US3273640A - Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ - Google Patents
Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ Download PDFInfo
- Publication number
- US3273640A US3273640A US330334A US33033463A US3273640A US 3273640 A US3273640 A US 3273640A US 330334 A US330334 A US 330334A US 33033463 A US33033463 A US 33033463A US 3273640 A US3273640 A US 3273640A
- Authority
- US
- United States
- Prior art keywords
- steam
- oil shale
- oil
- pressure
- shale
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 32
- 230000008569 process Effects 0.000 title claims description 28
- 239000004058 oil shale Substances 0.000 title description 52
- 238000011065 in-situ storage Methods 0.000 title description 13
- 239000003039 volatile agent Substances 0.000 title description 9
- 230000035699 permeability Effects 0.000 title description 5
- 238000004519 manufacturing process Methods 0.000 claims description 32
- 238000002347 injection Methods 0.000 claims description 25
- 239000007924 injection Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 230000015572 biosynthetic process Effects 0.000 claims description 21
- 238000000197 pyrolysis Methods 0.000 claims description 18
- 239000012530 fluid Substances 0.000 claims description 17
- 238000006555 catalytic reaction Methods 0.000 claims description 15
- 239000001257 hydrogen Substances 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 10
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 claims description 7
- 239000003921 oil Substances 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 21
- 239000012808 vapor phase Substances 0.000 description 14
- 229930195733 hydrocarbon Natural products 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 12
- 239000011435 rock Substances 0.000 description 12
- 238000009833 condensation Methods 0.000 description 11
- 230000005494 condensation Effects 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 239000003079 shale oil Substances 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- 239000011269 tar Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 235000015076 Shorea robusta Nutrition 0.000 description 3
- 244000166071 Shorea robusta Species 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000009738 saturating Methods 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000003863 physical function Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011289 tar acid Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
Definitions
- This invention relates to improvements in the in situ exploitation of oil shale and other hydrocarbonaceous impregnations and particularly relates to the pyrolysis, destructive steam distillation and to the initial vapor phase catalytic hydrogenation of the volatile matter.
- This invention further relates to the production of a primary condensate oil which is substantially free of reactive hydrocarbon unsaturates and of oxygeneated organic compounds and which is, therefore, essentially stable in respect to molecular size.
- Rocky Mountain oil shale is an impervious and impermeable laminar sequence of magnesium marlstone containing very finely divided grains of hydrocarbonaceous solids which are petrographically similar to certain constituents of cannel and boghead coals.
- Oil shale resembles dark colored marble and has a hardness of about five on Mohs scale, which is about as hard as window glass. Its shear strength perpendicular to the bedding planes is 3000 to 4600 pounds per square inch, while parallel to the bedding planes, its shear strength is only 900 to 1800 pounds per square inch. Its tensile strength is 340 to 800 pounds per square inch.
- the hydrocarbonaceous matter called kerogen is a mixture of amorphous, structureless solids ranging in color from yellow to brown or black. Occasional identifiable pollen grains, spores and microfos'sils are embedded in the organic matter. Only about 15 percent of it is soluble in common solvent such as benzene at moderate temperatures and pressures. Despite extreme variation in richness of the various beds, the composition of kerogen is fairly constant as is represented by the following data:
- the porisity of the calcine ranges from 15 to 40 percent. Because the primary mineral matter (chiefly volcanic dust) has an average grain size between 0.5 and 50 microns, the pore size is very small, being for the most part between ten and one-tenth microns. Obviously, this host rock can be considered permeable only to gases and vapors at low pressures and to liquids only at very high differential pressures.
- Oil recovered from oil shale by destructive distillation retains most of the oxygen, sulfur and nitrogen oc curring in the original kerogen and these elements, for the most part, are found in chemically functional groups, attached to what otherwise would be pure hydrocarbon molecules. Because of the disproportionating reactions of thermal cracking which accompany pyrolysis, about half of the hydrocarbon molecules in typical shale oil vapors are characterized by at least one double bond due to the insufliciency of hydrogen. These characteristics produce a highly reactive mixture of tar acids, tar bases, organic compounds of sulfur and unstable hydrocarbons which combine to form the typical molecular complex which is commonly called shale oil.
- shale oil produced by any other means than the inventions therein described is highly reactive and unstable.
- the condensate When allowed to condense from the initial vapor phase, the condensate immediately begins to change its molecular structure by polymerization of olefins and by intermolecular reaction between olefins, tar bases, tar acids and organic sulfur compounds.
- re-distillation yields some 50 to 60 percent of residuum having a molecular weight in the order of 200 to 5000 and even higher and which is solid at room temperature.
- the host rock must become permeable to steam and to oil vapors and to gases immediately above and below the horizontal plane made pervious by sand fracturing.
- a driving or extracting force must be provided which Will expel the recoverable substances from the host rock, and at the same time, perform as a displacing medium to effectively prevent the re-impregnation of the once-impoverished host.
- the entraining steam must be largely condensed at a temperature and pressure at which the greater part of the oil vapors remain in the vapor phase in order to reduce the partial pressure of steam before catalysis.
- the initial oil vapors must be reheated to catalytic temperature, mixed with preheated hydrogen and led over sufficient catalyst to fix oxygen, nitrogen and sulfur as hydrides and to saturate the more reactive olefins.
- FIG. 1 is a schematic view in vertical section through the ground and a strata of oil shale showing injection and production boreholes therein.
- FIG. 2 is a flow sheet diagram of the processing of steam entrained oil shale volatiles of this invention.
- FIG. 3 is a diagrammatic representation of the pattern of drilling the production and injection boreholes.
- FIG. 4 is a graph of steam pressure against temperature showing the steam saturation curve and illustrating the temperature and pressure limits within which the process operates.
- FIG. 5 is a graph of pressure against time illustrating the pre-heating of the host rock and the pulsating pressure applied to the host by the process of this invention.
- FIG. 1 an injection well 10 and a production Well 12. These wells are produced by drilling an injection borehole 14 and a production borehole 16 from the surface of the ground through a known strata of oil shale 18.
- the wells 10 and 12 will have casings 20 and 24 respectively which are placed and cemeted at 22 and 26 respectively to be gas tight to just about the top of the oil shale formation 18 under exploitation.
- the oil shale formation 18 will have a number of planes of weakness which may be opened up between the injection well 10 and production Well 12 by sand fracturing methods as are known in the art.
- FIG. 1 there is graphically illustrated a bedding plane 29 which has been sand fractured by processes known in the art to provide a series of horizontal pervious planes tributary between the boreholes. The pressure parting is accomplished by inserting granular material and the planes are held open by the granular material within the parted planes as is known in the oil field production practice art.
- the borehole 20 has three fluid conduits 32, 34 and 36 therein controlled by valves 33, 35 and 37 respectively.
- production well 12 has fluid conduits 40, 42 and 44 controlled by valves 41, 43 and 45.
- Fluid is injected through conduit'32 under the control of valve 33, vapors may be withdrawn if desired from conduit 34 under control of valve 35 and liquids such as water condensate may be Withdrawn through deep pipe 36 by a pump or the like under the control of valve 37.
- the vapors including steam entrained oil shale volatiles may pass out conduit 42 under the control of valve 43, additional fluid may be injected if desired through conduit 40 under the control of valve 41 and condensate may be removed through deep pipe 44 under the control of valve 45.
- the next step in the process is pre-heating the formation including the sides of the parted plane 29 by pumping hot water at substantially steam saturation temperature in through one of the pipes in injection Well 10 and removed through pipe 44 in production well 12.
- Water at a high temperature is used for pre-heating due to the superior heat transfer characteristics of water over that provided by a gas or vapor such as steam.
- the water is preferably at a temperature within the range of 400 to 550 F. That is, the temperature of the Water is above the temperature at which excessive condensation of the oil entrained vapors in steam might occur. That is, the formation must be pre-heated to a temperature such that the steam and oil entrained vapors would not condense. As shown in the steam saturation curve of FIG.
- the upper limit of pre-heating by the water is the temperature at which pyrolysis of the oil shale 18 begins, i.e., in the order of 550 to 600 F. It is however desirable to preheat as high as possible with pressurized water as it provides more efficient heat transfer as noted above.
- the hot water is removed through pipe 44 and the recovery of the volatiles from i the shale formation begins by introducing superheated steam through pipe 32 under the control of valve 33 to raise the temperature of the oil shale in the formation 18 to about 825, or at least to a temperature sufficient to accomplish pyrolysis or distillation of the kerogen entrained within the shale.
- the pyrolyzed shale will leave certain voids and the shortest paths for steam penetration into the voids are those which extend transversely to the plane of parting 29, and since the plane of parting is substantially horizontal, the interstices in the shortest path will be perpendicular thereto; hence, the portion of the title, Perpendicular Permeability.
- the next step in the process is for promoting permeability and for obtaining an output from the formation above and below the parted plane or seam 29 by a pulsing eflect applied to the superheated steam.
- This is graphically illustrated in FIG. 5 wherein the pressure after pre-heating is pulsed with respect to time so that with high pressure the steam penetrates into the voids and edges of the oil shale formation in the bedding plane and then the pressure is lowered to allow flow out of the formation and on out of the production well.
- the highest pressure in the pressure pulsing is about equal to rock pressure (which may be roughly figured as approximately 1 p.s.i. per 'foot of overburden).
- the lowest pressure of the pressure pulsing is, in the illustrated example, between 325 and 350 p.s.i. which is the minimum system pressure which will allow separation of vapor phase oils from liquid water in the partial condenser 46 without execessive condensation of oil vapors. See the saturation curve of FIG. 4.
- the high pressure pulsing is [for first penetrating to open up the tributaries to the plane of parting and put the oil shale in the vapor phase by pyrolysis while the second and lower pressure cycle is to force the steam entrained volatiles to the major pervious plane and make the host rock more permeable for the next penetration by high pressure steam.
- the pulsating pressure allows the oil shale entrained vapors and steam to be bled toward the production well 12 by the driving and extracting force and especially the extracting force of the pressure pulsing steam.
- the next step in the process is to separate a certain portion of the steam entraining the oil vapors from the vapors by condensing the entraining steam at a temperature and pressure sufficient so that the oil vapors remain in the vapor phase.
- This step is accomplished in order to reduce the partial pressure of steam before a later step of catalysts and it is necessary that the oil vapors remain in the vapor phase.
- This step may be accomplished partially in the upper portion of production well 24 by cooling the output pipe 42 or may be accomplished as illustrated in a separate condenser shown in FIG. 2.
- the steam entrained vapors at output pressure and temperature are taken off line 42 under the control of valve 43 and passed to a condenser 46.
- This condenser accomplishes partial steam condensation at the output pressure and at steam saturation temperature and the condensed steam is drawn off as water through line 48.
- the oil vapors exhibit a much higher partial pres.- sure while still entrained in some steam at saturation temperature, are passed through line 50 to heater 52 wherein a source of heat is utilized to raise the vapors in temperature to that beneficial for a subsequent step of catalysis. This temperature will be within the range of 600 F. to 1300" F.
- the heated vapors then are removed from the heater through lines 56 and are joined by heated hydrogen 54 and the heated hydrogen and oil shale vapors in the vapor phase are passed to catalysis chambers illustrated schematically at 58.
- catalysis chambers illustrated schematically at 58.
- the purpose of catalysis of the oil shale vapors while still in the vapor phase is set forth more in detail in my co-pending application Serial No. 307,162, referenced above ⁇ and in essence it is so that the olefins may be saturated.
- conventional shale oil may contain approximately 40% olefins which combine with each other and with oxygenated compounds to form unmanageable polymers.
- a solid catalyst such as suitably supported cob'alt molybdate or the best solid non-poisoning catalyst known in the art for the use of saturating olefins in producing stable hydrocarbons
- the stabilized distillate is then drawn through line 60 and passed to a primary fractionator 62 of the type known in the art.
- a primary fractionator 62 of the type known in the art.
- From the bottom of the fractionator 64 may be withdrawn the plus 400 F. fuel oils while the gasoline fraction may be taken off line 66 of the fractionator and passed to an acid wash to remove pyridine and its homologs and any other basic compounds.
- the 200 F. overhead from the fractionator passes out through line 68 to a condenser 70.
- the condensate from condenser 70 passes to a water separator 72 where water is separated from light oils, the water being taken off line 74 and the light oils off line 76.
- the permanent gases from condenser 70 are taken through line 78 to agas scrubber 80 for absorbing most of the carbon dioxide, carbon monoxide, H S and NH These dissolved and combined gases are removed with liquids through line 82 and the remaining permanent gases passed through line 84 to a hydrocarbon absorber system 86 to remove the hydrocarbon gases through line 88 leaving only substantially hydrogen to be taken ofl line 90 and this hydrogen may then be re-heated by waste heat in the system and recycled to line 54 to be used in the system.
- the pipes may be moved upwardly a predetermined distance and cement, such as shown in holes 10 and 12 as cement plugs 133 and 135 respectively, may be filled in to cover the exploited seam 29.
- cement such as shown in holes 10 and 12 as cement plugs 133 and 135 respectively
- another bedding plane illustrated diagrammatically in 31 may be opened up by sand fracturing and the process repeated on the next adjacent desirable bedding plane.
- plane 27 has already been worked and has been sealed off as shown by the cement 133 and 135.
- the system will not leak substantial amounts of the pre-heating hot water or the driving and entraining steam due to the nature of the oil shale which is quite hard and impermeable in its natural state. Where sealing of pervious zones becomes necessary, conventional methods are applicable.
- the arrangement of production and injection wells 12 and 10 shown in FIG. 3 is one possible arrangement drilling on .a hexagonal pattern wherein each of the injection wells drives the distilled steam entrained vapors toward any one of the six production wells by selective valving arrangements.
- An in situ process for winning oil shale from an oil shale formation including a production bore hole and an injection bore hole drilled therein, as well as a path of lateral fluid communication through the otherwise impervious oil shale between the production and injection bore holes, the process comprising;
- a process as defined in claim 2 further comprising heating the oil shale vapors to .a temperature beneficial to catalysis before the contact catalysis step and also preheating hydrogen prior to contact catalysis.
- a process as defined in claim 2 further comprising pre-heating the path of lateral fluid communication through the shale by hot water prior to introducing steam.
- An in situ process for winning stabilized primary volatiles from oil shale by pressure pulsing techniques comprising; providing at least one injection well and one production well, pressure parting a bedding plane in the in situ oil shale formation between the injection and production wells, pre-heating the formation on the sides of the parted plane to a temperature between a lower temperature at which there would be excessive condensation of steam and oil entrained vapors and an upper limit at which pyrolysis of the oil shale formation begins, further heating the oil shale adjacent the parted plane after said pre-heating with superheated steam injected into the oil shale via the injection well to a temperature suflicient to cause pyrolysis of the host oil shale, cyclically varying the pressure of the superheated steam to open up tributaries perpendicular to the plane of parting and volatilize the oil shale and to displace the steam and make the host formation permeable, bleeding the steam and oil 5 shale entrained vapor
- An in situ process for winning stabilized primary volatiles from oil shale by pressure pulsing techniques comprising drilling at least one injection and one production well, pressure parting and holding open a bedding plane in the oil shale formation between injection and production wells, pre-heating the formation on the sides of the parted planes by means of hot water to a temperature between the lowest temperature in which there would be excessive condensation of oil, and an upper temperature at which pyrolysis of the oil shale begins, in the order of 550 F., removing the pre-heating hot water, further heating the oil shale adjacent the parted plane after said pre-heating by injecting superheated steam into the oil shale via the injection well at a temperature suflicient to cause pyrolysis of the host oil shale, in the order of 850 F.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Sept 20 1966 n M. G. HUNTINGTON 3 27 PREaSURE PULSLNG PERPENDIGULAR PERMEABILITY PROCESS P055 WINNING STABILIZED PRIMARY VOLATILES FROM OIL SHA Flled Dec. 13, 1963 LE IN SITU 2 Sheets-Sheet 1 M J an STEAM PRESSURE PSlA ATTORNEYS United States Patent 3,273,640 PRESSURE PULSING PERPENDICULAR PERME- ABILITY PROCESS FOR WINNING STABILIZED PRIMARY VOLATILES FROM OIL SHALE IN SITU Morgan G. Huntington, Galesville, Md., assignor to Pyrochem Corporation, Salt Lake City, Utah, a
corporation of Utah Filed Dec. 13, 1963, Ser. No. 330,334 9 Claims. (Cl. 1667) This invention relates to improvements in the in situ exploitation of oil shale and other hydrocarbonaceous impregnations and particularly relates to the pyrolysis, destructive steam distillation and to the initial vapor phase catalytic hydrogenation of the volatile matter. This invention further relates to the production of a primary condensate oil which is substantially free of reactive hydrocarbon unsaturates and of oxygeneated organic compounds and which is, therefore, essentially stable in respect to molecular size.
Although a very great deal of engineering knowledge has been accumulated in the exploitation of various types of liquid petroleum reservoirs, very little of such conventional oil field experience is immediately and directly applicable to the in situ winning of oil from such impervious and benzene insoluble impregnations as the Rocky Mountain oil shales.
No in situ shale oil recovery process has so far been successfully demonstrated. A number of retorting systems which involve mining, crushing and heating the shale in the absence of air have established the fact that about two-thirds of the initial calorific value of the shale is slowly converted to condensable oil vapors upon heating to a temperature of about 700 F. and more rapidly converted between 800 and 900 F. One-third of the remainder is in the form of permanent hydrocarbon gases and the balance of the original heating value is retained as a coke polymer in the calcined host. About 300 B.t.u. of heat is absorbed per pound of shale during the processes of pyrolysis and of destructive distillation above 800 F. but below the temperature of carbonate destruction which begins above 1150 P.
All grades and types of shale oil which have so far been extracted from Rocky Mountain oil shales by potentially large scale processes, other than those methods disclosed by the present inventor, are less valuable than commercial grades of petroleum because of the lower gasoline yield and because of excessive processing and investment costs. The inferior quality of all previously produced shale oil is due particularly to the average high molecular weight of compounds formed in such oils by intermolecular reaction subsequent to pyrolysis and distillation and which have been allowed to condense from the vapor phase without prior catalytic hydro-stabilization.
While it is well known that kerogen, the impregnating hydrocarbonaceous solid material which occurs in the Rocky Mountain magnesium marls commonly called oil shales can be largely converted to benzene-soluble liquids by heating, a second and a very serious problem of physical recovery remains to be solved. In order to extract fluids from impregnated rock hosts through bore holes drilled therein, two conditions must be met as is the case in all oil field practice: (1) The impregnated material must be permeable to the fluid, and (2) some kind of driving and/or displacing force, such as gas, Water or gravity, must already exist in the reservoir or it must be artifiicially supplied.
Rocky Mountain oil shale is an impervious and impermeable laminar sequence of magnesium marlstone containing very finely divided grains of hydrocarbonaceous solids which are petrographically similar to certain constituents of cannel and boghead coals. Oil shale resembles dark colored marble and has a hardness of about five on Mohs scale, which is about as hard as window glass. Its shear strength perpendicular to the bedding planes is 3000 to 4600 pounds per square inch, while parallel to the bedding planes, its shear strength is only 900 to 1800 pounds per square inch. Its tensile strength is 340 to 800 pounds per square inch.
The hydrocarbonaceous matter called kerogen is a mixture of amorphous, structureless solids ranging in color from yellow to brown or black. Occasional identifiable pollen grains, spores and microfos'sils are embedded in the organic matter. Only about 15 percent of it is soluble in common solvent such as benzene at moderate temperatures and pressures. Despite extreme variation in richness of the various beds, the composition of kerogen is fairly constant as is represented by the following data:
It should be noted that part of the kerogen bears a remarkable and close resemblance to the petrographic constituents of certain high volatile coals. (Compare Bureau of Mines Technical Paper 642.) This is not unexpected since geologically, the origins of oil shale and coal are similar in that they are both fresh water deposits and the organic content of each is the result of vegetable matter decaying and coalifying in place.
Following the destructive distillation of oil shale at 800 F.900 F., the porisity of the calcine ranges from 15 to 40 percent. Because the primary mineral matter (chiefly volcanic dust) has an average grain size between 0.5 and 50 microns, the pore size is very small, being for the most part between ten and one-tenth microns. Obviously, this host rock can be considered permeable only to gases and vapors at low pressures and to liquids only at very high differential pressures. I
Oil recovered from oil shale by destructive distillation retains most of the oxygen, sulfur and nitrogen oc curring in the original kerogen and these elements, for the most part, are found in chemically functional groups, attached to what otherwise would be pure hydrocarbon molecules. Because of the disproportionating reactions of thermal cracking which accompany pyrolysis, about half of the hydrocarbon molecules in typical shale oil vapors are characterized by at least one double bond due to the insufliciency of hydrogen. These characteristics produce a highly reactive mixture of tar acids, tar bases, organic compounds of sulfur and unstable hydrocarbons which combine to form the typical molecular complex which is commonly called shale oil.
As disclosed in my Patent 3,106,521, granted October 8, 1963, and in my co-pending application Serial No. 307,162, filed September 6, 1963, shale oil produced by any other means than the inventions therein described is highly reactive and unstable. When allowed to condense from the initial vapor phase, the condensate immediately begins to change its molecular structure by polymerization of olefins and by intermolecular reaction between olefins, tar bases, tar acids and organic sulfur compounds. As -a result, re-distillation yields some 50 to 60 percent of residuum having a molecular weight in the order of 200 to 5000 and even higher and which is solid at room temperature. The distillation of shale oil by all processes except that of the present invention, my co-pending application Serial No. 307,162 and of my Patent 3,106,521, noted above, produces about 40 percent of light fraction and about 60 percent of very heavy residuum. The lighter fraction, which boils below 600 F., invariably consists of 40 to 50% of unsaturated and very reactive hydrocarbons. These olefins, if not saturated by hydrogen immediately, combine with themselves and other hydrocarbon molecules to form high molecular weight complexes which are not readily covnerted into marketable products.
It is a principal object of this invention to inject heated hydrogen into the extracted primary shale oil vapors and to maintain most of the organic vapors at a sufliciently high temperature to prevent condensation before and while being led over suitable solid catalysts to promote the saturation of olefins into hydrocarbons and to remove all organically combined oxygen as water vapor and thereby destroy the tar acid content of the vapors before condensation occurs; and it is particularly an object of this invention to prevent subsequent liquid phase polymerization and intermolecular reactions so far as is lymerization and intermolecular reactions so far as is possible by completing substantial catalytic hydrogenation before allowing the steam-entrained vapors to condense from the initial vapor phase.
The physical functions of this process invention may incorporate some or all of the controlled rock-parting principles disclosed in my US. Patent No. 2,969,226 when the object is to exploit a sequence of selected strata and to maximize the horizontal area exploited from each borehole.
In order to extract valuable hydrocarbons from oil shale by the in situ means of this invention, it is first necessary to establish fluid flow of a thermal carrier medium such as hot water and/or steam, through a pressure parted and sand fractured plane of weakness between an injection borehole and one or more production 'wells, as is known in oil field art. Secondly, it is necessary to preheat the host shale adjacent to the parted seam and the boreholes and conduits to a temperature above that at which most all vapors condense but below that temperature at which appreciable and rapid pyrolysis occurs. Thirdly, the host rock must be further heated to a temperature at which the organic impregnation converts to oil vapors, gas and residual carbon. Fourth, the host rock must become permeable to steam and to oil vapors and to gases immediately above and below the horizontal plane made pervious by sand fracturing. Fifth, a driving or extracting force must be provided which Will expel the recoverable substances from the host rock, and at the same time, perform as a displacing medium to effectively prevent the re-impregnation of the once-impoverished host. Sixth, the entraining steam must be largely condensed at a temperature and pressure at which the greater part of the oil vapors remain in the vapor phase in order to reduce the partial pressure of steam before catalysis. Seventh, the initial oil vapors must be reheated to catalytic temperature, mixed with preheated hydrogen and led over sufficient catalyst to fix oxygen, nitrogen and sulfur as hydrides and to saturate the more reactive olefins.
Other objects of the invention will be pointed out in the following description and claims and illustrated in the accompanying drawings, which disclose, by way of example, the principle of the invention and the best mode which has been contemplated of applying that principle.
In the drawings:
FIG. 1 is a schematic view in vertical section through the ground and a strata of oil shale showing injection and production boreholes therein.
FIG. 2 is a flow sheet diagram of the processing of steam entrained oil shale volatiles of this invention.
FIG. 3 is a diagrammatic representation of the pattern of drilling the production and injection boreholes.
FIG. 4 is a graph of steam pressure against temperature showing the steam saturation curve and illustrating the temperature and pressure limits within which the process operates.
FIG. 5 is a graph of pressure against time illustrating the pre-heating of the host rock and the pulsating pressure applied to the host by the process of this invention.
Referring now to the drawings for a description in detail of the process of this invention, there is shown in FIG. 1 an injection well 10 and a production Well 12. These wells are produced by drilling an injection borehole 14 and a production borehole 16 from the surface of the ground through a known strata of oil shale 18.
The wells 10 and 12 will have casings 20 and 24 respectively which are placed and cemeted at 22 and 26 respectively to be gas tight to just about the top of the oil shale formation 18 under exploitation.
The oil shale formation 18 will have a number of planes of weakness which may be opened up between the injection well 10 and production Well 12 by sand fracturing methods as are known in the art. In the illustration in FIG. 1 there is graphically illustrated a bedding plane 29 which has been sand fractured by processes known in the art to provide a series of horizontal pervious planes tributary between the boreholes. The pressure parting is accomplished by inserting granular material and the planes are held open by the granular material within the parted planes as is known in the oil field production practice art.
The borehole 20 has three fluid conduits 32, 34 and 36 therein controlled by valves 33, 35 and 37 respectively. Similarly, production well 12 has fluid conduits 40, 42 and 44 controlled by valves 41, 43 and 45. Fluid is injected through conduit'32 under the control of valve 33, vapors may be withdrawn if desired from conduit 34 under control of valve 35 and liquids such as water condensate may be Withdrawn through deep pipe 36 by a pump or the like under the control of valve 37. In the production well 12, the vapors including steam entrained oil shale volatiles may pass out conduit 42 under the control of valve 43, additional fluid may be injected if desired through conduit 40 under the control of valve 41 and condensate may be removed through deep pipe 44 under the control of valve 45.
After parting the plane of weakness 29, the next step in the process is pre-heating the formation including the sides of the parted plane 29 by pumping hot water at substantially steam saturation temperature in through one of the pipes in injection Well 10 and removed through pipe 44 in production well 12. Water at a high temperature is used for pre-heating due to the superior heat transfer characteristics of water over that provided by a gas or vapor such as steam. The water is preferably at a temperature within the range of 400 to 550 F. That is, the temperature of the Water is above the temperature at which excessive condensation of the oil entrained vapors in steam might occur. That is, the formation must be pre-heated to a temperature such that the steam and oil entrained vapors would not condense. As shown in the steam saturation curve of FIG. 4, this would be about 425 at 325 p.s.i.g. The upper limit of pre-heating by the water is the temperature at which pyrolysis of the oil shale 18 begins, i.e., in the order of 550 to 600 F. It is however desirable to preheat as high as possible with pressurized water as it provides more efficient heat transfer as noted above.
After the pre-heating step, the hot water is removed through pipe 44 and the recovery of the volatiles from i the shale formation begins by introducing superheated steam through pipe 32 under the control of valve 33 to raise the temperature of the oil shale in the formation 18 to about 825, or at least to a temperature sufficient to accomplish pyrolysis or distillation of the kerogen entrained within the shale.
The pyrolyzed shale will leave certain voids and the shortest paths for steam penetration into the voids are those which extend transversely to the plane of parting 29, and since the plane of parting is substantially horizontal, the interstices in the shortest path will be perpendicular thereto; hence, the portion of the title, Perpendicular Permeability.
The next step in the process is for promoting permeability and for obtaining an output from the formation above and below the parted plane or seam 29 by a pulsing eflect applied to the superheated steam. This is graphically illustrated in FIG. 5 wherein the pressure after pre-heating is pulsed with respect to time so that with high pressure the steam penetrates into the voids and edges of the oil shale formation in the bedding plane and then the pressure is lowered to allow flow out of the formation and on out of the production well. The highest pressure in the pressure pulsing is about equal to rock pressure (which may be roughly figured as approximately 1 p.s.i. per 'foot of overburden). The lowest pressure of the pressure pulsing is, in the illustrated example, between 325 and 350 p.s.i. which is the minimum system pressure which will allow separation of vapor phase oils from liquid water in the partial condenser 46 without execessive condensation of oil vapors. See the saturation curve of FIG. 4. In essence, the high pressure pulsing is [for first penetrating to open up the tributaries to the plane of parting and put the oil shale in the vapor phase by pyrolysis while the second and lower pressure cycle is to force the steam entrained volatiles to the major pervious plane and make the host rock more permeable for the next penetration by high pressure steam.
The pulsating pressure allows the oil shale entrained vapors and steam to be bled toward the production well 12 by the driving and extracting force and especially the extracting force of the pressure pulsing steam.
The next step in the process is to separate a certain portion of the steam entraining the oil vapors from the vapors by condensing the entraining steam at a temperature and pressure sufficient so that the oil vapors remain in the vapor phase. This step is accomplished in order to reduce the partial pressure of steam before a later step of catalysts and it is necessary that the oil vapors remain in the vapor phase. This step may be accomplished partially in the upper portion of production well 24 by cooling the output pipe 42 or may be accomplished as illustrated in a separate condenser shown in FIG. 2.
As shown in FIG. 2, the steam entrained vapors at output pressure and temperature are taken off line 42 under the control of valve 43 and passed to a condenser 46. This condenser accomplishes partial steam condensation at the output pressure and at steam saturation temperature and the condensed steam is drawn off as water through line 48. As a result of such condensation of steam the oil vapors exhibit a much higher partial pres.- sure while still entrained in some steam at saturation temperature, are passed through line 50 to heater 52 wherein a source of heat is utilized to raise the vapors in temperature to that beneficial for a subsequent step of catalysis. This temperature will be within the range of 600 F. to 1300" F.
The heated vapors then are removed from the heater through lines 56 and are joined by heated hydrogen 54 and the heated hydrogen and oil shale vapors in the vapor phase are passed to catalysis chambers illustrated schematically at 58. The purpose of catalysis of the oil shale vapors while still in the vapor phase is set forth more in detail in my co-pending application Serial No. 307,162, referenced above \and in essence it is so that the olefins may be saturated.
Without prompt vapor phase hydrogenation, conventional shale oil may contain approximately 40% olefins which combine with each other and with oxygenated compounds to form unmanageable polymers. However, if the shale oil distillate is kept in the vapor phase and hydrogen is added thereto and vapors are passed through and over a solid catalyst (such as suitably supported cob'alt molybdate or the best solid non-poisoning catalyst known in the art for the use of saturating olefins in producing stable hydrocarbons) then the beneficial result mentioned above will occur. This same type of contact catalysis removes organic oxygen as water vapor almost as readily thereby eliminating tar acids.
The stabilized distillate is then drawn through line 60 and passed to a primary fractionator 62 of the type known in the art. From the bottom of the fractionator 64 may be withdrawn the plus 400 F. fuel oils while the gasoline fraction may be taken off line 66 of the fractionator and passed to an acid wash to remove pyridine and its homologs and any other basic compounds. The 200 F. overhead from the fractionator passes out through line 68 to a condenser 70. The condensate from condenser 70 passes to a water separator 72 where water is separated from light oils, the water being taken off line 74 and the light oils off line 76. The permanent gases from condenser 70 are taken through line 78 to agas scrubber 80 for absorbing most of the carbon dioxide, carbon monoxide, H S and NH These dissolved and combined gases are removed with liquids through line 82 and the remaining permanent gases passed through line 84 to a hydrocarbon absorber system 86 to remove the hydrocarbon gases through line 88 leaving only substantially hydrogen to be taken ofl line 90 and this hydrogen may then be re-heated by waste heat in the system and recycled to line 54 to be used in the system.
After one plane 29 has been operated on, the pipes may be moved upwardly a predetermined distance and cement, such as shown in holes 10 and 12 as cement plugs 133 and 135 respectively, may be filled in to cover the exploited seam 29. Then another bedding plane illustrated diagrammatically in 31 may be opened up by sand fracturing and the process repeated on the next adjacent desirable bedding plane. In a similar manner, plane 27 has already been worked and has been sealed off as shown by the cement 133 and 135. The system will not leak substantial amounts of the pre-heating hot water or the driving and entraining steam due to the nature of the oil shale which is quite hard and impermeable in its natural state. Where sealing of pervious zones becomes necessary, conventional methods are applicable.
The arrangement of production and injection wells 12 and 10 shown in FIG. 3 is one possible arrangement drilling on .a hexagonal pattern wherein each of the injection wells drives the distilled steam entrained vapors toward any one of the six production wells by selective valving arrangements.
While there have been shown and described and pointed out the fundamental novel features of the invention as applied to the preferred embodiment, it will be understood that various omissions and substitutions and changes in the form and details of the device illustrated and in its operation may be made by those skilled in the art without departing from the spirit of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the following claims.
What is claimed is:
1. An in situ process for winning oil shale from an oil shale formation, the formation including a production bore hole and an injection bore hole drilled therein, as well as a path of lateral fluid communication through the otherwise impervious oil shale between the production and injection bore holes, the process comprising;
(a) preheating the oil shale adjacent the path of lateral fluid communication with hot water to a temperature just below that at which pyrolysis of the oil shale begins,
(b) introducing superheated steam under pressure into the path of lateral fluid communication through the injection bore hole,
(c) cyclically varying the superheated steam pressure between the limits of rock pressure and a lower pressure sufiicient to prevent undue steam condensation,
(d) removing steam and oil shale entrained vapor from the production well, and
(e) treating the removed steam and oil entrained vapor after first reducing the partial pressure of steam by contact catalysis in the presence of hydrogen.
2. An in situ process for winning oil shale from an oil shale formation having a production well and an injection well extending therein, the process comprising;
(a) establishing a path of lateral fluid communication between the injection well and the production well through the oil shale formation,
(b) introducing steam under pressure and at a temperature and in sufficient quantity to cause plyrolysis of the shale into the path of lateral fluid communication from the injection well,
() cyclically varying the pressure of the steam in the path of lateral fluid communication,
(d) removing steam and oil entrained vapors from the production well,
(e) reducing the partial pressure of steam in the removed vapors without condensing the oil shale vapors, and
(f) treating the oil shale vapors in the presence of hydrogen by contact catalysis to stabilize the product .by saturating olefins.
3. A process as defined in claim 2 further comprising heating the oil shale vapors to .a temperature beneficial to catalysis before the contact catalysis step and also preheating hydrogen prior to contact catalysis.
4. A process as defined in claim 2 further comprising pre-heating the path of lateral fluid communication through the shale by hot water prior to introducing steam.
5. A process as defined in claim 4 wherein the preheating is accomplished at a temperature just below where pyrolysis of the oil shale begins, in the order of 550 F.
6. A process as defined in claim 5 wherein the approximate limits of the cyclically varying pressure are rock pressure and a lower pressure sufficient to prevent undue steam condensation.
7. An in situ process for winning stabilized primary volatiles from oil shale by pressure pulsing techniques comprising; providing at least one injection well and one production well, pressure parting a bedding plane in the in situ oil shale formation between the injection and production wells, pre-heating the formation on the sides of the parted plane to a temperature between a lower temperature at which there would be excessive condensation of steam and oil entrained vapors and an upper limit at which pyrolysis of the oil shale formation begins, further heating the oil shale adjacent the parted plane after said pre-heating with superheated steam injected into the oil shale via the injection well to a temperature suflicient to cause pyrolysis of the host oil shale, cyclically varying the pressure of the superheated steam to open up tributaries perpendicular to the plane of parting and volatilize the oil shale and to displace the steam and make the host formation permeable, bleeding the steam and oil 5 shale entrained vapors out through the production well, condensing at least some of the entraining Steam t a 8 temperature and pressure such that the entrained oil vapors remain in the vapor phase in order to reduce the partial pressureof steam, re-heating the vapors after the condensing step to a temperature beneficial for catalysis, and accomplishing contact catalysis on the oil shale vapors in the presence of heated hydrogen.
8. An in situ process for winning stabilized primary volatiles from oil shale by pressure pulsing techniques comprising drilling at least one injection and one production well, pressure parting and holding open a bedding plane in the oil shale formation between injection and production wells, pre-heating the formation on the sides of the parted planes by means of hot water to a temperature between the lowest temperature in which there would be excessive condensation of oil, and an upper temperature at which pyrolysis of the oil shale begins, in the order of 550 F., removing the pre-heating hot water, further heating the oil shale adjacent the parted plane after said pre-heating by injecting superheated steam into the oil shale via the injection well at a temperature suflicient to cause pyrolysis of the host oil shale, in the order of 850 F. upwards, cyclically varying the pressure of the superheated steam between an upper pressure equal substantially to rock pressure and a lower pressure sutficient to prevent undue steam condensation, thereby open up tributaries perpendicular to the plane of parting, pyrolyze the oil shale, and then displace the steam and make the host rock permeable, driving the steam entrained vapors out through the production well, condensing enough of the steam from the steam entrained vapors at the output pressure and saturation temperature to significantly lower the partial pressure of steam in the vapor mixture, reheating the vapors to a temperature beneficial to catalysis, and accomplishing contact catalysis on the reheated vapors in the presence of hydrogen.
9. An in situ oil shale process as defined in claim 8 wherein there are a plurality of production wells for each injection well.
References Cited by the Examiner Craig et al 166-40 5 CHARLES E. OCONNELL, Primary Examiner.
Claims (1)
1. AN IN SITU PROCESS FOR WINNING OIL SHALE FROM AN OIL SHALE FORMATION, THE FORMATION INCLUDING A PRODUCTION BORE HOLE AND AN INJECTION BORE HOLE DRILLED THEREIN, AS WELL AS A PATH OF LATERAL FLUID COMMUNICATION THROUGH THE OTHERWISE IMPERVIOUS OIL SHALE BETWEEN THE PRODUCTION AND INJECTION BORE HOLES, THE PROCESS COMPRISING; (A) PREHEATING THE OIL SHALE ADJACENT THE PATH OF LATERAL FLUID COMMUNICATION WITH HOT WATER TO A TEMPERATURE JUST BELOW THAT AT WHICH PYROLYSIS OF THE OIL SHALE BEGINS, (B) INTRODUCING SUPERHEATED STEAM UNDER PRESSURE INTO THE PATH OF LATERAL FLUID COMMUNICATION THROUGH THE INJECTION BORE HOLE, (C) CYLICALLY VARYING THE SUPERHEATED STEAM PRESSURE BETWEEN THE LIMITS OF ROCK PRESSURE AND A LOWER PRESSURE SUFFICIENT TO PREVENT UNDUE STEAM CONDENSTATION, (D) REMOVING STEAM AND OIL SHALE ENTRAINED VAPOR FROM THE PRODUCTION WELL, AND (E) TREATING THE REMOVED STEAM AND OIL ENTRAINED VAPOR AFTER FIRST REDUCING THE PATIAL PRESSURE OF STEAM BY CONTACT CATALYSIS IN THE PRESENCE OF HYDROGEN.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US330334A US3273640A (en) | 1963-12-13 | 1963-12-13 | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US330334A US3273640A (en) | 1963-12-13 | 1963-12-13 | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ |
Publications (1)
Publication Number | Publication Date |
---|---|
US3273640A true US3273640A (en) | 1966-09-20 |
Family
ID=23289300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US330334A Expired - Lifetime US3273640A (en) | 1963-12-13 | 1963-12-13 | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ |
Country Status (1)
Country | Link |
---|---|
US (1) | US3273640A (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3342258A (en) * | 1964-03-06 | 1967-09-19 | Shell Oil Co | Underground oil recovery from solid oil-bearing deposits |
US3361202A (en) * | 1965-08-05 | 1968-01-02 | Phillips Petroleum Co | Process and apparatus for producing crude oil from separate strata |
US3382922A (en) * | 1966-08-31 | 1968-05-14 | Phillips Petroleum Co | Production of oil shale by in situ pyrolysis |
US3407003A (en) * | 1966-01-17 | 1968-10-22 | Shell Oil Co | Method of recovering hydrocarbons from an underground hydrocarbon-containing shale formation |
US3464491A (en) * | 1967-12-18 | 1969-09-02 | Pan American Petroleum Corp | Oil recovery from formations containing channels |
US3478825A (en) * | 1967-08-21 | 1969-11-18 | Shell Oil Co | Method of increasing the volume of a permeable zone within an oil shale formation |
US3521709A (en) * | 1967-04-03 | 1970-07-28 | Phillips Petroleum Co | Producing oil from oil shale by heating with hot gases |
US3581821A (en) * | 1969-05-09 | 1971-06-01 | Petra Flow Inc | Cryothermal process for the recovery of oil |
US4059308A (en) * | 1976-11-15 | 1977-11-22 | Trw Inc. | Pressure swing recovery system for oil shale deposits |
US4083404A (en) * | 1976-03-10 | 1978-04-11 | Texaco Inc. | Oil recovery process utilizing air and superheated steam |
US4284139A (en) * | 1980-02-28 | 1981-08-18 | Conoco, Inc. | Process for stimulating and upgrading the oil production from a heavy oil reservoir |
US4305463A (en) * | 1979-10-31 | 1981-12-15 | Oil Trieval Corporation | Oil recovery method and apparatus |
US4387768A (en) * | 1981-04-13 | 1983-06-14 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4401163A (en) * | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4408665A (en) * | 1977-05-03 | 1983-10-11 | Equity Oil Company | In situ recovery of oil and gas from water-flooded oil shale formations |
US5014787A (en) * | 1989-08-16 | 1991-05-14 | Chevron Research Company | Single well injection and production system |
US5131471A (en) * | 1989-08-16 | 1992-07-21 | Chevron Research And Technology Company | Single well injection and production system |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
WO2002086018A2 (en) * | 2001-04-24 | 2002-10-31 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a oil shale formation |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US20030205378A1 (en) * | 2001-10-24 | 2003-11-06 | Wellington Scott Lee | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
WO2005106191A1 (en) * | 2004-04-23 | 2005-11-10 | Shell International Research Maatschappij B.V. | Inhibiting reflux in a heated well of an in situ conversion system |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US20080035348A1 (en) * | 2006-04-21 | 2008-02-14 | Vitek John M | Temperature limited heaters using phase transformation of ferromagnetic material |
US20090194329A1 (en) * | 2007-10-19 | 2009-08-06 | Rosalvina Ramona Guimerans | Methods for forming wellbores in heated formations |
US20090260823A1 (en) * | 2008-04-18 | 2009-10-22 | Robert George Prince-Wright | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US20090321417A1 (en) * | 2007-04-20 | 2009-12-31 | David Burns | Floating insulated conductors for heating subsurface formations |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1422204A (en) * | 1919-12-19 | 1922-07-11 | Wilson W Hoover | Method for working oil shales |
US2421528A (en) * | 1944-07-26 | 1947-06-03 | Ralph M Steffen | Underground oil recovery |
US2692226A (en) * | 1950-10-07 | 1954-10-19 | Standard Oil Dev Co | Shale oil refining process |
US2813583A (en) * | 1954-12-06 | 1957-11-19 | Phillips Petroleum Co | Process for recovery of petroleum from sands and shale |
US2969226A (en) * | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3042114A (en) * | 1958-09-29 | 1962-07-03 | Company Jersey Produc Research | Process for recovering oil from underground reservoirs |
US3106521A (en) * | 1960-07-25 | 1963-10-08 | Huntington Chemical Corp | Method for the production of light oils from oil shale through the recombination of hydrogen originally contained therein |
US3117072A (en) * | 1958-07-03 | 1964-01-07 | Texaco Inc | Recovery of oil from oil shale |
US3155160A (en) * | 1959-11-27 | 1964-11-03 | Pan American Petroleum Corp | Recovery of heavy oils by steam extraction |
-
1963
- 1963-12-13 US US330334A patent/US3273640A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1422204A (en) * | 1919-12-19 | 1922-07-11 | Wilson W Hoover | Method for working oil shales |
US2421528A (en) * | 1944-07-26 | 1947-06-03 | Ralph M Steffen | Underground oil recovery |
US2692226A (en) * | 1950-10-07 | 1954-10-19 | Standard Oil Dev Co | Shale oil refining process |
US2813583A (en) * | 1954-12-06 | 1957-11-19 | Phillips Petroleum Co | Process for recovery of petroleum from sands and shale |
US3117072A (en) * | 1958-07-03 | 1964-01-07 | Texaco Inc | Recovery of oil from oil shale |
US3042114A (en) * | 1958-09-29 | 1962-07-03 | Company Jersey Produc Research | Process for recovering oil from underground reservoirs |
US2969226A (en) * | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3155160A (en) * | 1959-11-27 | 1964-11-03 | Pan American Petroleum Corp | Recovery of heavy oils by steam extraction |
US3106521A (en) * | 1960-07-25 | 1963-10-08 | Huntington Chemical Corp | Method for the production of light oils from oil shale through the recombination of hydrogen originally contained therein |
Cited By (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3342258A (en) * | 1964-03-06 | 1967-09-19 | Shell Oil Co | Underground oil recovery from solid oil-bearing deposits |
US3361202A (en) * | 1965-08-05 | 1968-01-02 | Phillips Petroleum Co | Process and apparatus for producing crude oil from separate strata |
US3407003A (en) * | 1966-01-17 | 1968-10-22 | Shell Oil Co | Method of recovering hydrocarbons from an underground hydrocarbon-containing shale formation |
US3382922A (en) * | 1966-08-31 | 1968-05-14 | Phillips Petroleum Co | Production of oil shale by in situ pyrolysis |
US3521709A (en) * | 1967-04-03 | 1970-07-28 | Phillips Petroleum Co | Producing oil from oil shale by heating with hot gases |
US3478825A (en) * | 1967-08-21 | 1969-11-18 | Shell Oil Co | Method of increasing the volume of a permeable zone within an oil shale formation |
US3464491A (en) * | 1967-12-18 | 1969-09-02 | Pan American Petroleum Corp | Oil recovery from formations containing channels |
US3581821A (en) * | 1969-05-09 | 1971-06-01 | Petra Flow Inc | Cryothermal process for the recovery of oil |
US4083404A (en) * | 1976-03-10 | 1978-04-11 | Texaco Inc. | Oil recovery process utilizing air and superheated steam |
US4059308A (en) * | 1976-11-15 | 1977-11-22 | Trw Inc. | Pressure swing recovery system for oil shale deposits |
US4163580A (en) * | 1976-11-15 | 1979-08-07 | Trw Inc. | Pressure swing recovery system for mineral deposits |
US4408665A (en) * | 1977-05-03 | 1983-10-11 | Equity Oil Company | In situ recovery of oil and gas from water-flooded oil shale formations |
US4305463A (en) * | 1979-10-31 | 1981-12-15 | Oil Trieval Corporation | Oil recovery method and apparatus |
US4284139A (en) * | 1980-02-28 | 1981-08-18 | Conoco, Inc. | Process for stimulating and upgrading the oil production from a heavy oil reservoir |
US4401163A (en) * | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4387768A (en) * | 1981-04-13 | 1983-06-14 | The Standard Oil Company | Modified in situ retorting of oil shale |
US5014787A (en) * | 1989-08-16 | 1991-05-14 | Chevron Research Company | Single well injection and production system |
US5131471A (en) * | 1989-08-16 | 1992-07-21 | Chevron Research And Technology Company | Single well injection and production system |
US6725920B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products |
US6739393B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | In situ thermal processing of a coal formation and tuning production |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
GB2379469A (en) * | 2000-04-24 | 2003-03-12 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
US6581684B2 (en) | 2000-04-24 | 2003-06-24 | Shell Oil Company | In Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
US6588503B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In Situ thermal processing of a coal formation to control product composition |
US6591907B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a coal formation with a selected vitrinite reflectance |
US6591906B2 (en) | 2000-04-24 | 2003-07-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected oxygen content |
US8225866B2 (en) | 2000-04-24 | 2012-07-24 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6607033B2 (en) | 2000-04-24 | 2003-08-19 | Shell Oil Company | In Situ thermal processing of a coal formation to produce a condensate |
US6609570B2 (en) | 2000-04-24 | 2003-08-26 | Shell Oil Company | In situ thermal processing of a coal formation and ammonia production |
WO2001081239A2 (en) * | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a hydrocarbon containing formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6688387B1 (en) | 2000-04-24 | 2004-02-10 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6702016B2 (en) | 2000-04-24 | 2004-03-09 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer |
US6708758B2 (en) | 2000-04-24 | 2004-03-23 | Shell Oil Company | In situ thermal processing of a coal formation leaving one or more selected unprocessed areas |
US6712135B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation in reducing environment |
US6712137B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material |
US6712136B2 (en) | 2000-04-24 | 2004-03-30 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a selected production well spacing |
US6715548B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US6715547B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation |
US6715549B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US6719047B2 (en) | 2000-04-24 | 2004-04-13 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment |
US6722430B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio |
US6722431B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of hydrocarbons within a relatively permeable formation |
US6722429B2 (en) | 2000-04-24 | 2004-04-20 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas |
US6725928B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation using a distributed combustor |
WO2001081239A3 (en) * | 2000-04-24 | 2002-05-23 | Shell Oil Co | In situ recovery from a hydrocarbon containing formation |
US6725921B2 (en) | 2000-04-24 | 2004-04-27 | Shell Oil Company | In situ thermal processing of a coal formation by controlling a pressure of the formation |
US6729397B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance |
US6729395B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells |
US6729396B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range |
US6729401B2 (en) | 2000-04-24 | 2004-05-04 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation and ammonia production |
US6732795B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material |
US6732794B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content |
US6732796B2 (en) | 2000-04-24 | 2004-05-11 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio |
US6736215B2 (en) | 2000-04-24 | 2004-05-18 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration |
US6739394B2 (en) | 2000-04-24 | 2004-05-25 | Shell Oil Company | Production of synthesis gas from a hydrocarbon containing formation |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6742588B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content |
US6742587B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation |
US6742589B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a coal formation using repeating triangular patterns of heat sources |
US6745831B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation |
US6745837B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a controlled heating rate |
US6745832B2 (en) | 2000-04-24 | 2004-06-08 | Shell Oil Company | Situ thermal processing of a hydrocarbon containing formation to control product composition |
US6749021B2 (en) | 2000-04-24 | 2004-06-15 | Shell Oil Company | In situ thermal processing of a coal formation using a controlled heating rate |
US6752210B2 (en) | 2000-04-24 | 2004-06-22 | Shell Oil Company | In situ thermal processing of a coal formation using heat sources positioned within open wellbores |
US6758268B2 (en) | 2000-04-24 | 2004-07-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate |
US6761216B2 (en) | 2000-04-24 | 2004-07-13 | Shell Oil Company | In situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas |
US6763886B2 (en) | 2000-04-24 | 2004-07-20 | Shell Oil Company | In situ thermal processing of a coal formation with carbon dioxide sequestration |
US6769483B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources |
US6769485B2 (en) | 2000-04-24 | 2004-08-03 | Shell Oil Company | In situ production of synthesis gas from a coal formation through a heat source wellbore |
US6789625B2 (en) | 2000-04-24 | 2004-09-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources |
GB2379469B (en) * | 2000-04-24 | 2004-09-29 | Shell Int Research | In situ recovery from a hydrocarbon containing formation |
US6805195B2 (en) | 2000-04-24 | 2004-10-19 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas |
US6820688B2 (en) | 2000-04-24 | 2004-11-23 | Shell Oil Company | In situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio |
US6994168B2 (en) | 2000-04-24 | 2006-02-07 | Scott Lee Wellington | In situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio |
AU2002257221B2 (en) * | 2001-04-24 | 2008-12-18 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a oil shale formation |
US6915850B2 (en) * | 2001-04-24 | 2005-07-12 | Shell Oil Company | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US7032660B2 (en) | 2001-04-24 | 2006-04-25 | Shell Oil Company | In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation |
WO2002086018A2 (en) * | 2001-04-24 | 2002-10-31 | Shell Internationale Research Maatschappij B.V. | In situ recovery from a oil shale formation |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US20030131996A1 (en) * | 2001-04-24 | 2003-07-17 | Vinegar Harold J. | In situ thermal processing of an oil shale formation having permeable and impermeable sections |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
WO2002086018A3 (en) * | 2001-04-24 | 2004-01-15 | Shell Int Research | In situ recovery from a oil shale formation |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20030205378A1 (en) * | 2001-10-24 | 2003-11-06 | Wellington Scott Lee | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US7066257B2 (en) * | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
AU2005238943B2 (en) * | 2004-04-23 | 2009-01-08 | Shell Internationale Research Maatschappij B.V. | Inhibiting reflux in a heated well of an in situ conversion system |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
WO2005106191A1 (en) * | 2004-04-23 | 2005-11-10 | Shell International Research Maatschappij B.V. | Inhibiting reflux in a heated well of an in situ conversion system |
CN1946917B (en) * | 2004-04-23 | 2012-05-30 | 国际壳牌研究有限公司 | Method for processing underground rock stratum |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
WO2007124412A3 (en) * | 2006-04-21 | 2008-10-16 | Shell Oil Co | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US20080173444A1 (en) * | 2006-04-21 | 2008-07-24 | Francis Marion Stone | Alternate energy source usage for in situ heat treatment processes |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US20080035348A1 (en) * | 2006-04-21 | 2008-02-14 | Vitek John M | Temperature limited heaters using phase transformation of ferromagnetic material |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US8791396B2 (en) * | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US20090321417A1 (en) * | 2007-04-20 | 2009-12-31 | David Burns | Floating insulated conductors for heating subsurface formations |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US20090200031A1 (en) * | 2007-10-19 | 2009-08-13 | David Scott Miller | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US20090194282A1 (en) * | 2007-10-19 | 2009-08-06 | Gary Lee Beer | In situ oxidation of subsurface formations |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US20090194329A1 (en) * | 2007-10-19 | 2009-08-06 | Rosalvina Ramona Guimerans | Methods for forming wellbores in heated formations |
US20090194269A1 (en) * | 2007-10-19 | 2009-08-06 | Vinegar Harold J | Three-phase heaters with common overburden sections for heating subsurface formations |
US20090272578A1 (en) * | 2008-04-18 | 2009-11-05 | Macdonald Duncan Charles | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US20090260824A1 (en) * | 2008-04-18 | 2009-10-22 | David Booth Burns | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US20090260823A1 (en) * | 2008-04-18 | 2009-10-22 | Robert George Prince-Wright | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3273640A (en) | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ | |
US2969226A (en) | Pendant parting petro pyrolysis process | |
US3480082A (en) | In situ retorting of oil shale using co2 as heat carrier | |
US3516495A (en) | Recovery of shale oil | |
US4597441A (en) | Recovery of oil by in situ hydrogenation | |
US4280559A (en) | Method for producing heavy crude | |
US3358756A (en) | Method for in situ recovery of solid or semi-solid petroleum deposits | |
US4691771A (en) | Recovery of oil by in-situ combustion followed by in-situ hydrogenation | |
US2952450A (en) | In situ exploitation of lignite using steam | |
US4448251A (en) | In situ conversion of hydrocarbonaceous oil | |
US2801089A (en) | Underground shale retorting process | |
US4454915A (en) | In situ retorting of oil shale with air, steam, and recycle gas | |
US3084919A (en) | Recovery of oil from oil shale by underground hydrogenation | |
US4662439A (en) | Method of underground conversion of coal | |
US3379248A (en) | In situ combustion process utilizing waste heat | |
US4537252A (en) | Method of underground conversion of coal | |
US3196945A (en) | Method of forward in situ combustion with water injection | |
AU2002304692C1 (en) | Method for in situ recovery from a tar sands formation and a blending agent produced by such a method | |
US3072187A (en) | Production and upgrading of hydrocarbons in situ | |
US3513914A (en) | Method for producing shale oil from an oil shale formation | |
US3993132A (en) | Thermal recovery of hydrocarbons from tar sands | |
US3208519A (en) | Combined in situ combustion-water injection oil recovery process | |
US3327782A (en) | Underground hydrogenation of oil | |
US2946382A (en) | Process for recovering hydrocarbons from underground formations | |
US3228468A (en) | In-situ recovery of hydrocarbons from underground formations of oil shale |