US3306858A - Process for the preparation of storage stable detergent composition - Google Patents
Process for the preparation of storage stable detergent composition Download PDFInfo
- Publication number
- US3306858A US3306858A US464821A US46482165A US3306858A US 3306858 A US3306858 A US 3306858A US 464821 A US464821 A US 464821A US 46482165 A US46482165 A US 46482165A US 3306858 A US3306858 A US 3306858A
- Authority
- US
- United States
- Prior art keywords
- sodium
- detergent
- surface active
- pyrophosphate
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 64
- 239000003599 detergent Substances 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 14
- 230000008569 process Effects 0.000 title claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 33
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 27
- 239000000460 chlorine Substances 0.000 claims description 26
- 229910052801 chlorine Inorganic materials 0.000 claims description 25
- 239000004094 surface-active agent Substances 0.000 claims description 23
- 239000003795 chemical substances by application Substances 0.000 claims description 18
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 15
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 claims description 15
- 239000012876 carrier material Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 claims description 8
- 235000019818 tetrasodium diphosphate Nutrition 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims description 7
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims description 7
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 7
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 6
- -1 ALKALI METAL BORATES Chemical class 0.000 claims description 5
- 238000013019 agitation Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 229910052910 alkali metal silicate Inorganic materials 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims 1
- 238000009472 formulation Methods 0.000 description 31
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 24
- 238000004851 dishwashing Methods 0.000 description 14
- 239000002736 nonionic surfactant Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 12
- 239000000470 constituent Substances 0.000 description 11
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 10
- 239000004115 Sodium Silicate Substances 0.000 description 9
- 229910052911 sodium silicate Inorganic materials 0.000 description 9
- IFIDXBCRSWOUSB-UHFFFAOYSA-N potassium;1,3-dichloro-1,3,5-triazinane-2,4,6-trione Chemical compound [K+].ClN1C(=O)NC(=O)N(Cl)C1=O IFIDXBCRSWOUSB-UHFFFAOYSA-N 0.000 description 8
- 235000019795 sodium metasilicate Nutrition 0.000 description 8
- 239000002689 soil Substances 0.000 description 6
- 238000005538 encapsulation Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- NFAOATPOYUWEHM-UHFFFAOYSA-N 2-(6-methylheptyl)phenol Chemical compound CC(C)CCCCCC1=CC=CC=C1O NFAOATPOYUWEHM-UHFFFAOYSA-N 0.000 description 1
- KEPNSIARSTUPGS-UHFFFAOYSA-N 2-n,4-n,6-n-trichloro-1,3,5-triazine-2,4,6-triamine Chemical compound ClNC1=NC(NCl)=NC(NCl)=N1 KEPNSIARSTUPGS-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001298 alcohols Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- VDQQXEISLMTGAB-UHFFFAOYSA-N chloramine T Chemical compound [Na+].CC1=CC=C(S(=O)(=O)[N-]Cl)C=C1 VDQQXEISLMTGAB-UHFFFAOYSA-N 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- CEJLBZWIKQJOAT-UHFFFAOYSA-N dichloroisocyanuric acid Chemical compound ClN1C(=O)NC(=O)N(Cl)C1=O CEJLBZWIKQJOAT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/395—Bleaching agents
- C11D3/3953—Inorganic bleaching agents
Definitions
- This invention relates to detergent compositions which are particularly useful in dishwashing applications.
- the organic surface active agents function to emulsify food soils, to inhibit foam caused by food soils, to promote Wetting of dinnerware thereby eliminating or minimizing spotting and to improve generally the overall detergency of the composition for soil removal.
- Agents or chemicals which-release oxidizing'chlorine contribute to the improvement of the detergent compositionby virtue of-their-oxidizing-actionon 'food soils, particularly proteins, to convert them'fo a more soluble form.
- the chlorine releasing agents also ex'ert a bleaching action on dinnerware to remove stains such as are caused by coffee and tea and also prevent a build-upof soil films on the dinnerware surfaces thereby curtailing spotting.
- the present invention provides a means for preparing detergent compositions suitable for dishwashing applications in which organic non-ionic surface active agents are compounded with chlorine releasing agents to form a suitable product which may be stored indefinitely without undesired reaction between these normally incompatible components.
- detergent compositions can be prepared which exhibit none of the aforementioned undesirable characteristics although such compositions comprise the constituents set forth hereinbefore.
- this process comprises incorporating an organic surface active agent with a solid carrier material and then applying thereto a coating which effectively protects and prevents the surfactant from reaction with chlorine during storage of the composition. After coating or encapsulating the surfactant in suitable manner, it can then be combined with the chlorine releasing agent and other constituents normally used in formulating dishwashing type detergents.
- the constituents of such detergents generally include an alkaline detergent salt, an alkaline condensed phosphate salt and a chlorine releasing agent.
- alkaline detergent salts used in Washing detergents are di-, triand tetra-sodium orthophosphates, sodium carbonate, sodium bicarbonate, alkali metal silicates such as sodium silicate, alkali metal borates such as sodium borate, alkaline condensed phosphate salts such as tetrasodium pyrophosphate or tetrapotassium pyrophosphate and polyphosphates such as sodium tripolyphosphate.
- Suitable chlorine releasing agents include chlorinated trisodium phosphate which is a composition consisting of trisodium phosphate and sodium hypochlorite in intimate association in a crystalline form; potassium dichloroisocyanurate, trichloro melamine, Chloramine T, sodium, calcium and lithium, hypochlorites, dichlorocyanuric acid, trichlorcyanuric acid, dichlorodimethyl hydantoin and the like.
- the surface active agents useful in the detergent compositions of the invention are the normally liquid organic non-ionic surface active agents obtained by condensing alkylene oxides with water-insoluble organic compounds such as organic hydroxy compounds, that is alcohols, phenols, thiols, primary and secondary amines, carboxylic and sulfonic acids and their amides.
- Surfactants of this type are well known in the art and a variety of these agents are commercially available under various trade names, as for example the Pluronics (condensates of ethylene oxide with a hydrophobic base formed by condensing propylene oxide with propylene glycol), Hyonics (e.g.
- fatty alkylolamides Triton Xl.00, (a condensate of isooctyl phenol with about 8 molesrof ethylenev oxide).
- Triton Xl.00 a condensate of isooctyl phenol with about 8 molesrof ethylenev oxide.
- One non-ionic surfactant which has been employed in the specific examples to illustrate the present invention is a polyoxyalkylene polymer obtained from the Tretolite Co. of St. Louis, Missouri under the designation of Product E-97. This polyoxyalkylene polymer has the formula:
- x,,y and z are integers such that the average molecular weight of the compound ranges from about 3600 to 4400. Its chemical and physical characteristics are:
- a suit-able organic non-ionic surfactant is mixed with granular particles of a water-soluble solid carrier material with agitation so that the carrier particles absorb the liquid surface active agents.
- the liquid organic non-ionic surfactant is absorbed on a water-soluble carrier material selected from the group consisting of tetrasodium pyrophosphate, tetrapotassium pyrophosphate, disodium orthophosphate, trisodium orthophosphate, sodium carbonate, sodium bicarbonate, alkali metal silicates, alkali metal borates, sodium tripolyphosphate and sodium hexametaphosphate.
- the carrier particles are sprayed or otherwise coated with a suitable coating material such as liquid silicates and the like.
- a suitable coating material such as liquid silicates and the like.
- the carrier particles on which the organic non-ionic surfactant is absorbed are coated by means of an aqueous solution of a compound selected from the group consisting of tetrasodium pyrophosphate, tetrapotassium pyrophosphate, sodium tripolyphosphate and sodium hexametaphosphate.
- Coating of the non-ionic surfactant-inorganic salt particles is etfected in any convenient manner such as by slowly adding the aqueous coating solution from a dropping funnel to form an encapsulating coating thereon.
- the coating is applied utilizing a fine spray together with thorough agitation of the carrier particles. The combination of fine spray and substantial agitation produce the optimum coating effect.
- the granular carrier particles containing the non-ionic surfactant are suitably coated and are then dried by any suitable means such as air drying or by incorporating with the wet coated particles additional quantities of a dry inorganic salt constituent to absorb the excess coating solution.
- suitable dry ing agents such as sodium carbonate and the like can also be employed.
- the coated or encapsulated non-ionic surfactant-salt particles can then be admixed in suitable proportions with the remainder of the detergent constituents including the chlorine releasing agents to form a final detergent product which remains stable until use.
- the chlorine releasing agents are not incorporated into the detergent formulation until after the non-ionic surfactant has been protected by encapsulation.
- EXAMPLE I 9.7 parts of the above indicated liquid non-ionic surfactant and 53.3 parts of anhydrous granular sodium tripolyphosphate were placed in a kitchen type food blender and thoroughly mixed. After mixing for several minutes, 35 parts of a 60% aqueous solution of tetrapotassium pyrophosphate were slowly added from a dropping funnel to the particles in the mixer while they were being agitated during a period of about minutes. During this tetrapotassium pyrophosphate addition, the temperature of the mixture rose from 75 to 103 F. indicating hydration of the tripolyphosphate. Any agglomerates formed were broken up and the product dried by means of air.
- EXAMPLE 11 Following the above procedure, 11.3 parts of the non- I ionic surface active agent was mixed with 63.7 parts sodium tripolyphosphate and parts of a 60% aqueous solution of tetrapotassium pyrophosphate was added as the coating material.
- the encapsulated pro-mix was blended with other constituents to form a dishwashing detergent having the composition:
- EXAMPLE III 11.3 parts of the non-ionic surface active agent were mixed with 63.7 parts sodium tripolyphosphate in a 16 quart twin shell mixer. After absorption of the liquid surfactant on the tripolyphosphate particles, 25 parts of a 60% aqueous solution of tetrapotassium pyrophosphate was sprayed on the mixture in order to apply a coating to the particles. During this addition the temperature of the mixture rose from about 80 to 92 F. The agglomerates which formed were broken up and the product air dried.
- the above encapsulated product or pre-mix was admixed with other constituents to form a dishwashing detergent having the composition:
- EXAMPLE IV 9.3 parts of the non-ionic surface active agent and 86.5 parts of sodium tripolyphosphate were thoroughly mixed in a ribbon mixer. After thorough mixing, 4.2 parts of a 60% aqueous solution of tetrapotassium pyrophosphate was sprayed on the particles under pressure during a period of about 10 minutes. During this addition, the temperature of the mixture rose from about to 108 F. Drying of the mixture was accomplished by adding solid tetrapotassium pyrophosphate to absorb the excess moisture.
- the above encapsulated product or pre-mix was admixed with other constituents to form a dishwashing detergent having the composition:
- detergent formulations in the above Examples I through IV are prepared in accordance with the invention.
- Other detergent compositions were prepared as follows:
- Formulation V Parts Premix 8.4 Anhydrous sodium metasilicate 24.0 Sodium tripolyphosphate 15.4 Potassium dichloroisocyanurate 1.0 Sodium carbonate 51.2
- EXAMPLE VI 14.9 parts of the non-ionic surfactant were mixed with 85.1 parts sodium tripolyphosphate. No encapsulation of the surfactant was accomplished. This pro-mix was combined with other constituents to form the composition:
- Formulation VI Pre-mix 6.7 Anhydrous sodium metasilicate 24.0 Sodium tripolyphosphate 16.3 Potassium dichloroisocyanurate 1.0 Sodium carbonate 52.0
- a Hobart AM commercial dishwashing machine was employed for the defoaming test. Samples of the detergent compositions were stored in a container at 98 F. and weighed samples withdrawn for the test at various intervals. The detergents were employed in the and VI, which were prepared in accordance with prior art procedures.
- detergents prepared in accordance with the invention are also shown by comparison with detergents prepared by prior art processes.
- Detergents were stored at room temperature for varying periods and when the detergent was dissolved in water the chlorine available was determined by titration.
- detergent Formulations VII and VIII were prepared in which the non-ionic surfactant was mixed with the sodium carbonate after which the other constitutents of the composition were mechanically mixed therewith.
- the non-ionic surfactants were not encapsulated or protected according to the present invention.
- Formulation VII Parts Sodium carbonate 52.0 Non-ionic 2.20 Anhydrous sodium metasilicate 24.0 Sodium tripolyph-osphate 20.0 Potassium dichloroisocyanurate 1.8
- Formulation VIII Partrl Sodium carbonate 22.72 Non-ionic 2.08 Anhydrous sodium metasilicate 43.16 Potassium dichloroisocyanurate 1.71 Hydrated sodium tripolyphosphate 7.61
- a process for preparing a storage-stable detergent composition which process comprises absorbing a liquid organic non-ionic surface active agent on a solid carrier material selected from the group consisting of tetrasodium pyrophosphate, tetrapotassium pyrophosphate, discdium orthophosphate, t-risodium orthophosphate, sodium carbonate, sodium bicarbonate, alkali metal silicates, alkali metal borates, sodium tripolyphosphate and sodium hexametaphosphate, and then with agitation contacting said carrier material on which the said organic surface active gent is absorbed with an aqueous solution of a compound selected from the group consisting of tetrasodium pyrophosphate, tetra-potassium pyrophosphate, sodium tripolyphosphate and sodium hexametaphosphate to form thereon an encapsulating coating, drying said encapsulated material and thereafter mixing said encapsulated material with a chlorine releasing agent.
- a solid carrier material selected
- said chlorine releasing agent is selected from the group consisting of chlorinated trisodium phosphate, chlorinated cyanurates and chlorinated amines.
- a process for preparing a storage-stable detergent composition which comprises absorbing a liquid organic capsulated material and thereafter mixing said encapsulated material with a chlorine releasing agent.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Description
United States Patent 3,306,858 PROCESS FOR THE PREPARATIQN 0F STGRAGE STABLE DETERGENT COMPGfiTfQN Thomas M. Oherie, St. Paul, Minn assignorto Economics Laboratory, Inc, St. Paul, Minn a corporation of Delaware No Drawing. Filed June 17, 1965, Ser. No. 464,821
3 Claims. (Cl. 25299) j This application is a continuation-in-part of my copending application, Serial No. 207,804, filed July 5, 1962, how abandoned.
This invention relates to detergent compositions which are particularly useful in dishwashing applications.
For some time efforts have been made in the art to combine organic surface active agents and chlorine releasing agents in a single granular dishwashing product. Both of these materials have certain properties which are desired in dishwashing detergents and the combination of these agents with other conventional detergent constituentsresults in an eminently superior dishwashing detergent.
The organic surface active agents function to emulsify food soils, to inhibit foam caused by food soils, to promote Wetting of dinnerware thereby eliminating or minimizing spotting and to improve generally the overall detergency of the composition for soil removal. Agents or chemicals which-release oxidizing'chlorine contribute to the improvement of the detergent compositionby virtue of-their-oxidizing-actionon 'food soils, particularly proteins, to convert them'fo a more soluble form. The chlorine releasing agents also ex'ert a bleaching action on dinnerware to remove stains such as are caused by coffee and tea and also prevent a build-upof soil films on the dinnerware surfaces thereby curtailing spotting.
While the advantages of combining non-ionic surface active agents and chlorine releasing agents in a single dishwashing product have been long recognized, considerable difficulties have been encountered in so doing. The surfactants normally used in these detergent formulations are organic non-ionic polyether type materials Which are readily susceptible to attack by chlorine and particularly the hypochlorite ion. As a consequence of such reactions, the surfactants break down and in a relatively short period lose the aforementioned desirable properties. The chlorine is also dissipated as a result of reaction with the surfactants so that by the time the de tergent product is used by the ultimate consumer it frequently is substantially devoid of the desirable properties imparted by both the surfactant and the chlorine releasing agents.
The present invention provides a means for preparing detergent compositions suitable for dishwashing applications in which organic non-ionic surface active agents are compounded with chlorine releasing agents to form a suitable product which may be stored indefinitely without undesired reaction between these normally incompatible components. By the method of the present invention detergent compositions can be prepared which exhibit none of the aforementioned undesirable characteristics although such compositions comprise the constituents set forth hereinbefore.
In general, this process comprises incorporating an organic surface active agent with a solid carrier material and then applying thereto a coating which effectively protects and prevents the surfactant from reaction with chlorine during storage of the composition. After coating or encapsulating the surfactant in suitable manner, it can then be combined with the chlorine releasing agent and other constituents normally used in formulating dishwashing type detergents. The constituents of such detergents generally include an alkaline detergent salt, an alkaline condensed phosphate salt and a chlorine releasing agent. Examples of alkaline detergent salts used in Washing detergents are di-, triand tetra-sodium orthophosphates, sodium carbonate, sodium bicarbonate, alkali metal silicates such as sodium silicate, alkali metal borates such as sodium borate, alkaline condensed phosphate salts such as tetrasodium pyrophosphate or tetrapotassium pyrophosphate and polyphosphates such as sodium tripolyphosphate. Suitable chlorine releasing agents include chlorinated trisodium phosphate which is a composition consisting of trisodium phosphate and sodium hypochlorite in intimate association in a crystalline form; potassium dichloroisocyanurate, trichloro melamine, Chloramine T, sodium, calcium and lithium, hypochlorites, dichlorocyanuric acid, trichlorcyanuric acid, dichlorodimethyl hydantoin and the like.
The surface active agents useful in the detergent compositions of the invention are the normally liquid organic non-ionic surface active agents obtained by condensing alkylene oxides with water-insoluble organic compounds such as organic hydroxy compounds, that is alcohols, phenols, thiols, primary and secondary amines, carboxylic and sulfonic acids and their amides. Surfactants of this type are well known in the art and a variety of these agents are commercially available under various trade names, as for example the Pluronics (condensates of ethylene oxide with a hydrophobic base formed by condensing propylene oxide with propylene glycol), Hyonics (e.g. fatty alkylolamides), Triton Xl.00, (a condensate of isooctyl phenol with about 8 molesrof ethylenev oxide). One non-ionic surfactant which has been employed in the specific examples to illustrate the present invention is a polyoxyalkylene polymer obtained from the Tretolite Co. of St. Louis, Missouri under the designation of Product E-97. This polyoxyalkylene polymer has the formula:
He where x,,y and z are integers such that the average molecular weight of the compound ranges from about 3600 to 4400. Its chemical and physical characteristics are:
Cloud point: 33-34 C.
Refractive index: 1.4555
Hydroxyl value: 28.9 mg. KOH/ g. sample Specific gravity: 1.03 8-1.041
Average molecular weight: 3600-4400 In the practice of the present invention a suit-able organic non-ionic surfactant is mixed with granular particles of a water-soluble solid carrier material with agitation so that the carrier particles absorb the liquid surface active agents. According to a preferred embodiment the liquid organic non-ionic surfactant is absorbed on a water-soluble carrier material selected from the group consisting of tetrasodium pyrophosphate, tetrapotassium pyrophosphate, disodium orthophosphate, trisodium orthophosphate, sodium carbonate, sodium bicarbonate, alkali metal silicates, alkali metal borates, sodium tripolyphosphate and sodium hexametaphosphate. After incorporating a suitable proportion of the non-ionic surfactant with the carrier, the carrier particles are sprayed or otherwise coated with a suitable coating material such as liquid silicates and the like. In a preferred procedure, the carrier particles on which the organic non-ionic surfactant is absorbed are coated by means of an aqueous solution of a compound selected from the group consisting of tetrasodium pyrophosphate, tetrapotassium pyrophosphate, sodium tripolyphosphate and sodium hexametaphosphate. Coating of the non-ionic surfactant-inorganic salt particles is etfected in any convenient manner such as by slowly adding the aqueous coating solution from a dropping funnel to form an encapsulating coating thereon. Preferably, the coating is applied utilizing a fine spray together with thorough agitation of the carrier particles. The combination of fine spray and substantial agitation produce the optimum coating effect.
After application of the coating solution, the granular carrier particles containing the non-ionic surfactant are suitably coated and are then dried by any suitable means such as air drying or by incorporating with the wet coated particles additional quantities of a dry inorganic salt constituent to absorb the excess coating solution. Other dry ing agents such as sodium carbonate and the like can also be employed. The coated or encapsulated non-ionic surfactant-salt particles can then be admixed in suitable proportions with the remainder of the detergent constituents including the chlorine releasing agents to form a final detergent product which remains stable until use. The chlorine releasing agents are not incorporated into the detergent formulation until after the non-ionic surfactant has been protected by encapsulation.
EXAMPLE I 9.7 parts of the above indicated liquid non-ionic surfactant and 53.3 parts of anhydrous granular sodium tripolyphosphate were placed in a kitchen type food blender and thoroughly mixed. After mixing for several minutes, 35 parts of a 60% aqueous solution of tetrapotassium pyrophosphate were slowly added from a dropping funnel to the particles in the mixer while they were being agitated during a period of about minutes. During this tetrapotassium pyrophosphate addition, the temperature of the mixture rose from 75 to 103 F. indicating hydration of the tripolyphosphate. Any agglomerates formed were broken up and the product dried by means of air.
The above encapsulated product or pre-mix was then admixed with other conventional constituents including a chlorine releasing agent to form a dishwashing detergent having the composition:
Formulation 1 Parts Pre-mix 10.3
Anhydrous sodium metasilicate 24.0
Sodium tripolyphosphate 14.3
Potassium dichloroisocyanurate 1.0
Sodium carbonate 50.4
EXAMPLE 11 Following the above procedure, 11.3 parts of the non- I ionic surface active agent was mixed with 63.7 parts sodium tripolyphosphate and parts of a 60% aqueous solution of tetrapotassium pyrophosphate was added as the coating material.
The encapsulated pro-mix Was blended with other constituents to form a dishwashing detergent having the composition:
Formulation II Parts Pre-mix 8.9 Anhydrous sodium metasilicate 24.0 Sodium tripolyphosphate 15.1 Potassium dichloroiocyanurate 1.0 Sodium carbonate 51.0
EXAMPLE III 11.3 parts of the non-ionic surface active agent were mixed with 63.7 parts sodium tripolyphosphate in a 16 quart twin shell mixer. After absorption of the liquid surfactant on the tripolyphosphate particles, 25 parts of a 60% aqueous solution of tetrapotassium pyrophosphate was sprayed on the mixture in order to apply a coating to the particles. During this addition the temperature of the mixture rose from about 80 to 92 F. The agglomerates which formed were broken up and the product air dried.
The above encapsulated product or pre-mix was admixed with other constituents to form a dishwashing detergent having the composition:
Formulation III Parts Pre-mix 8.9 Anhydrous sodium metasilicate 24.0 Sodium tripolyphosphate 15.1 Potassium 1.0 Sodium carbonate 51.0
EXAMPLE IV 9.3 parts of the non-ionic surface active agent and 86.5 parts of sodium tripolyphosphate were thoroughly mixed in a ribbon mixer. After thorough mixing, 4.2 parts of a 60% aqueous solution of tetrapotassium pyrophosphate was sprayed on the particles under pressure during a period of about 10 minutes. During this addition, the temperature of the mixture rose from about to 108 F. Drying of the mixture was accomplished by adding solid tetrapotassium pyrophosphate to absorb the excess moisture.
The above encapsulated product or pre-mix was admixed with other constituents to form a dishwashing detergent having the composition:
Formulation IV Parts Pre-rnix 10.8 Anhydrous soduim metasilicate 37.4 Potassium dichloroisocyanurate 1.0 Hydrated sodium tripolyphosphate 7.6 Sodium tripolyphosphate 12.9 Sodium carbonate 30.3
The detergent formulations in the above Examples I through IV are prepared in accordance with the invention. Other detergent compositions were prepared as follows:
EXAMPLE V Following the same procedure as in Example I, 11.9 parts of the non-ionic surfactant and 67.6 parts of sodi um tripolyphosphate were mixed and then 21.5 parts of water added in lieu of the 60% aqueous tetrapotassium pyrophosphate of Example I. Accordingly no coating or encapsulation of the non-ionic was effected.
The above pre-mix was combined with other constituents to form a composition:
Formulation V Parts Premix 8.4 Anhydrous sodium metasilicate 24.0 Sodium tripolyphosphate 15.4 Potassium dichloroisocyanurate 1.0 Sodium carbonate 51.2
EXAMPLE VI 14.9 parts of the non-ionic surfactant were mixed with 85.1 parts sodium tripolyphosphate. No encapsulation of the surfactant was accomplished. This pro-mix was combined with other constituents to form the composition:
Formulation VI Pre-mix 6.7 Anhydrous sodium metasilicate 24.0 Sodium tripolyphosphate 16.3 Potassium dichloroisocyanurate 1.0 Sodium carbonate 52.0
EXAMPLE VII A pre-mix was made according to the following formula:
9.7 parts of a liquid non-ionic surfactant (Product E-97 above) 53.3" parts of carrier material (carrier materials listed below) 35.0 parts of 60% solution of tetrapotassium pyrophosphate The above pre-mix was made out of the following inorganic substances substituted as the carrier material: tetrasodium pyrophosphate, disodium orthophosphate, trisodium orthophosphate, sodium carbonate, sodium metasilicate, sodium tripolyphosphate and sodium hexametaphosphate.
The above pre-mixes are incorporated into a formulation which contains the following ingredients:
The above pre-mix was incorporated into a formula as follows:
Percent Pre-mix 10.0 Light ash 45.0 Sodium metasilicate anhydrous 21.4 Dense ash (sodium carbonate) 8.0 Sodium tripolyphosphate 14.3 Potassium dichloroisocyanurate 1.3
It has been pointed out hereinbefore that in detergents prepared in accordance with prior art procedures the nonionic surface active agents are attacked by chlorine during storage with consequent loss in desirable properties of the detergent including its defoaming properties. Since this characteristic can be appropriately evaluated through practical use in automatic dishwashing machine, this medium was employed to compare the defoaming stability of detergents prepared in accordance with this invention and detergents not so prepared.
A Hobart AM commercial dishwashing machine was employed for the defoaming test. Samples of the detergent compositions were stored in a container at 98 F. and weighed samples withdrawn for the test at various intervals. The detergents were employed in the and VI, which were prepared in accordance with prior art procedures.
From observing Table 1 it is seen that there is a large difference between stability of Formulations I and II made with the encapsulated pre-mix as described in the present application as compared to the Formulation V which is an example in which there is no encapsulation. In this case, after 77 days the 2 formulations containing the encapsulated pre-mix still showed considerable amounts of stable chlorine and defoaming ability, whereas the formulae containing no encapsulated pre-mix have dropped to 14 millimeters. The same is true for Formulations III and IV 'as compared to Formulation VI. Formulations III and IV also contain an encapsulated pre-mix, whereas Formulation VI contains a pre-mix made without encapsulation.
The outstanding chloric stability of the detergents prepared in accordance with the invention is also shown by comparison with detergents prepared by prior art processes. Detergents were stored at room temperature for varying periods and when the detergent was dissolved in water the chlorine available was determined by titration. For this comparison detergent Formulations VII and VIII were prepared in which the non-ionic surfactant was mixed with the sodium carbonate after which the other constitutents of the composition were mechanically mixed therewith. The non-ionic surfactants were not encapsulated or protected according to the present invention.
Formulation VII Parts Sodium carbonate 52.0 Non-ionic 2.20 Anhydrous sodium metasilicate 24.0 Sodium tripolyph-osphate 20.0 Potassium dichloroisocyanurate 1.8
Formulation VIII Partrl Sodium carbonate 22.72 Non-ionic 2.08 Anhydrous sodium metasilicate 43.16 Potassium dichloroisocyanurate 1.71 Hydrated sodium tripolyphosphate 7.61
Sodium tripolyphosphate 22.72
A comparison of the chlorine stability of the above formulations with detergent Formulations II and VI of the present invention are shown below in Table 2.
TABLE 2.OHLO RINE STABILITY [Storage conditions-room temperature] defoaming test in a concentration of 0.4 percent in Perm; Available P t A b1 the presence of 0.1 percent raw egg soil. The test 111mm, i gg e itself consists of recording the water pressure by a dif- 2235 %?3? ferential manometer connected to a pitot tube that is indays Fqnmflg Eonnula days Fmmula. Formuia. serted into the wash arm of the dishwashing machine. A II VII tlon VI tion VIII higher water pressure indicates greater defoaming action by the detergent. Utilizing this test procedure, the de- 325 gig g g g? foaming performance of various detergent formulations 130 Q35 are shown below in Table 1.
TABLE 1 Storage Time, Detergent Detergent Detergent Storage Time, Detergent Detergent Storage Time, Detergent days Formulation, Formulation, Formulation, days Formulation, Formulation, days Formulation,
I, mm. II, mm. V, mm. I mm. 1, mm. IV, mm.
It may be readily seen from the above test data that the process of the present invention results in detergent products having remarkably superior defoaming properties. Thus, after extended periods of storage, the defoaming properties of detergent Formulations I, II, III and IV, which were prepared in accordance with the present in- As seen, the available chlorine in the detergent of the present invention remained substantially constant after storage whereas the prior art detergents, as a result of storage, suffered a loss in available chlorine.
Those modifications and equivalents which fall within the spirit of the invention and the scope of the appended vention, were far superior to detergent Formulations V claims are to be considered part of the invention.
7 I claim: 1. A process for preparing a storage-stable detergent composition which process comprises absorbing a liquid organic non-ionic surface active agent on a solid carrier material selected from the group consisting of tetrasodium pyrophosphate, tetrapotassium pyrophosphate, discdium orthophosphate, t-risodium orthophosphate, sodium carbonate, sodium bicarbonate, alkali metal silicates, alkali metal borates, sodium tripolyphosphate and sodium hexametaphosphate, and then with agitation contacting said carrier material on which the said organic surface active gent is absorbed with an aqueous solution of a compound selected from the group consisting of tetrasodium pyrophosphate, tetra-potassium pyrophosphate, sodium tripolyphosphate and sodium hexametaphosphate to form thereon an encapsulating coating, drying said encapsulated material and thereafter mixing said encapsulated material with a chlorine releasing agent.
2 A process according to claim 1 wherein said chlorine releasing agent is selected from the group consisting of chlorinated trisodium phosphate, chlorinated cyanurates and chlorinated amines.
3. A process for preparing a storage-stable detergent composition which comprises absorbing a liquid organic capsulated material and thereafter mixing said encapsulated material with a chlorine releasing agent.
References Cited by the Examiner UNITED STATES PATENTS 1,854,235 4/1932 Stoddard 252-l35 X 2,746,930 5/1956 Wells et a1 252-135 2,895,916 7/1959 Milenkevich et al 252-99 3,042,621 7/1962 Kirschenbauer 252-99 3,054,753 9/1962 Hurt et al 252-99 LEON D. ROSDOL, Primary Examiner.
0 JULIUS GREENWALD, Examiner.
M. WEINBLATT, Assistant Examiner.
Claims (1)
1. A PROCESS FOR PREPARING A STORAGE-STABLE DETERGENT COMPOSITION WHICH PROCESS COMPRISES ABSORBING A LIQUID ORGANIC NON-IONIC SURFACE ACTIVE AGENT ON A SOLID CARRIER MATERIAL SELECTED FROM THE GROUP CONSISTING OF TETRASODIUM PYROPHOSPHATE, TETRAPOTASSIUM PYROPHOSPHATE, DISODIUM ORTHOPHOSPHATE, TRISODIUM ORTHOPHOSPHATE, SODIUM CARBONATE, SODIUM BICARBONATE, ALKALI METAL SILICATES, ALKALI METAL BORATES, SODIUM TRIPOLYPHOSPHATE AND SODIUM HEXAMETAPHOSPHATE, AND THEN WITH AGITATION CONTACTING SAID CARRIER MATERIAL ON WHICH THE SAID ORGANIC SURFACE ACTIVE GENT IS ABSORBED WITH AN AQUEOUS SOLUTION OF A COMPOUND SELECTED FROM THE GROUP CONSISTING OF TETRASODIUM PYROPHOSPHATE, TETRA-POTASSIUM PYROPHOSPHATE, SODIUM TRIPOLYPHOSPHATE AND SODIUM HEXAMETAPHOSPHATE TO FROM THEREON AN ENCAPSULATING COATING, DRYING SAID ENCAPSULATED MATERIAL AND THEREAFTER MIXING SAID ENCAPSULATED MATERIAL WITH A CHLORINE RELEASING AGENT.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US464821A US3306858A (en) | 1965-06-17 | 1965-06-17 | Process for the preparation of storage stable detergent composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US464821A US3306858A (en) | 1965-06-17 | 1965-06-17 | Process for the preparation of storage stable detergent composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US3306858A true US3306858A (en) | 1967-02-28 |
Family
ID=23845369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US464821A Expired - Lifetime US3306858A (en) | 1965-06-17 | 1965-06-17 | Process for the preparation of storage stable detergent composition |
Country Status (1)
Country | Link |
---|---|
US (1) | US3306858A (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3359207A (en) * | 1965-06-18 | 1967-12-19 | Wyandotte Chemicals Corp | Chlorine-stable detergent compositions and process for the preparation thereof |
US3491028A (en) * | 1969-06-03 | 1970-01-20 | Grace W R & Co | Chlorine stable machine dishwashing composition |
US3505244A (en) * | 1965-04-30 | 1970-04-07 | Union Carbide Corp | Encapsulated corrosion inhibitor |
US3518201A (en) * | 1969-09-04 | 1970-06-30 | Grace W R & Co | Chlorine release detergent composition with improved defoamer stability |
US3609088A (en) * | 1968-10-11 | 1971-09-28 | Stauffer Chemical Co | Method of preparing agglomerated detergent composition |
US3623991A (en) * | 1969-06-10 | 1971-11-30 | Chemed Corp | Descaling detergent composition |
US3637509A (en) * | 1970-02-10 | 1972-01-25 | Grace W R & Co | Chlorinated machine dishwashing composition and process |
US3886098A (en) * | 1971-03-15 | 1975-05-27 | Colgate Palmolive Co | Manufacture of free flowing particulate detergent composition containing nonionic detergent |
US3920586A (en) * | 1972-10-16 | 1975-11-18 | Procter & Gamble | Detergent compositions |
US3933670A (en) * | 1973-11-12 | 1976-01-20 | Economic Laboratories, Inc. | Process for making agglomerated detergents |
US3962106A (en) * | 1974-08-01 | 1976-06-08 | Lever Brothers Company | Method for agglomerating chlorocyanurates |
US4076643A (en) * | 1973-11-09 | 1978-02-28 | Solvay & Cie. | Pre-mixes intended to be added to detergent powders by post-addition |
US4078099A (en) * | 1976-08-25 | 1978-03-07 | Lever Brothers Company | Encapsulated bleaches and methods for their preparation |
US4081395A (en) * | 1975-10-14 | 1978-03-28 | Pennwalt Corporation | Alkaline detergent compositions |
US4182683A (en) * | 1976-05-17 | 1980-01-08 | Berk Gunter H | Process for the manufacture of a dishwashing detergent |
US4242216A (en) * | 1979-09-27 | 1980-12-30 | Chemed Corporation | Stabilized dichlorodimethyl hydantoin |
US4310425A (en) * | 1980-04-17 | 1982-01-12 | Halabs, Incorporated | Inhibited oil field drilling fluid |
US4332692A (en) * | 1979-02-28 | 1982-06-01 | The Procter & Gamble Company | Laundering with a nonionic detergent system at a temperature between the cloud point and the phase coalescence temperatures |
US4379069A (en) * | 1981-06-04 | 1983-04-05 | Lever Brothers Company | Detergent powders of improved solubility |
US4569780A (en) * | 1978-02-07 | 1986-02-11 | Economics Laboratory, Inc. | Cast detergent-containing article and method of making and using |
US4569781A (en) * | 1978-02-07 | 1986-02-11 | Economics Laboratory, Inc. | Cast detergent-containing article and method of using |
US4606775A (en) * | 1984-04-05 | 1986-08-19 | Purex Corporation | Automatic dishwasher in a dual functioning system |
US4687121A (en) * | 1986-01-09 | 1987-08-18 | Ecolab Inc. | Solid block chemical dispenser for cleaning systems |
US4690305A (en) * | 1985-11-06 | 1987-09-01 | Ecolab Inc. | Solid block chemical dispenser for cleaning systems |
DK152375B (en) * | 1976-02-26 | 1988-02-22 | Colgate Palmolive Co | FREE-CLEANING CLEANER AND PROCEDURE FOR ITS PREPARATION |
USRE32763E (en) * | 1978-02-07 | 1988-10-11 | Ecolab Inc. | Cast detergent-containing article and method of making and using |
USRE32818E (en) * | 1978-02-07 | 1989-01-03 | Ecolab Inc. | Cast detergent-containing article and method of using |
US4973419A (en) * | 1988-12-30 | 1990-11-27 | Lever Brothers Company, Division Of Conopco, Inc. | Hydrated alkali metal phosphate and silicated salt compositions |
US5209864A (en) * | 1991-07-03 | 1993-05-11 | Winbro Group, Ltd. | Cake-like detergent and method of manufacture |
US5552079A (en) * | 1993-09-13 | 1996-09-03 | Diversey Corporation | Tableted detergent, method of manufacture and use |
US5614485A (en) * | 1990-07-10 | 1997-03-25 | The Procter & Gamble Company | Process for making a granular dishwashing composition by agglomerating ingredients and admixing solid alkali metal silicate |
US5616277A (en) * | 1991-08-13 | 1997-04-01 | The Procter & Gamble Company | Incorporating nonionic surfactant into silicate for granular automatic dishwashing detergent composition |
USD419262S (en) * | 1999-03-12 | 2000-01-18 | Ecolab Inc. | Solid block detergent |
US6150324A (en) * | 1997-01-13 | 2000-11-21 | Ecolab, Inc. | Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal |
US6156715A (en) * | 1997-01-13 | 2000-12-05 | Ecolab Inc. | Stable solid block metal protecting warewashing detergent composition |
US6177392B1 (en) | 1997-01-13 | 2001-01-23 | Ecolab Inc. | Stable solid block detergent composition |
US6239183B1 (en) * | 1997-12-19 | 2001-05-29 | Akzo Nobel Nv | Method for controlling the rheology of an aqueous fluid and gelling agent therefor |
US6258765B1 (en) | 1997-01-13 | 2001-07-10 | Ecolab Inc. | Binding agent for solid block functional material |
US6506710B1 (en) * | 1997-12-19 | 2003-01-14 | Akzo Nobel N.V. | Viscoelastic surfactants and compositions containing same |
US6632291B2 (en) | 2001-03-23 | 2003-10-14 | Ecolab Inc. | Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment |
US6638902B2 (en) | 2001-02-01 | 2003-10-28 | Ecolab Inc. | Stable solid enzyme compositions and methods employing them |
US20040259757A1 (en) * | 1991-05-14 | 2004-12-23 | Ecolab Inc. | Two part chemical concentrate |
US20050126778A1 (en) * | 1999-09-22 | 2005-06-16 | Mcelfresh Paul M. | Hydraulic fracturing using non-ionic surfactant gelling agent |
US20070125542A1 (en) * | 2005-12-07 | 2007-06-07 | Akzo Nobel N.V. | High temperature gellant in low and high density brines |
US20070167332A1 (en) * | 1999-09-07 | 2007-07-19 | Akzo Nobel Surface Chemistry Llc | Quaternary ammonium salts as thickening agents for aqueous systems |
US7358215B1 (en) | 1999-09-07 | 2008-04-15 | Akzo Nobel Surface Chemistry Llc | Quaternary ammonium salts as thickening agents for aqueous systems |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1854235A (en) * | 1930-01-18 | 1932-04-19 | Conover Company | Detergent composition |
US2746930A (en) * | 1949-05-12 | 1956-05-22 | Monsanto Chemicals | Process for making detergent compositions |
US2895916A (en) * | 1956-05-15 | 1959-07-21 | Procter & Gamble | Method for preparing detergent compositions |
US3042621A (en) * | 1957-11-01 | 1962-07-03 | Colgate Palmolive Co | Detergent composition |
US3054753A (en) * | 1955-01-18 | 1962-09-18 | Lever Brothers Ltd | Detergent powders |
-
1965
- 1965-06-17 US US464821A patent/US3306858A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1854235A (en) * | 1930-01-18 | 1932-04-19 | Conover Company | Detergent composition |
US2746930A (en) * | 1949-05-12 | 1956-05-22 | Monsanto Chemicals | Process for making detergent compositions |
US3054753A (en) * | 1955-01-18 | 1962-09-18 | Lever Brothers Ltd | Detergent powders |
US2895916A (en) * | 1956-05-15 | 1959-07-21 | Procter & Gamble | Method for preparing detergent compositions |
US3042621A (en) * | 1957-11-01 | 1962-07-03 | Colgate Palmolive Co | Detergent composition |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3505244A (en) * | 1965-04-30 | 1970-04-07 | Union Carbide Corp | Encapsulated corrosion inhibitor |
US3359207A (en) * | 1965-06-18 | 1967-12-19 | Wyandotte Chemicals Corp | Chlorine-stable detergent compositions and process for the preparation thereof |
US3609088A (en) * | 1968-10-11 | 1971-09-28 | Stauffer Chemical Co | Method of preparing agglomerated detergent composition |
US3625902A (en) * | 1968-10-11 | 1971-12-07 | Stauffer Chemical Co | Method of preparing agglomerated detergent composition |
US3491028A (en) * | 1969-06-03 | 1970-01-20 | Grace W R & Co | Chlorine stable machine dishwashing composition |
US3623991A (en) * | 1969-06-10 | 1971-11-30 | Chemed Corp | Descaling detergent composition |
US3518201A (en) * | 1969-09-04 | 1970-06-30 | Grace W R & Co | Chlorine release detergent composition with improved defoamer stability |
US3637509A (en) * | 1970-02-10 | 1972-01-25 | Grace W R & Co | Chlorinated machine dishwashing composition and process |
US3886098A (en) * | 1971-03-15 | 1975-05-27 | Colgate Palmolive Co | Manufacture of free flowing particulate detergent composition containing nonionic detergent |
US3920586A (en) * | 1972-10-16 | 1975-11-18 | Procter & Gamble | Detergent compositions |
US4076643A (en) * | 1973-11-09 | 1978-02-28 | Solvay & Cie. | Pre-mixes intended to be added to detergent powders by post-addition |
US3933670A (en) * | 1973-11-12 | 1976-01-20 | Economic Laboratories, Inc. | Process for making agglomerated detergents |
US3962106A (en) * | 1974-08-01 | 1976-06-08 | Lever Brothers Company | Method for agglomerating chlorocyanurates |
US4081395A (en) * | 1975-10-14 | 1978-03-28 | Pennwalt Corporation | Alkaline detergent compositions |
DK152375B (en) * | 1976-02-26 | 1988-02-22 | Colgate Palmolive Co | FREE-CLEANING CLEANER AND PROCEDURE FOR ITS PREPARATION |
US4182683A (en) * | 1976-05-17 | 1980-01-08 | Berk Gunter H | Process for the manufacture of a dishwashing detergent |
US4078099A (en) * | 1976-08-25 | 1978-03-07 | Lever Brothers Company | Encapsulated bleaches and methods for their preparation |
USRE32818E (en) * | 1978-02-07 | 1989-01-03 | Ecolab Inc. | Cast detergent-containing article and method of using |
US4569780A (en) * | 1978-02-07 | 1986-02-11 | Economics Laboratory, Inc. | Cast detergent-containing article and method of making and using |
US4569781A (en) * | 1978-02-07 | 1986-02-11 | Economics Laboratory, Inc. | Cast detergent-containing article and method of using |
USRE32763E (en) * | 1978-02-07 | 1988-10-11 | Ecolab Inc. | Cast detergent-containing article and method of making and using |
US4332692A (en) * | 1979-02-28 | 1982-06-01 | The Procter & Gamble Company | Laundering with a nonionic detergent system at a temperature between the cloud point and the phase coalescence temperatures |
US4242216A (en) * | 1979-09-27 | 1980-12-30 | Chemed Corporation | Stabilized dichlorodimethyl hydantoin |
US4310425A (en) * | 1980-04-17 | 1982-01-12 | Halabs, Incorporated | Inhibited oil field drilling fluid |
US4379069A (en) * | 1981-06-04 | 1983-04-05 | Lever Brothers Company | Detergent powders of improved solubility |
US4606775A (en) * | 1984-04-05 | 1986-08-19 | Purex Corporation | Automatic dishwasher in a dual functioning system |
US4690305A (en) * | 1985-11-06 | 1987-09-01 | Ecolab Inc. | Solid block chemical dispenser for cleaning systems |
US4687121A (en) * | 1986-01-09 | 1987-08-18 | Ecolab Inc. | Solid block chemical dispenser for cleaning systems |
US4973419A (en) * | 1988-12-30 | 1990-11-27 | Lever Brothers Company, Division Of Conopco, Inc. | Hydrated alkali metal phosphate and silicated salt compositions |
US5614485A (en) * | 1990-07-10 | 1997-03-25 | The Procter & Gamble Company | Process for making a granular dishwashing composition by agglomerating ingredients and admixing solid alkali metal silicate |
US7517846B2 (en) | 1991-05-14 | 2009-04-14 | Ecolab Inc. | Solid, two part chemical concentrate |
US20060040845A1 (en) * | 1991-05-14 | 2006-02-23 | Ecolab Inc. | Two part chemical concentrate |
US20040259757A1 (en) * | 1991-05-14 | 2004-12-23 | Ecolab Inc. | Two part chemical concentrate |
US5209864A (en) * | 1991-07-03 | 1993-05-11 | Winbro Group, Ltd. | Cake-like detergent and method of manufacture |
US5616277A (en) * | 1991-08-13 | 1997-04-01 | The Procter & Gamble Company | Incorporating nonionic surfactant into silicate for granular automatic dishwashing detergent composition |
US5552079A (en) * | 1993-09-13 | 1996-09-03 | Diversey Corporation | Tableted detergent, method of manufacture and use |
US6177392B1 (en) | 1997-01-13 | 2001-01-23 | Ecolab Inc. | Stable solid block detergent composition |
US20040102353A1 (en) * | 1997-01-13 | 2004-05-27 | Ecolab Inc. | Stable solid block metal protecting warewashing detergent composition |
US6258765B1 (en) | 1997-01-13 | 2001-07-10 | Ecolab Inc. | Binding agent for solid block functional material |
US6410495B1 (en) | 1997-01-13 | 2002-06-25 | Ecolab Inc. | Stable solid block metal protecting warewashing detergent composition |
US6436893B1 (en) | 1997-01-13 | 2002-08-20 | Ecolab Inc. | Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal |
US6503879B2 (en) | 1997-01-13 | 2003-01-07 | Ecolab Inc. | Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal |
US7341987B2 (en) | 1997-01-13 | 2008-03-11 | Ecolab Inc. | Binding agent for solid block functional material |
US6583094B1 (en) | 1997-01-13 | 2003-06-24 | Ecolab Inc. | Stable solid block detergent composition |
US8906839B2 (en) | 1997-01-13 | 2014-12-09 | Ecolab Usa Inc. | Alkaline detergent containing mixing organic and inorganic sequestrants resulting in improved soil removal |
US20100323940A1 (en) * | 1997-01-13 | 2010-12-23 | Ecolab Inc. | Alkaline detergent containing mixing organic and inorganic sequestrants resulting in improved soil removal |
US20030216279A1 (en) * | 1997-01-13 | 2003-11-20 | Ecolab Inc. | Stable solid block detergent composition |
US6653266B2 (en) | 1997-01-13 | 2003-11-25 | Ecolab Inc. | Binding agent for solid block functional material |
US6660707B2 (en) | 1997-01-13 | 2003-12-09 | Ecolab Inc. | Stable solid block metal protecting warewashing detergent composition |
US20080287338A1 (en) * | 1997-01-13 | 2008-11-20 | Ecolab Inc. | Binding agent for solid block functional material |
US7094746B2 (en) | 1997-01-13 | 2006-08-22 | Ecolab Inc. | Stable solid block detergent composition |
US7087569B2 (en) | 1997-01-13 | 2006-08-08 | Ecolab Inc. | Stable solid block metal protecting warewashing detergent composition |
US20040106535A1 (en) * | 1997-01-13 | 2004-06-03 | Ecolab Inc. | Binding agent for solid block functional material |
US6831054B2 (en) | 1997-01-13 | 2004-12-14 | Ecolab Inc. | Stable solid block detergent composition |
US6156715A (en) * | 1997-01-13 | 2000-12-05 | Ecolab Inc. | Stable solid block metal protecting warewashing detergent composition |
US6835706B2 (en) | 1997-01-13 | 2004-12-28 | Ecolab Inc. | Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal |
US20050119149A1 (en) * | 1997-01-13 | 2005-06-02 | Ecolab Inc. | Stable solid block detergent composition |
US6150324A (en) * | 1997-01-13 | 2000-11-21 | Ecolab, Inc. | Alkaline detergent containing mixed organic and inorganic sequestrants resulting in improved soil removal |
US6239183B1 (en) * | 1997-12-19 | 2001-05-29 | Akzo Nobel Nv | Method for controlling the rheology of an aqueous fluid and gelling agent therefor |
USRE41585E1 (en) * | 1997-12-19 | 2010-08-24 | Akzo Nobel Nv | Method for controlling the rheology of an aqueous fluid and gelling agent therefor |
US6506710B1 (en) * | 1997-12-19 | 2003-01-14 | Akzo Nobel N.V. | Viscoelastic surfactants and compositions containing same |
USD419262S (en) * | 1999-03-12 | 2000-01-18 | Ecolab Inc. | Solid block detergent |
US7358215B1 (en) | 1999-09-07 | 2008-04-15 | Akzo Nobel Surface Chemistry Llc | Quaternary ammonium salts as thickening agents for aqueous systems |
US7776798B2 (en) | 1999-09-07 | 2010-08-17 | Akzo Nobel Surface Chemistry Llc | Quaternary ammonium salts as thickening agents for aqueous systems |
US20070167332A1 (en) * | 1999-09-07 | 2007-07-19 | Akzo Nobel Surface Chemistry Llc | Quaternary ammonium salts as thickening agents for aqueous systems |
US7216709B2 (en) | 1999-09-22 | 2007-05-15 | Akzo Nobel N.V. | Hydraulic fracturing using non-ionic surfactant gelling agent |
US20050126778A1 (en) * | 1999-09-22 | 2005-06-16 | Mcelfresh Paul M. | Hydraulic fracturing using non-ionic surfactant gelling agent |
US20040072714A1 (en) * | 2001-02-01 | 2004-04-15 | Ecolab Inc. | Stable solid enzyme compositions and methods employing them |
US6638902B2 (en) | 2001-02-01 | 2003-10-28 | Ecolab Inc. | Stable solid enzyme compositions and methods employing them |
US20040048760A1 (en) * | 2001-03-23 | 2004-03-11 | Ecolab Inc. | Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment |
US6632291B2 (en) | 2001-03-23 | 2003-10-14 | Ecolab Inc. | Methods and compositions for cleaning, rinsing, and antimicrobial treatment of medical equipment |
US20070125542A1 (en) * | 2005-12-07 | 2007-06-07 | Akzo Nobel N.V. | High temperature gellant in low and high density brines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3306858A (en) | Process for the preparation of storage stable detergent composition | |
US4931203A (en) | Method for making an automatic dishwashing detergent powder by spraying drying and post-adding nonionic detergent | |
US3936386A (en) | Dishwashing compositions containing chlorinated isocyanurate | |
EP0178893B1 (en) | Solid detergent compositions | |
US3491028A (en) | Chlorine stable machine dishwashing composition | |
US4532063A (en) | Dissolvable bleach sheet | |
US4233171A (en) | Dishwashing detergent effective at low temperature | |
US4933102A (en) | Solid cast warewashing composition; encapsulated bleach source | |
WO1994019447A1 (en) | Shaped solid comprising oxidant bleach with encapsulate source of bleach | |
KR20010052549A (en) | Coated sodium percarbonate particles, process for their preparation, their use in detergent compositions and detergent compositions containing them | |
US3741904A (en) | Process for preparation of a protected granule and dishwashing composition formed therewith | |
CA1105658A (en) | Activated bleaching process and compositions therefor | |
US3248330A (en) | Process for preparing a stable, freeflowing dishwashing composition | |
US4187190A (en) | Low phosphate content dishwashing detergent | |
US3494868A (en) | Dishwashing composition and method of using same | |
US3336228A (en) | Active chlorine compositions containing dichlorocyanuric acid and salts thereof | |
CA1304649C (en) | Solid cast warewashing composition | |
US3166512A (en) | Stable, solid chlorinated caustic product containing available chlorine and method of preparation thereof | |
US3352785A (en) | Stable dishwashing compositions containing sodium dichloroisocyanurate | |
CA1109762A (en) | Agglomeration process for making granular detergents | |
US3166513A (en) | Stable detergent composition | |
US3637509A (en) | Chlorinated machine dishwashing composition and process | |
JPS6369893A (en) | Novel surfactant mixture and its use | |
CA1104028A (en) | Hard surface cleaning compositions | |
US3812045A (en) | Dishwashing composition and method of making same |