. At the end of this time vacuum was applied to the flask to strip off the remaining ethanol and the unreacted triethyl orthoformate. The product was distilled under a vacuum of 0.1 mm. of mercury to give 8.86 grams of ethyl benzenephosphonate boiling at 80- 84 C. for a yield of approximately 83 percent. The product had a refractive index at 25* C. of 1.4937 as compared to literature value for the refractive index at.
that temperature of 1.4935.
Example III There. were reacted 8.24 grams (0.1 mole) of. .phos-- phorous acid with 39.2 grams (0.265 mole [of triethyl.
ortho format'e by heating together for about four hours. During this time ethyl formate distilled at 54 C. After removing the ethanol and unreacted 'triethyl ortho'iormate.
under vacuum, the product was distilled at 6.5 mm. of
mercury at a head temperature of C. to yield 9.24 grams of diethyl hydrogen phosphite, representing a yield of 76 percent. The product possessed a refractive index at 20 of 1.4039 as compared to the literature value for that index of 1.4080.
(0.13 mole) of triethyl orthoformate was added to- 9.5
grams (0.05 mole) of p-toluenesulfonic acid. Heat was immediately evolved and upon its subsidence the reac-- tion mixture was warmed on a water bath to distill of? ethyl formate and ethanol boiling between, 5.4 and 79 C. When all distillation had ceased vacuum was applied to the system and the excess triethyl. orthoformate was, re moved by another distillation. The reaction mixture was, then poured into water and extracted three times with ether. The ether layer was washed once with dilute potassiurn bicarbonate solution and the ether evaporated. The crude product thus obtained amounted to 9.8 grams (0.049 'mole) of ethyl 'p-toluenesulfona'te representing a yield of 98 percent of theoretical and meltin at 30 3l 4 C. as compared to a recorded melting point in the literature of 32 C.
Example V distillation flask. The pressure was reduced to 2 mm.
of mercury and a small quantity of unreacted methanesulfonyl chloride recovered. The distillation was stopped when the first drop of acid distilled at 147 C. in order to prevent decomposition and. the reaction residue was isolated as the desired methanesulfonic acid.
In the same manner as in Example IV above there was reacted 15.8 grams (0.16 mole) of the crude methanes'ulfonic acid obtained above with 60 grams (0.4 mole) of triethyl orthoformate. The reaction proceeded in the same manner as described in Example IV above. Upon isolation and washing of the ether extract said extract was dried overnight over calcium chloride and potassium carbonate and the ether distilled from the extract. There was then distilled a total of 5 grams of ethyl 'me'thanes'ulfonate representing a yield of 25 percent based on the crude methanesulfonic acid employed boiling at -81" C. at 8 'mm. pressure.
Example V1 In the same manner as Example above there was reacted 5.5 grams (0.05 mole) of p-toluenesulfonic acid monohydrate with 15- grams (0.11 mole) of trimethyl orthopropionate: The resulting mixture was heated in the same manner as described in Example IV above and the byproducts distilled. The reactionmixture residue was poured into water. extracted three "times With ether, the ether extract washed with potassium bicarbonate solution, and the ether evaporated. In this manner there was realized 8.8 grams of methyl p-toluenesulfonate which was practically water white in color and repre sented an 8'8 percent yield of the desired product. The crude -product melted at 26-27" C. Upon recrystallization from ethyl ether and ligroin the melting point of the product was 27-28 C. as compared with the recorded value in the literature of 28* C.
Example VII There'was added to 17.4 grams (0.1 mole) of p-phenolsulroniea'cld .16 grams (0.115 mole) of 'triethyl' orthd format'e. The reaction mixture was heated on a water bath to approximately 54 C. in order to distill ethyl form'a'te. Two separate phases persisted in the reaction mixture but one decreased upon distillation of the byproduct. After a period of 60 minutes there was added 27 grams (0.18 mole) of additional 'triethyl orthoformate and distillation continued. At the end of an additional period of 50 minutes a small layer still persisted. A third portion of 21 grams (0.13 mole) of triethyl orthoformate was added. After distillation of by-product from the third addition the reaction mixture constituted a homogeneous solution. After the removal of the excess triethyl orthoformate and ethanol at reduced pres.
sure the reaction mixture residue was pouredinto water and extracted 3 times With other. Titration of the extracted water layer indicated the presence of 55 percent of the starting p-phenolsulfonic acid. The crude ethyl p-phenolsulfonate remaining after evaporation of the ether was an oil weighing 6 grams and representing a 61-615 C. as compared to a recorded value in the literature of 62 C.
From the above examples it is apparent that the process of the instant invention is useful in preparing alkyl esters of sulfonic and phosphonic acids, including both saturated and unsaturated aliphatic and aromatic acids. Furthermore, the instant process is of unique utility in the direct preparation of alkyl esters of such acids bearing substituent groups sensitive to other means of alkylation such as the ethylenesulfonic and p-phenolsulfonic acids of the above examples.
Other advantages accrue from the use of the process of the instant invention. It is possible to recover unreacted starting materials of the alkylation process which are suitable for reuse in this or other processes. The trialkyl orthocarboxylates are distilled at a sufliciently dilferent temperature range to insure good separation from the byproducts of the alkylation reaction and these recovered trialkyl orthocarboxylates are suitable for further use, including reuse in the instant process. Also, the unreacted acids used in the process are recoverable for subsequent additional and further uses. For example, in the recovery procedures illustrated in the above examples the unreacted sulfonic acids remaining in the aqueous layer after extraction of the alkyl esters produced are easily recovered by evaporation or distillation of the water and are of such quality that they can be reused. Numerous other advantages of the instant invention will be apparent to those skilled in the art.
The principal products of the process of the instant invention, the alkyl esters of the sulfonic and phosphonic acids, are suitable for a great variety of uses. Some of the esters are excellent plasticizing agents for the plasticization of synthetic resins. Others, including the alkyl ethylenesulfonates, are themselves polymerizable to such resinous products. Many of the sulfonates possess utility as surface active agents in the nature of detergents and the like.
As many apparently widely dilferent embodiments of this invention may be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.
We claim:
1. A process for alkylating acids which comprises reacting an acid selected from the group consisting of sulfonic acids and phosphonic acids with a trialkyl orthoester of a monocarboxylic acid of from one to five carbon atoms in which each alkyl group contains from one to six carbon atoms inclusive and recovering the alkyl ester of the said acid selected from the group consisting of sulfonic acids and phosphonic acids so produced.
2. The process of claim 1 wherein the trialkyl orthoester is a trialkyl orthoformate in which each alkyl group contains from one to six carbon atoms inclusive.
3. The process of claim 1 wherein the trialkyl ortho ester is a trialkyl orthoacetate in which each alkyl group contains from one to six carbon atoms inclusive.
4. The process of claim 1 wherein the trialkyl ortho ester is a trialkyl orthopropionate in which each alkyl group contains from one to six carbon atoms inclusive.
5. The process of claim 1 wherein the trialkyl orthoester is a trialkyl orthobutyrate in which each alkyl group contains from one to six carbon atoms inclusive.
6. The process of claim 1 wherein the trialkyl orthoester is a trialkyl orthovalerate in which each alkyl group contains from one to six carbon atoms inclusive.
7. The process of claim 1 wherein the acid is ethylenesulfonic acid.
8. The process of claim 1 wherein the acid is methanesulfonic acid.
9. The process of claim 1 wherein the acid is p-toluenesulfonic acid.
10. The process of claim 1 wherein the acid is pphenolsulfonic acid.
11. The process of claim 1 wherein the acid is benzenephosphonic acid.
12. A process for alkylating acids which comprises heating until reacted an acid selected from the group consisting of sulfonic acids and phosphonic acids with a trialkyl orthoester of a monocarboxylic acid of from one to five carbon atoms in which each alkyl group contains from one to six carbon atoms inclusive, distilling oif by-products of the said reaction and unreacted alkyl orthoester, and recovering the alkyl ester of the said acid selected from the group consisting of sulfonic acids and phosphonic acids so produced.
13. A method for producing ethyl ethylenesulfonate which comprises reacting ethylenesulfonic acid with triethyl orthoformate, distilling oif ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl ethylenesulfonate thus produced.
14. A method for producing ethyl methanesulfonate which comprises reacting methanesulfonic acid with triethyl orthoformate, distilling ofl? ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl methanesulfonate thus produced.
15. A method for producing ethyl p-phenolsulfonate which comprises reacting p-phenolsulfonic acid with triethyl orthoformate, distilling ofi ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl p-phenolsulfonate thus produced.
16. A method for producing ethyl benzenephosphonate which comprises reacting benzenephosphonic acid with triethyl orthoformate, distilling ofi ethyl formate, ethanol, and unreacted triethyl orthoformate, and recovering the ethyl benzenephosphonate thus produced.
17. A method for producing methyl p-toluenesulfonate which comprises reacting p-toluenesulfonic acid with trimethyl orthopropionate, distilling oflf methyl propionate, methanol, and unreacted trimethyl orthopropionate, and recovering the methyl p-toluenesulfonate thus produced.
No references cited.
Claims (1)
1. A PROCESS FOR ALKYLATING ACIDS WHICH COMPRISES REACTING AN ACID SELECTED FROM THE GROUP CONSISTING OF SULFONIC ACIDS AND PHOSPHONIC ACIDS WITH A TRIALKYL ORTHOESTER OF A MONOCARBOXYLIC ACID OF FROM ONE TO FIVE CARBON ATOMS IN WHICH EACH ALKYL GROUP CONTAINS FROM ONE TO SIX CARBON ATOMS INCLUSIVE AND RECOVERING THE ALKYL ESTER OF THE SAID ACID SELECTED FROM THE GROUP CONSISTING OF SULFONIC ACIDS AND PHOSPHONIC ACIDS SO PRODUCED.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US744002A US2928859A (en) | 1958-06-23 | 1958-06-23 | Alkylation of acids with alkyl orthocarboxylates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US744002A US2928859A (en) | 1958-06-23 | 1958-06-23 | Alkylation of acids with alkyl orthocarboxylates |
Publications (1)
Publication Number | Publication Date |
---|---|
US2928859A true US2928859A (en) | 1960-03-15 |
Family
ID=24991044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US744002A Expired - Lifetime US2928859A (en) | 1958-06-23 | 1958-06-23 | Alkylation of acids with alkyl orthocarboxylates |
Country Status (1)
Country | Link |
---|---|
US (1) | US2928859A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3255227A (en) * | 1962-08-10 | 1966-06-07 | Hooker Chemical Corp | Pentachlorocyclopentadienyl carbinols, esters thereof and process of manufacture |
US3325569A (en) * | 1962-08-07 | 1967-06-13 | Alelio Gaetano F D | Halogen-containing phosphonates |
US3433653A (en) * | 1966-08-31 | 1969-03-18 | Drager Otto H | Transparent plastic antifogging viewing glass containing a plasticizer which becomes a wetting agent by being hydrolyzed when contacted with water |
US4059656A (en) * | 1975-04-25 | 1977-11-22 | Produits Chimiques Ugine Kuhlmann | Processes for neutralizing 2,3-dibromopropanol phosphoric acid esters contained in tris(2,3-dibromo-1-propyl) phosphate |
US4659854A (en) * | 1986-06-02 | 1987-04-21 | Stauffer Chemical Company | Method of preparing dialkylphenylphosphonates |
US20090087635A1 (en) * | 2005-04-15 | 2009-04-02 | Kaneka Corporation | Curable Composition and Cured Article Excellent in Transparency |
US20090281253A1 (en) * | 2005-09-30 | 2009-11-12 | Kaneka Corporation | Curable composition improved in curability and storage stability |
CN102659645A (en) * | 2012-05-04 | 2012-09-12 | 上海晶纯实业有限公司 | Method for synthesizing ethylmethane sulfonate |
CN102746200A (en) * | 2012-07-18 | 2012-10-24 | 中国科学院福建物质结构研究所 | Synthesis method of alkyl disulfonate |
-
1958
- 1958-06-23 US US744002A patent/US2928859A/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3325569A (en) * | 1962-08-07 | 1967-06-13 | Alelio Gaetano F D | Halogen-containing phosphonates |
US3255227A (en) * | 1962-08-10 | 1966-06-07 | Hooker Chemical Corp | Pentachlorocyclopentadienyl carbinols, esters thereof and process of manufacture |
US3433653A (en) * | 1966-08-31 | 1969-03-18 | Drager Otto H | Transparent plastic antifogging viewing glass containing a plasticizer which becomes a wetting agent by being hydrolyzed when contacted with water |
US4059656A (en) * | 1975-04-25 | 1977-11-22 | Produits Chimiques Ugine Kuhlmann | Processes for neutralizing 2,3-dibromopropanol phosphoric acid esters contained in tris(2,3-dibromo-1-propyl) phosphate |
US4659854A (en) * | 1986-06-02 | 1987-04-21 | Stauffer Chemical Company | Method of preparing dialkylphenylphosphonates |
US20090087635A1 (en) * | 2005-04-15 | 2009-04-02 | Kaneka Corporation | Curable Composition and Cured Article Excellent in Transparency |
US8759435B2 (en) | 2005-04-15 | 2014-06-24 | Kaneka Corporation | Curable composition and cured article excellent in transparency |
US20090281253A1 (en) * | 2005-09-30 | 2009-11-12 | Kaneka Corporation | Curable composition improved in curability and storage stability |
CN102659645A (en) * | 2012-05-04 | 2012-09-12 | 上海晶纯实业有限公司 | Method for synthesizing ethylmethane sulfonate |
CN102746200A (en) * | 2012-07-18 | 2012-10-24 | 中国科学院福建物质结构研究所 | Synthesis method of alkyl disulfonate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2928859A (en) | Alkylation of acids with alkyl orthocarboxylates | |
US2425766A (en) | Unsaturated alkyl esters of alkenyl phosphonic acids | |
US2135641A (en) | Esters of c-dialkylglycines | |
US3627841A (en) | Cyclic polymeric chloromethylphenoxy phosphonitriles | |
US2226645A (en) | Manufacture of methacrylic acid and esters thereof | |
US2525249A (en) | Making alkoxy isobutyric acids and derivatives thereof | |
US2970166A (en) | Preparation of trimethyl phosphite and triethyl phosphite | |
EP0075289B1 (en) | Process for making allylic esters of tetrabromophthalic acid | |
US2101821A (en) | Manufacture of unsaturated or ganic compounds | |
US3830862A (en) | Reactions involving carbon tetrahalides with sulfones | |
US2575225A (en) | Preparation of o-alkyl dichlorothiophosphates | |
US2866816A (en) | Production of aryloxy compounds | |
US4529559A (en) | Process for making derivatives of vinylphosphonic acid or vinylpyrophosphonic acid | |
US3136800A (en) | Method for producing hydroxythiobenzoic acids and esters thereof | |
KR19980064331A (en) | New intermediates | |
US2548025A (en) | Method for the production of di-esters of succinic acid | |
JPS6126772B2 (en) | ||
US3373210A (en) | Process for the production of alkylphenols | |
US3644602A (en) | Process for producing trialkyl phosphates | |
US2663721A (en) | Preparation of o, o-dialkyl o-para nitrophenyl thiophosphate esters | |
US3492337A (en) | Process for the preparation of alkyl 4-ketoalkanoates | |
Kaiser et al. | Alcoholysis of Esters with Aluminum Alcoholates1 | |
US2789133A (en) | Alkoxypentenyl sulfonates | |
US3110727A (en) | Method of producing methylphosphonic acid and derivatives | |
US2429452A (en) | Bis (cyano methyl propyl) sulfide |