US3568659A - Disposable percutaneous intracardiac pump and method of pumping blood - Google Patents
Disposable percutaneous intracardiac pump and method of pumping blood Download PDFInfo
- Publication number
- US3568659A US3568659A US762017A US3568659DA US3568659A US 3568659 A US3568659 A US 3568659A US 762017 A US762017 A US 762017A US 3568659D A US3568659D A US 3568659DA US 3568659 A US3568659 A US 3568659A
- Authority
- US
- United States
- Prior art keywords
- catheter
- ribs
- tube
- heart
- blood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/02—Holding devices, e.g. on the body
- A61M25/04—Holding devices, e.g. on the body in the body, e.g. expansible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/13—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/295—Balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/40—Details relating to driving
- A61M60/497—Details relating to driving for balloon pumps for circulatory assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/50—Details relating to control
- A61M60/508—Electronic control means, e.g. for feedback regulation
- A61M60/515—Regulation using real-time patient data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/865—Devices for guiding or inserting pumps or pumping devices into the patient's body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/80—Constructional details other than related to driving
- A61M60/855—Constructional details other than related to driving of implantable pumps or pumping devices
- A61M60/865—Devices for guiding or inserting pumps or pumping devices into the patient's body
- A61M60/867—Devices for guiding or inserting pumps or pumping devices into the patient's body using position detection during deployment, e.g. for blood pumps mounted on and driven through a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/32—General characteristics of the apparatus with radio-opaque indicia
Definitions
- a heart pump including a catheter nuns raw 8 and catheter tube having at its extremity a series of longitu- [52] U.S. Cl. 128/1, dinally extending ribs extending in angularly spaced relation 128/243, 128/2, 128/2.05, 128/Z 348 about the catheter.
- the ribs are enclosed within a resilient [51] Int. Cl. ..A6lbf9/00, tube which is expanded and contracted by said ribs to more or 1 A61b 5/02 less till the left ventricle of the heart.
- the ribs are flexed from [50] Field of Search 128/1, a position generally parallel to the catheter axis to an out- 2.05 (D), 2.05 (E), 2.05 (V) wardly bowed position by a flexible member extending into said catheter-and through said catheter tube.
- This invention relates to an improvement in disposable percutaneous introcardiac pump, and deals particularly with a means of expanding and contracting the left ventricle of the heart chamber to promote the flow of blood through the blood stream of the body.
- the heart is a pump whose job is to circulate oxygenated blood to all parts of the body. There are times, as for example, when the patient suffers a myocardial infarction, that the heart is weakened to such a degree that it can no longer adequately pump blood to maintain life. Since this weakened state may at times by transient, tremendous effort has been, and is being, expended in the search for a method to temporary mechanically support the heart.
- the object of the present invention lies in the provision of somewhat different device which does not require an operation of the opening of the chest.
- the only anesthesia needed would be a skin wheal of local anesthetic
- the device could be involved with fluoroscopy even in the patients room. It is anticipated that the device may be produced very inexpensively and thus be disposable.
- a feature of the present invention resides in the provision of a device which is mounted upon the end of a catheter which may be percutaneously inserted into a systemic artery under local anesthesia.
- a spring guide wire By means of a spring guide wire, the aortic valve is crossed in the retrograde direction, and the end of the catheter is lodged in the cavity of the left ventricle of the heart. This may be readily accomplished using fluoroscopy.
- the end of the catheter which lies within the left ventricle is covered by a plastic tube or plastic bag which is sealed relative to the catheter at both ends.
- the surface of the catheter, inwardly of the plastic tube, is provided with a series of angulariy spaced resilient wires each of which is anchored at one end to the body of the catheter. Means are provided extending through the hollow catheter to move the other end of each of these wires toward the anchored end. This causes the wires to bow outwardly, expanding the encircling plastic tubing and materially increasing the volume thereof. As the tube is expanded, the blood is forced from the left ventricle in the proper direction to enter the circulatory system.
- a feature of the present invention resides in the provision of a catheter of the type described which includes a series of angularly spaced wires or resilient filaments extending longitudinally thereof, and which are preferably anchored at the distal end of the catheter.
- the proximal end of the wires are connected to a wire or similar means extending through the catheter tube to a point externally of the body.
- the proximal end of the wires are held from expansion by suitable means, such as by a ring encircling the catheter.
- a feature of the present invention resides in the provision of a device which may be extended into the left ventricle and which may be expanded and contracted at virtually any desired interval.
- a device which may be extended into the left ventricle and which may be expanded and contracted at virtually any desired interval.
- blood flows from the left ventricle through the aorta in the usual manner.
- the device is collapsed, the blood is drawn into the left ventricle from the left atrium in the usual manner. Accordingly, the flow of blood is natural and follows the natural path.
- a further feature of the present invention resides in the provision of a device which lends itself to inflation and deflation at shorter intervals than would otherwise be obtained. For example, if the usual type of balloon were inserted into the heart, it would be necessary to inflate and deflate the balloon at short intervals. Such inflation and deflation would be impractical due to the necessary movement of fluid of one type or another to expand or contract the balloon.
- the present device may be inflated and deflated by movement of a wire extending through the catheter and accordingly the present device is much more flexible in its time cycle.
- a further feature of the present invention resides in the device which may, if desired, by controlled or triggered by the electrocardiogram.
- the electrocardiogram There is a wave form in the electrocardiogram called the QRS complex.” This electrical wave precedes the mechanical contraction of the ventricle.
- the present device may be coupled or connected electrically in such a way as to trigger the action of the device as desired in relation to the QRS wave. Thus the device may be triggered at the peak of the wave or after any time interval had elapsed as desired.
- FIG. 1 is a sectional view through the tip of a catheter, showing the device in its collapsed form.
- FIG. 2 is a view similar to FIG. 1, showing the device in its expanded form.
- FIG. 3 is a cross-sectional view, theposition of the section being indicated by the line 3-3 of FIG. 1.
- FIG. 4 is a diagrammatic view of a portion of the circulatory system of a human showing the relative general position of the femoral artery, the aorta, the heart, and the left ventricle, and the left atrium.
- FIG. 5 is a enlarged detail showing a portion of the art.
- the introcardiac pump is indicated in general by the letter A in FIGS. 1, 2, and 3 of the drawings.
- the numeral 10 indicates the catheter which is of a size capable of being inserted into a systemic artery such as the femoral artery.
- the catheter 10 comprises an elongated tube having a plurality of angularly spaced resilient wires or other such elements ll extending parallel to the axis of the tube and normally extending longitudinally thereof parallel to the axis.
- the term wire has been used for the purpose of description, but any filaments which are resilient and which act in the manner of resilient wires can be used in place thereof.
- the wires ill are shown as including inturned ends 12 which extend into the catheter tube 10 and are thus anchored thereto.
- the other ends of the wires ll are secured to a ring 13 which encircles the catheter tube and which is slidable relative thereto.
- a tube 14 extends through the catheter and the associated catheter tube, and extends beyond the end of the catheter tube so that it may be moved axially of the tube.
- pins such as 15 are attached to the tube 14 and project radially therefrom, and are terminally connected to the ring 13. The purpose of this arrangement is to permit the ring l3 to be moved axially of the catheter tube it] by movement of the tube 14.
- the catheter tube 10 is longitudinally slotted as indicated at 16 to permit the pins l5 and ring 13 to move longitudinally of the axis of the catheter tube within certain predetermined limits.
- FIG. l of the drawings shows the pump in its deflated or relaxed position.
- FIG. 2 of the drawings shows the same pump in its ex panded or inflated position.
- the wires 11 will be flexed from their straight position generally parallel to the axis of the catheter tube to an outwardly bowed position as indicated in FIG. 2. This can be controlled completely from the end of the catheter tube which is external of the human body.
- An elongated sheathing or tube 17 of resilient plastic or similar material encircles the portion of the catheter tube end which includes the wires ii.
- the sheathing 17 is normally secured to the catheter tube beyond the end of the wires M.
- the sheathing i7 is preferabiy anchored to the end of the catheter it) by any suitable means such as by adhesive or by a binding ring.
- the tube 17 is also secured and sealed to the catheter tube 10 in the area 20 which is beyond the ends of the slots 16. As a result, the portion of the catheter tube which bears the various wires 11 is completely enclosed by the sheathing.
- a guide wire 18 may extend through the tube 14 and may serve to guide the catheter tube 10 into the artery.
- the guide wire may serve also to guide the tip of the catheter across the aortic valve and into the left ventricle.
- the guide wire 18 may then be removed, leaving the tube 14 open. This may be of advantage for using the lumen for measurement of pressure generated within the left ventricle, or for injection of liquids or dye or radiopaque material through the lumen and into the circulatory system.
- FIG. 4 of the drawings indicates diagrammatically portions of a human body.
- a systemic artery such as the femoral artery 21 is connected to the aorta 22 which leads to the aortic valve 23 leading to the left ventricle 24 of the heart.
- the left atrium 25 of the heart is connected by suitable passages 26 leading from the lungs.
- the left ventricle 24 of the heart 27 is expanded blood is drawn into the left ventricle from the lungs through the passages 26.
- the left ventricle of the heart 24 is collapsed, blood is forced through the aortic valve to the aorta and through the blood system. 7
- the heart In order to function, the heart is enclosed in a relatively inelastic layer 29 which is known as the paracardium. This permits the expansion and contraction of the left ventricle within natural limits and maintains the proper size left ventricle chamber.
- the operation of the device is generally as follows.
- the catheter preferably through the use of the guide wire 18, is inserted into a systemic artery percutaneously. This is normally done under a local anesthesia.
- the catheter is moved past the aortic valve in a retrograde direction, and the end of the catheter is positioned in the cavity of the left ventricle. This is normally accomplished through the use of fluoroscopy.
- the resilient covering of the catheter tip is expanded and contracted at regular intervals.
- blood is forced from the left ventricle through the aorta and into the artery system.
- catheter tip is contracted, blood is drawn into the left ventricle from the left atrium and the lungs. As a result, blood may be circulated through the body much in the same manner as it would if the heart pump were functioning properly.
- the tube 14 may be moved or reciprocated within the catheter tube by suitable mechanical means.
- This mechanical means may be timed to move' the lumen in proper timed relation to the QRS wave on the electrocardiagram.
- means may be provided for reciprocating the tube 14 within the catheter tube.
- the tube may be moved at a predetermined time interval after the QRS wave is experienced. As a result, the blood may be pumped through the body much in the same manner as it would be by the heart, and may be used to supplement the action of the heart.
- the member 14 has been described as a tube which slides within the catheter tube.
- the tube 14 may be a wire mesh material which expands and decreases in length as the mesh is rotated within the catheter tube. In other words means other than reciprocatory movement of the tube 14 may be employed for flexing the wires 11.
- a heart pump including:
- said catheter having longitudinally extending slot means therein inwardly of said ring;
- a method of pumping blood from the heart by use of a catheter having on its extremity an expandable and contractable member including the steps of:
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Anesthesiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Vascular Medicine (AREA)
- Medical Informatics (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A heart pump is provided including a catheter and catheter tube having at its extremity a series of longitudinally extending ribs extending in angularly spaced relation about the catheter. The ribs are enclosed within a resilient tube which is expanded and contracted by said ribs to more or less fill the left ventricle of the heart. The ribs are flexed from a position generally parallel to the catheter axis to an outwardly bowed position by a flexible member extending into said catheter and through said catheter tube.
Description
O United States Patent 1 1 3,568,659
[72] lnventor James N. Karnegis [56] References Cited 5604 W. 65th St., Minneapolis, Minn. UNITED STATES PATENTS 55435 88,695 4 1869 D d 128 243 [21] 7624)" 1 621 159 3 1927 n 2 a i ans l P t m d M i 2,586,553 2/1952 Moscarello 128/243 3 e e 3,266,487 8/1966 Watkins et al 128/1 Primary Examiner-Richard A. Gaudet Assistant ExaminerRonald L. Frinks Att0meyRobert M. Dunning [54] DISPOSABLE PERCUTANEOUS INTRACARDIAC 0F PUMPING BLOOD ABSTRACT: A heart pump is provided including a catheter nuns raw 8 and catheter tube having at its extremity a series of longitu- [52] U.S. Cl. 128/1, dinally extending ribs extending in angularly spaced relation 128/243, 128/2, 128/2.05, 128/Z 348 about the catheter. The ribs are enclosed within a resilient [51] Int. Cl. ..A6lbf9/00, tube which is expanded and contracted by said ribs to more or 1 A61b 5/02 less till the left ventricle of the heart. The ribs are flexed from [50] Field of Search 128/1, a position generally parallel to the catheter axis to an out- 2.05 (D), 2.05 (E), 2.05 (V) wardly bowed position by a flexible member extending into said catheter-and through said catheter tube.
WEMTEDMAR 9197i 3568.659
3 a 45 M /0 /5 z/ 12 \r////fl INVENTOR L/A/WJFS Al. KARNE'G/S BY ,mnm
ATTORNEY DTSFGSABLE PEFRQIJTANEOUS INTRACARDHAC PUMP AND METHOD 01F PUMPING BLOOD This invention relates to an improvement in disposable percutaneous introcardiac pump, and deals particularly with a means of expanding and contracting the left ventricle of the heart chamber to promote the flow of blood through the blood stream of the body.
The heart is a pump whose job is to circulate oxygenated blood to all parts of the body. There are times, as for example, when the patient suffers a myocardial infarction, that the heart is weakened to such a degree that it can no longer adequately pump blood to maintain life. Since this weakened state may at times by transient, tremendous effort has been, and is being, expended in the search for a method to temporary mechanically support the heart.
A variety of methods have been attempted. Some previous devices have been used which in effect encircle the ventricle and by intermittently squeezing the heart, aid in expelling blood into circulation. Another method is to place sausage shaped balloons in the aorta, and by alternately inflating the balloon from the proximal to the distal end, create a milking action in the aorta which helps propel blood in a forward direction.
The object of the present invention lies in the provision of somewhat different device which does not require an operation of the opening of the chest. The only anesthesia needed would be a skin wheal of local anesthetic The device could be involved with fluoroscopy even in the patients room. It is anticipated that the device may be produced very inexpensively and thus be disposable.
A feature of the present invention resides in the provision of a device which is mounted upon the end of a catheter which may be percutaneously inserted into a systemic artery under local anesthesia. By means of a spring guide wire, the aortic valve is crossed in the retrograde direction, and the end of the catheter is lodged in the cavity of the left ventricle of the heart. This may be readily accomplished using fluoroscopy.
The end of the catheter which lies within the left ventricle is covered by a plastic tube or plastic bag which is sealed relative to the catheter at both ends. The surface of the catheter, inwardly of the plastic tube, is provided with a series of angulariy spaced resilient wires each of which is anchored at one end to the body of the catheter. Means are provided extending through the hollow catheter to move the other end of each of these wires toward the anchored end. This causes the wires to bow outwardly, expanding the encircling plastic tubing and materially increasing the volume thereof. As the tube is expanded, the blood is forced from the left ventricle in the proper direction to enter the circulatory system.
A feature of the present invention resides in the provision of a catheter of the type described which includes a series of angularly spaced wires or resilient filaments extending longitudinally thereof, and which are preferably anchored at the distal end of the catheter. The proximal end of the wires are connected to a wire or similar means extending through the catheter tube to a point externally of the body. The proximal end of the wires are held from expansion by suitable means, such as by a ring encircling the catheter. When the ring anchored to the proximal end of the wires is moved toward the distal end of the catheter, the wires are caused to bow outwardly, expanding the encircling the resilient tube or bag.
A feature of the present invention resides in the provision of a device which may be extended into the left ventricle and which may be expanded and contracted at virtually any desired interval. As the device is expanded, blood flows from the left ventricle through the aorta in the usual manner. As the device is collapsed, the blood is drawn into the left ventricle from the left atrium in the usual manner. Accordingly, the flow of blood is natural and follows the natural path.
A further feature of the present invention resides in the provision of a device which lends itself to inflation and deflation at shorter intervals than would otherwise be obtained. For example, if the usual type of balloon were inserted into the heart, it would be necessary to inflate and deflate the balloon at short intervals. Such inflation and deflation would be impractical due to the necessary movement of fluid of one type or another to expand or contract the balloon. The present device may be inflated and deflated by movement of a wire extending through the catheter and accordingly the present device is much more flexible in its time cycle.
A further feature of the present invention resides in the device which may, if desired, by controlled or triggered by the electrocardiogram. There is a wave form in the electrocardiogram called the QRS complex." This electrical wave precedes the mechanical contraction of the ventricle. The present device may be coupled or connected electrically in such a way as to trigger the action of the device as desired in relation to the QRS wave. Thus the device may be triggered at the peak of the wave or after any time interval had elapsed as desired. These and other objects and novel features of the present invention will be more clearly and fully set forth in the following specification and claims.
In the drawings forming a part of the specification:
FIG. 1 is a sectional view through the tip of a catheter, showing the device in its collapsed form.
FIG. 2 is a view similar to FIG. 1, showing the device in its expanded form.
FIG. 3 is a cross-sectional view, theposition of the section being indicated by the line 3-3 of FIG. 1.
FIG. 4 is a diagrammatic view of a portion of the circulatory system of a human showing the relative general position of the femoral artery, the aorta, the heart, and the left ventricle, and the left atrium.
FIG. 5 is a enlarged detail showing a portion of the art.
The introcardiac pump is indicated in general by the letter A in FIGS. 1, 2, and 3 of the drawings. The numeral 10 indicates the catheter which is of a size capable of being inserted into a systemic artery such as the femoral artery. The catheter 10 comprises an elongated tube having a plurality of angularly spaced resilient wires or other such elements ll extending parallel to the axis of the tube and normally extending longitudinally thereof parallel to the axis. The term wire has been used for the purpose of description, but any filaments which are resilient and which act in the manner of resilient wires can be used in place thereof.
In the particular arrangement illustrated, the wires ill are shown as including inturned ends 12 which extend into the catheter tube 10 and are thus anchored thereto. The other ends of the wires ll are secured to a ring 13 which encircles the catheter tube and which is slidable relative thereto. A tube 14 extends through the catheter and the associated catheter tube, and extends beyond the end of the catheter tube so that it may be moved axially of the tube. For the purpose of illustration, pins such as 15 are attached to the tube 14 and project radially therefrom, and are terminally connected to the ring 13. The purpose of this arrangement is to permit the ring l3 to be moved axially of the catheter tube it] by movement of the tube 14.
As indicated in FIGS. ll and 2 of the drawings, the catheter tube 10 is longitudinally slotted as indicated at 16 to permit the pins l5 and ring 13 to move longitudinally of the axis of the catheter tube within certain predetermined limits. FIG. l of the drawings shows the pump in its deflated or relaxed position. FIG. 2 of the drawings shows the same pump in its ex panded or inflated position. As will be obvious from these drawings, as the ring 13 moves toward the right in the FIGS. indicated, the wires 11 will be flexed from their straight position generally parallel to the axis of the catheter tube to an outwardly bowed position as indicated in FIG. 2. This can be controlled completely from the end of the catheter tube which is external of the human body.
An elongated sheathing or tube 17 of resilient plastic or similar material encircles the portion of the catheter tube end which includes the wires ii. The sheathing 17 is normally secured to the catheter tube beyond the end of the wires M. The sheathing i7 is preferabiy anchored to the end of the catheter it) by any suitable means such as by adhesive or by a binding ring. The tube 17 is also secured and sealed to the catheter tube 10 in the area 20 which is beyond the ends of the slots 16. As a result, the portion of the catheter tube which bears the various wires 11 is completely enclosed by the sheathing.
A guide wire 18 may extend through the tube 14 and may serve to guide the catheter tube 10 into the artery. The guide wire may serve also to guide the tip of the catheter across the aortic valve and into the left ventricle. The guide wire 18 may then be removed, leaving the tube 14 open. This may be of advantage for using the lumen for measurement of pressure generated within the left ventricle, or for injection of liquids or dye or radiopaque material through the lumen and into the circulatory system.
FIG. 4 of the drawings indicates diagrammatically portions of a human body. A systemic artery, such as the femoral artery 21 is connected to the aorta 22 which leads to the aortic valve 23 leading to the left ventricle 24 of the heart. As is indicated in H6. of the drawings, the left atrium 25 of the heart is connected by suitable passages 26 leading from the lungs. When the left ventricle 24 of the heart 27 is expanded blood is drawn into the left ventricle from the lungs through the passages 26. Similarily, when the left ventricle of the heart 24 is collapsed, blood is forced through the aortic valve to the aorta and through the blood system. 7
In order to function, the heart is enclosed in a relatively inelastic layer 29 which is known as the paracardium. This permits the expansion and contraction of the left ventricle within natural limits and maintains the proper size left ventricle chamber.
The operation of the device is generally as follows. The catheter preferably through the use of the guide wire 18, is inserted into a systemic artery percutaneously. This is normally done under a local anesthesia. By means of the spring guide wire 18, the catheter is moved past the aortic valve in a retrograde direction, and the end of the catheter is positioned in the cavity of the left ventricle. This is normally accomplished through the use of fluoroscopy.
Once the expandable and contractable end of the catheter is within the left ventricle chamber, the resilient covering of the catheter tip is expanded and contracted at regular intervals. Each time the catheter tip is expanded, blood is forced from the left ventricle through the aorta and into the artery system. Each time the catheter tip is contracted, blood is drawn into the left ventricle from the left atrium and the lungs. As a result, blood may be circulated through the body much in the same manner as it would if the heart pump were functioning properly.
If it is desired, the tube 14 may be moved or reciprocated within the catheter tube by suitable mechanical means. This mechanical means may be timed to move' the lumen in proper timed relation to the QRS wave on the electrocardiagram. Each time this wave is experienced in the electrocardiagram, means may be provided for reciprocating the tube 14 within the catheter tube. If preferred, the tube may be moved at a predetermined time interval after the QRS wave is experienced. As a result, the blood may be pumped through the body much in the same manner as it would be by the heart, and may be used to supplement the action of the heart.
In the foregoing description the member 14 has been described as a tube which slides within the catheter tube. As an alternative, the tube 14 may be a wire mesh material which expands and decreases in length as the mesh is rotated within the catheter tube. In other words means other than reciprocatory movement of the tube 14 may be employed for flexing the wires 11.
in accordance with the Pat. Statutes, I have described the principles of construction and operation of my improvement in disposable percutaneous intracardiac pump, and while I have endeavored to set forth the best embodiment thereof, l desire to have it understood that changes may be made within the scope of the following claims without departing from the spirit of my invention.
1 claim:
1. A heart pump including:
a catheter having a tip end;
a series of resilient flexible ribs in angularly spaced relation about said catheter and extending parallel to the axis thereof;
means securing an end of each of said ribs to said catheter adjoining the tip end thereof;
a ring slidably supported on said catheter and to which the other ends of said ribs are anchored;
a reciprocating member slidably supported within the catheter;
said catheter having longitudinally extending slot means therein inwardly of said ring;
means extending through said slot means connecting said ring with said reciprocating member; and
a flexible resilient tube encircling said ribs and anchored to said catheter beyond the ends of said ribs.
2. The structure of claim 1 and in which said reciprocating member is hollow.
3. The structure of claim 2 and including a guide wire slidably supported within said reciprocating member and extendable through said tipend of said catheter.
4. A method of pumping blood from the heart by use of a catheter having on its extremity an expandable and contractable member including the steps of:
inserting the catheter through the aorta and into the left ventricle of the heart;
mechanically expanding the member to force blood through the aorta; and
contracting the member to draw blood into the left ventricle.
5. The method of claim 4 and in which the expandable and contractable member is actuated by a flexible member extending into said catheter, and including the step of reciprocating said flexible member.
Claims (5)
1. A heart pump including: a catheter having a tip end; a series of resilient flexible ribs in angularly spaced relation about said catheter and extending parallel to the axis thereof; means securing an end of each of said ribs to said catheter adjoining the tip end thereof; a ring slidably supported on said catheter and to which the other ends of said ribs are anchored; a reciprocating member slidably supported within the catheter; said catheter having longitudinally extending slot means therein inwardly of said ring; means extending through said slot means connecting said ring with said reciprocating member; and a flexible resilient tube encircling said ribs and anchored to said catheter beyond the ends of said ribs.
2. The structure of claim 1 and in which said reciprocating member is hollow.
3. The structure of claim 2 and including a guide wire slidably supported within said reciprocating member and extendable through said tip end of said catheter.
4. A method of pumping blood from the heart by use of a catheter having on its extremity an expandable and contractable member including the steps of: inserting the catheter through the aorta and into the left ventricle of the heart; mechanically expanding the member to force blood through the aorta; and contracting the member to draw blood into the left ventricle.
5. The method of claim 4 and in which the expandable and contractable member is actuated by a flexible member extending into said catheter, and including the step of reciprocating said flexible member.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76201768A | 1968-09-24 | 1968-09-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3568659A true US3568659A (en) | 1971-03-09 |
Family
ID=25063903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US762017A Expired - Lifetime US3568659A (en) | 1968-09-24 | 1968-09-24 | Disposable percutaneous intracardiac pump and method of pumping blood |
Country Status (1)
Country | Link |
---|---|
US (1) | US3568659A (en) |
Cited By (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3720200A (en) * | 1971-10-28 | 1973-03-13 | Avco Corp | Intra-arterial blood pump |
US3902501A (en) * | 1973-06-21 | 1975-09-02 | Medtronic Inc | Endocardial electrode |
US3995617A (en) * | 1972-05-31 | 1976-12-07 | Watkins David H | Heart assist method and catheter |
US4301815A (en) * | 1980-01-23 | 1981-11-24 | Telectronics Pty. Limited | Trailing tine electrode lead |
WO1983003204A1 (en) * | 1982-03-12 | 1983-09-29 | Webster, Wilton, W., Jr. | Autoinflatable catheter |
US4427470A (en) | 1981-09-01 | 1984-01-24 | University Of Utah | Vacuum molding technique for manufacturing a ventricular assist device |
US4473423A (en) * | 1982-05-03 | 1984-09-25 | University Of Utah | Artificial heart valve made by vacuum forming technique |
US4585000A (en) * | 1983-09-28 | 1986-04-29 | Cordis Corporation | Expandable device for treating intravascular stenosis |
US4650466A (en) * | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
EP0238106A1 (en) * | 1986-02-11 | 1987-09-23 | Louis Johannes Karel Jozef Reytenbagh | Catheter provided with positioning means |
US4753221A (en) * | 1986-10-22 | 1988-06-28 | Intravascular Surgical Instruments, Inc. | Blood pumping catheter and method of use |
US4759748A (en) * | 1986-06-30 | 1988-07-26 | Raychem Corporation | Guiding catheter |
US4781682A (en) * | 1987-08-13 | 1988-11-01 | Patel Piyush V | Catheter having support flaps and method of inserting catheter |
US4838889A (en) * | 1981-09-01 | 1989-06-13 | University Of Utah Research Foundation | Ventricular assist device and method of manufacture |
WO1989006935A1 (en) * | 1988-02-08 | 1989-08-10 | Wolfgang Radtke | Catheter for percutaneous surgery of blood vessels and organs using radiant energy |
US4885003A (en) * | 1988-07-25 | 1989-12-05 | Cordis Corporation | Double mesh balloon catheter device |
US4895557A (en) * | 1987-12-07 | 1990-01-23 | Nimbus Medical, Inc. | Drive mechanism for powering intravascular blood pumps |
US4921484A (en) * | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
FR2639237A1 (en) * | 1988-11-23 | 1990-05-25 | Boussignac Georges | Catheter intended to be introduced into a body channel |
US5034001A (en) * | 1989-09-08 | 1991-07-23 | Advanced Cardiovascular Systems, Inc. | Method of repairing a damaged blood vessel with an expandable cage catheter |
US5064434A (en) * | 1990-04-04 | 1991-11-12 | Haber Terry M | Genitourinary implant |
WO1992015358A1 (en) * | 1991-03-01 | 1992-09-17 | Applied Medical Resources, Inc. | Cholangiography catheter |
US5169378A (en) * | 1990-07-20 | 1992-12-08 | Diego Figuera | Intra-ventricular expansible assist pump |
US5176619A (en) * | 1989-05-05 | 1993-01-05 | Jacob Segalowitz | Heart-assist balloon pump with segmented ventricular balloon |
US5209654A (en) * | 1989-09-15 | 1993-05-11 | Loefsjoegard Nilsson Erling | Fluid pump with flexible pump chamber |
EP0567788A1 (en) * | 1992-04-02 | 1993-11-03 | Indiana University Foundation | Method and apparatus for intravascular drug delivery |
US5490859A (en) * | 1992-11-13 | 1996-02-13 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5501694A (en) * | 1992-11-13 | 1996-03-26 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5616137A (en) * | 1995-02-22 | 1997-04-01 | Minnesota Mining And Manufacturing Company | Low velocity aortic cannula |
US5643226A (en) * | 1993-02-24 | 1997-07-01 | Minnesota Mining And Manufacturing | Low velocity aortic cannula |
US5685865A (en) * | 1993-02-24 | 1997-11-11 | Minnesota Mining And Manufacturing Company | Low velocity aortic cannula |
US5792157A (en) * | 1992-11-13 | 1998-08-11 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5836868A (en) * | 1992-11-13 | 1998-11-17 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5857464A (en) * | 1995-06-07 | 1999-01-12 | Desai; Jawahar M. | Catheter for media injection |
US5897567A (en) * | 1993-04-29 | 1999-04-27 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5911685A (en) * | 1996-04-03 | 1999-06-15 | Guidant Corporation | Method and apparatus for cardiac blood flow assistance |
US6052612A (en) * | 1995-06-07 | 2000-04-18 | Desai; Jawahar M. | Catheter for media injection |
US6139487A (en) * | 1997-04-02 | 2000-10-31 | Impella Cardiotechnik Ag | Intracardiac pump device |
US6176822B1 (en) | 1998-03-31 | 2001-01-23 | Impella Cardiotechnik Gmbh | Intracardiac blood pump |
US6176848B1 (en) | 1996-04-04 | 2001-01-23 | Impella Cardiotechnik Gmbh | Intravascular blood pump |
US6245007B1 (en) | 1999-01-28 | 2001-06-12 | Terumo Cardiovascular Systems Corporation | Blood pump |
WO2001097875A2 (en) * | 2000-06-20 | 2001-12-27 | Applied Medical Resources Corporation | Self-deploying catheter assembly |
US6348061B1 (en) * | 2000-02-22 | 2002-02-19 | Powermed, Inc. | Vessel and lumen expander attachment for use with an electromechanical driver device |
US6350252B2 (en) | 1998-01-23 | 2002-02-26 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
US6411852B1 (en) | 1997-04-07 | 2002-06-25 | Broncus Technologies, Inc. | Modification of airways by application of energy |
US20020084304A1 (en) * | 1999-06-02 | 2002-07-04 | Whitman Michael P. | Surgical clamping, cutting and stapling device |
US20030050659A1 (en) * | 2001-02-28 | 2003-03-13 | Chase Medical, Lp | Ventricular restoration shaping apparatus |
US20030105478A1 (en) * | 2001-11-30 | 2003-06-05 | Whitman Michael P. | Surgical device |
US20030130677A1 (en) * | 2002-01-08 | 2003-07-10 | Whitman Michael P. | Surgical device |
US20030159700A1 (en) * | 1997-04-07 | 2003-08-28 | Laufer Michael D. | Method of increasing gas exchange of a lung |
US6616678B2 (en) * | 1997-10-01 | 2003-09-09 | Scimed Life Systems, Inc. | Dilation systems and related methods |
US20030181940A1 (en) * | 2001-02-28 | 2003-09-25 | Gregory Murphy | Ventricular restoration shaping apparatus and method of use |
US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease |
US6685722B1 (en) * | 1998-05-01 | 2004-02-03 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US6716233B1 (en) | 1999-06-02 | 2004-04-06 | Power Medical Interventions, Inc. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US20040111081A1 (en) * | 1999-06-02 | 2004-06-10 | Whitman Michael P. | Electro-mechanical surgical device |
US6793652B1 (en) | 1999-06-02 | 2004-09-21 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US20040243170A1 (en) * | 2001-09-05 | 2004-12-02 | Mitta Suresh | Method and device for percutaneous surgical ventricular repair |
US20040249408A1 (en) * | 2001-09-05 | 2004-12-09 | Chase Medical, Lp | Method and device for endoscopic surgical ventricular repair |
US20050187576A1 (en) * | 2004-02-23 | 2005-08-25 | Whitman Michael P. | Surgical cutting and stapling device |
US20050187579A1 (en) * | 1997-04-07 | 2005-08-25 | Asthmatx, Inc. | Method for treating an asthma attack |
US6981941B2 (en) | 1999-06-02 | 2006-01-03 | Power Medical Interventions | Electro-mechanical surgical device |
US7032798B2 (en) | 1999-06-02 | 2006-04-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US20060247726A1 (en) * | 2000-10-17 | 2006-11-02 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US20060247617A1 (en) * | 2004-11-12 | 2006-11-02 | Asthmatx, Inc. | Energy delivery devices and methods |
US20060247618A1 (en) * | 2004-11-05 | 2006-11-02 | Asthmatx, Inc. | Medical device with procedure improvement features |
US20060254600A1 (en) * | 2000-03-27 | 2006-11-16 | Asthmatx, Inc. | Methods for treating airways |
JP2006334083A (en) * | 2005-06-01 | 2006-12-14 | Olympus Medical Systems Corp | Endoscopic catheter |
US20070078386A1 (en) * | 2005-08-30 | 2007-04-05 | Cytyc Corporation | Movable anchoring catheter |
US20070083197A1 (en) * | 1998-01-07 | 2007-04-12 | Asthmatx, Inc. | Method for treating an asthma attack |
US20070106292A1 (en) * | 2004-11-05 | 2007-05-10 | Asthmatx, Inc. | Energy delivery devices and methods |
US20070102011A1 (en) * | 1998-06-10 | 2007-05-10 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease |
US20070118184A1 (en) * | 1998-06-10 | 2007-05-24 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
US20080097424A1 (en) * | 2006-10-20 | 2008-04-24 | Asthmatx, Inc. | Electrode markers and methods of use |
US7425212B1 (en) | 1998-06-10 | 2008-09-16 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
US20090018538A1 (en) * | 2007-07-12 | 2009-01-15 | Asthmatx, Inc. | Systems and methods for delivering energy to passageways in a patient |
US20090043301A1 (en) * | 2007-08-09 | 2009-02-12 | Asthmatx, Inc. | Monopolar energy delivery devices and methods for controlling current density in tissue |
US20090093796A1 (en) * | 2007-10-08 | 2009-04-09 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US20090281374A1 (en) * | 2008-01-11 | 2009-11-12 | Leanna Gary | Endoscope Anchoring Device |
US7743960B2 (en) | 2002-06-14 | 2010-06-29 | Power Medical Interventions, Llc | Surgical device |
US7918230B2 (en) | 2007-09-21 | 2011-04-05 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US7963433B2 (en) | 2007-09-21 | 2011-06-21 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US8181656B2 (en) | 1998-06-10 | 2012-05-22 | Asthmatx, Inc. | Methods for treating airways |
US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
US8740895B2 (en) | 2009-10-27 | 2014-06-03 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US8808280B2 (en) | 2008-05-09 | 2014-08-19 | Holaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US8900060B2 (en) | 2009-04-29 | 2014-12-02 | Ecp Entwicklungsgesellschaft Mbh | Shaft arrangement having a shaft which extends within a fluid-filled casing |
US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
US8926492B2 (en) | 2011-10-11 | 2015-01-06 | Ecp Entwicklungsgesellschaft Mbh | Housing for a functional element |
US8932141B2 (en) | 2009-10-23 | 2015-01-13 | Ecp Entwicklungsgesellschaft Mbh | Flexible shaft arrangement |
US8944748B2 (en) | 2009-05-05 | 2015-02-03 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump changeable in diameter, in particular for medical application |
US20150051576A1 (en) * | 2012-03-30 | 2015-02-19 | Koninklijke Philips N.V. | Nested cannula tips |
US8979493B2 (en) | 2009-03-18 | 2015-03-17 | ECP Entwicklungsgesellscaft mbH | Fluid pump |
US8998792B2 (en) | 2008-12-05 | 2015-04-07 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US9028216B2 (en) | 2009-09-22 | 2015-05-12 | Ecp Entwicklungsgesellschaft Mbh | Rotor for an axial flow pump for conveying a fluid |
US9067006B2 (en) | 2009-06-25 | 2015-06-30 | Ecp Entwicklungsgesellschaft Mbh | Compressible and expandable blade for a fluid pump |
US9089634B2 (en) | 2009-09-22 | 2015-07-28 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having at least one impeller blade and a support device |
US9089670B2 (en) | 2009-02-04 | 2015-07-28 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a catheter and an actuation device |
US9113878B2 (en) | 2002-01-08 | 2015-08-25 | Covidien Lp | Pinion clip for right angle linear cutter |
WO2015134331A1 (en) * | 2014-03-05 | 2015-09-11 | Invatec S.P.A. | Catheter assemblies for stabilizing a catheter assembly within a subintimal space |
US9149328B2 (en) | 2009-11-11 | 2015-10-06 | Holaira, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
US9217442B2 (en) | 2010-03-05 | 2015-12-22 | Ecp Entwicklungsgesellschaft Mbh | Pump or rotary cutter for operation in a fluid |
US9272132B2 (en) | 2012-11-02 | 2016-03-01 | Boston Scientific Scimed, Inc. | Medical device for treating airways and related methods of use |
US9283374B2 (en) | 2012-11-05 | 2016-03-15 | Boston Scientific Scimed, Inc. | Devices and methods for delivering energy to body lumens |
US9314558B2 (en) | 2009-12-23 | 2016-04-19 | Ecp Entwicklungsgesellschaft Mbh | Conveying blades for a compressible rotor |
US20160106939A1 (en) * | 2014-10-20 | 2016-04-21 | Talal Sharaiha LLC | Expandable intubation assemblies |
US9328741B2 (en) | 2010-05-17 | 2016-05-03 | Ecp Entwicklungsgesellschaft Mbh | Pump arrangement |
US9339596B2 (en) | 2009-12-23 | 2016-05-17 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a fluid pump |
US9339618B2 (en) | 2003-05-13 | 2016-05-17 | Holaira, Inc. | Method and apparatus for controlling narrowing of at least one airway |
US9358330B2 (en) | 2009-12-23 | 2016-06-07 | Ecp Entwicklungsgesellschaft Mbh | Pump device having a detection device |
US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
US9416791B2 (en) | 2010-01-25 | 2016-08-16 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having a radially compressible rotor |
US9416783B2 (en) | 2009-09-22 | 2016-08-16 | Ecp Entwicklungsgellschaft Mbh | Compressible rotor for a fluid pump |
US9592086B2 (en) | 2012-07-24 | 2017-03-14 | Boston Scientific Scimed, Inc. | Electrodes for tissue treatment |
US9603983B2 (en) | 2009-10-23 | 2017-03-28 | Ecp Entwicklungsgesellschaft Mbh | Catheter pump arrangement and flexible shaft arrangement having a core |
US9611743B2 (en) | 2010-07-15 | 2017-04-04 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a pump having an impeller blade |
US9770293B2 (en) | 2012-06-04 | 2017-09-26 | Boston Scientific Scimed, Inc. | Systems and methods for treating tissue of a passageway within a body |
US9771801B2 (en) | 2010-07-15 | 2017-09-26 | Ecp Entwicklungsgesellschaft Mbh | Rotor for a pump, produced with a first elastic material |
US9814618B2 (en) | 2013-06-06 | 2017-11-14 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use |
US9867916B2 (en) | 2010-08-27 | 2018-01-16 | Berlin Heart Gmbh | Implantable blood conveying device, manipulating device and coupling device |
US9895475B2 (en) | 2010-07-15 | 2018-02-20 | Ecp Entwicklungsgesellschaft Mbh | Blood pump for the invasive application within a body of a patient |
US9974893B2 (en) | 2010-06-25 | 2018-05-22 | Ecp Entwicklungsgesellschaft Mbh | System for introducing a pump |
US10107299B2 (en) | 2009-09-22 | 2018-10-23 | Ecp Entwicklungsgesellschaft Mbh | Functional element, in particular fluid pump, having a housing and a conveying element |
US10172985B2 (en) | 2009-08-06 | 2019-01-08 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a coupling device for a drive device |
US10172632B2 (en) | 2015-09-22 | 2019-01-08 | Medtronic Vascular, Inc. | Occlusion bypassing apparatus with a re-entry needle and a stabilization tube |
US20190054278A1 (en) * | 2009-07-21 | 2019-02-21 | Lake Region Medical, Inc. | Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires |
US10327791B2 (en) | 2015-10-07 | 2019-06-25 | Medtronic Vascular, Inc. | Occlusion bypassing apparatus with a re-entry needle and a distal stabilization balloon |
US10391278B2 (en) | 2011-03-10 | 2019-08-27 | Ecp Entwicklungsgesellschaft Mbh | Push device for the axial insertion of an elongate, flexible body |
US10478247B2 (en) | 2013-08-09 | 2019-11-19 | Boston Scientific Scimed, Inc. | Expandable catheter and related methods of manufacture and use |
US10561773B2 (en) | 2011-09-05 | 2020-02-18 | Ecp Entwicklungsgesellschaft Mbh | Medical product comprising a functional element for the invasive use in a patient's body |
US10569050B1 (en) | 2012-02-24 | 2020-02-25 | Christian M. Heesch | Guide catheter support instrument |
US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11368081B2 (en) | 2018-01-24 | 2022-06-21 | Kardion Gmbh | Magnetic coupling element with a magnetic bearing function |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
US11754075B2 (en) | 2018-07-10 | 2023-09-12 | Kardion Gmbh | Impeller for an implantable, vascular support system |
US11944805B2 (en) | 2020-01-31 | 2024-04-02 | Kardion Gmbh | Pump for delivering a fluid and method of manufacturing a pump |
US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
US12005248B2 (en) | 2018-05-16 | 2024-06-11 | Kardion Gmbh | Rotor bearing system |
US12064615B2 (en) | 2018-05-30 | 2024-08-20 | Kardion Gmbh | Axial-flow pump for a ventricular assist device and method for producing an axial-flow pump for a ventricular assist device |
US12076549B2 (en) | 2018-07-20 | 2024-09-03 | Kardion Gmbh | Feed line for a pump unit of a cardiac assistance system, cardiac assistance system and method for producing a feed line for a pump unit of a cardiac assistance system |
US12107474B2 (en) | 2018-05-16 | 2024-10-01 | Kardion Gmbh | End-face rotating joint for transmitting torques |
US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
US12121713B2 (en) | 2019-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
US12144976B2 (en) | 2018-06-21 | 2024-11-19 | Kardion Gmbh | Method and device for detecting a wear condition of a ventricular assist device and for operating same, and ventricular assist device |
US12161857B2 (en) | 2018-07-31 | 2024-12-10 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
US12194287B2 (en) | 2018-05-30 | 2025-01-14 | Kardion Gmbh | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
US12201823B2 (en) | 2018-05-30 | 2025-01-21 | Kardion Gmbh | Line device for conducting a blood flow for a heart support system, heart support system, and method for producing a line device |
US12220570B2 (en) | 2018-10-05 | 2025-02-11 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US88695A (en) * | 1869-04-06 | Improved syringe | ||
US1621159A (en) * | 1925-11-27 | 1927-03-15 | Robert T Evans | Abdominoscope |
US2586553A (en) * | 1947-09-06 | 1952-02-19 | Salvatore A Moscarello | Spraying device with dilator |
US3266487A (en) * | 1963-06-04 | 1966-08-16 | Sundstrand Corp | Heart pump augmentation system and apparatus |
-
1968
- 1968-09-24 US US762017A patent/US3568659A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US88695A (en) * | 1869-04-06 | Improved syringe | ||
US1621159A (en) * | 1925-11-27 | 1927-03-15 | Robert T Evans | Abdominoscope |
US2586553A (en) * | 1947-09-06 | 1952-02-19 | Salvatore A Moscarello | Spraying device with dilator |
US3266487A (en) * | 1963-06-04 | 1966-08-16 | Sundstrand Corp | Heart pump augmentation system and apparatus |
Cited By (402)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3720200A (en) * | 1971-10-28 | 1973-03-13 | Avco Corp | Intra-arterial blood pump |
US3995617A (en) * | 1972-05-31 | 1976-12-07 | Watkins David H | Heart assist method and catheter |
US3902501A (en) * | 1973-06-21 | 1975-09-02 | Medtronic Inc | Endocardial electrode |
US4301815A (en) * | 1980-01-23 | 1981-11-24 | Telectronics Pty. Limited | Trailing tine electrode lead |
US4838889A (en) * | 1981-09-01 | 1989-06-13 | University Of Utah Research Foundation | Ventricular assist device and method of manufacture |
US4427470A (en) | 1981-09-01 | 1984-01-24 | University Of Utah | Vacuum molding technique for manufacturing a ventricular assist device |
WO1983003204A1 (en) * | 1982-03-12 | 1983-09-29 | Webster, Wilton, W., Jr. | Autoinflatable catheter |
US4535757A (en) * | 1982-03-12 | 1985-08-20 | Webster Wilton W Jr | Autoinflatable catheter |
US4473423A (en) * | 1982-05-03 | 1984-09-25 | University Of Utah | Artificial heart valve made by vacuum forming technique |
US4585000A (en) * | 1983-09-28 | 1986-04-29 | Cordis Corporation | Expandable device for treating intravascular stenosis |
US4650466A (en) * | 1985-11-01 | 1987-03-17 | Angiobrade Partners | Angioplasty device |
EP0238106A1 (en) * | 1986-02-11 | 1987-09-23 | Louis Johannes Karel Jozef Reytenbagh | Catheter provided with positioning means |
US4759748A (en) * | 1986-06-30 | 1988-07-26 | Raychem Corporation | Guiding catheter |
US4753221A (en) * | 1986-10-22 | 1988-06-28 | Intravascular Surgical Instruments, Inc. | Blood pumping catheter and method of use |
US4781682A (en) * | 1987-08-13 | 1988-11-01 | Patel Piyush V | Catheter having support flaps and method of inserting catheter |
US4895557A (en) * | 1987-12-07 | 1990-01-23 | Nimbus Medical, Inc. | Drive mechanism for powering intravascular blood pumps |
US5188635A (en) * | 1988-02-08 | 1993-02-23 | Wolfgang Radtke | Catheter for percutaneous surgery of blood vessels and organs using radiant energy |
WO1989006935A1 (en) * | 1988-02-08 | 1989-08-10 | Wolfgang Radtke | Catheter for percutaneous surgery of blood vessels and organs using radiant energy |
US4885003A (en) * | 1988-07-25 | 1989-12-05 | Cordis Corporation | Double mesh balloon catheter device |
US4921484A (en) * | 1988-07-25 | 1990-05-01 | Cordis Corporation | Mesh balloon catheter device |
FR2639237A1 (en) * | 1988-11-23 | 1990-05-25 | Boussignac Georges | Catheter intended to be introduced into a body channel |
US5176619A (en) * | 1989-05-05 | 1993-01-05 | Jacob Segalowitz | Heart-assist balloon pump with segmented ventricular balloon |
US5034001A (en) * | 1989-09-08 | 1991-07-23 | Advanced Cardiovascular Systems, Inc. | Method of repairing a damaged blood vessel with an expandable cage catheter |
US5209654A (en) * | 1989-09-15 | 1993-05-11 | Loefsjoegard Nilsson Erling | Fluid pump with flexible pump chamber |
US5064434A (en) * | 1990-04-04 | 1991-11-12 | Haber Terry M | Genitourinary implant |
US5169378A (en) * | 1990-07-20 | 1992-12-08 | Diego Figuera | Intra-ventricular expansible assist pump |
WO1992015358A1 (en) * | 1991-03-01 | 1992-09-17 | Applied Medical Resources, Inc. | Cholangiography catheter |
US5443449A (en) * | 1991-03-01 | 1995-08-22 | Applied Medical Resources Corporation | Cholangiography catheter |
EP0567788A1 (en) * | 1992-04-02 | 1993-11-03 | Indiana University Foundation | Method and apparatus for intravascular drug delivery |
JPH0698938A (en) * | 1992-04-02 | 1994-04-12 | Univ Indiana Found | Method and device for delivering drug in blood vessel |
US5792157A (en) * | 1992-11-13 | 1998-08-11 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5490859A (en) * | 1992-11-13 | 1996-02-13 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5836868A (en) * | 1992-11-13 | 1998-11-17 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5501694A (en) * | 1992-11-13 | 1996-03-26 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5643226A (en) * | 1993-02-24 | 1997-07-01 | Minnesota Mining And Manufacturing | Low velocity aortic cannula |
US5685865A (en) * | 1993-02-24 | 1997-11-11 | Minnesota Mining And Manufacturing Company | Low velocity aortic cannula |
US5897567A (en) * | 1993-04-29 | 1999-04-27 | Scimed Life Systems, Inc. | Expandable intravascular occlusion material removal devices and methods of use |
US5616137A (en) * | 1995-02-22 | 1997-04-01 | Minnesota Mining And Manufacturing Company | Low velocity aortic cannula |
US5857464A (en) * | 1995-06-07 | 1999-01-12 | Desai; Jawahar M. | Catheter for media injection |
US6052612A (en) * | 1995-06-07 | 2000-04-18 | Desai; Jawahar M. | Catheter for media injection |
US20090048511A1 (en) * | 1995-06-07 | 2009-02-19 | Desai Jawahar M | Catheter For Media Injection |
US20040152980A1 (en) * | 1995-06-07 | 2004-08-05 | Desai Jawahar M. | Catheter for media injection |
US6701180B1 (en) | 1995-06-07 | 2004-03-02 | Jawahar M. Desai | Catheter for media injection |
US5911685A (en) * | 1996-04-03 | 1999-06-15 | Guidant Corporation | Method and apparatus for cardiac blood flow assistance |
US6176848B1 (en) | 1996-04-04 | 2001-01-23 | Impella Cardiotechnik Gmbh | Intravascular blood pump |
US6139487A (en) * | 1997-04-02 | 2000-10-31 | Impella Cardiotechnik Ag | Intracardiac pump device |
US6411852B1 (en) | 1997-04-07 | 2002-06-25 | Broncus Technologies, Inc. | Modification of airways by application of energy |
US20100185190A1 (en) * | 1997-04-07 | 2010-07-22 | Asthmatx, Inc. | Methods for treating asthma damaging nerve tissue |
US8161978B2 (en) | 1997-04-07 | 2012-04-24 | Asthmatx, Inc. | Methods for treating asthma by damaging nerve tissue |
US20090143776A1 (en) * | 1997-04-07 | 2009-06-04 | Asthmatx, Inc. | Modification of airways by application of cryo energy |
US20090143705A1 (en) * | 1997-04-07 | 2009-06-04 | Asthmatx, Inc. | Modification of airways by application of ultrasound energy |
US8640711B2 (en) | 1997-04-07 | 2014-02-04 | Asthmatx, Inc. | Method for treating an asthma attack |
US7740017B2 (en) | 1997-04-07 | 2010-06-22 | Asthmatx, Inc. | Method for treating an asthma attack |
US8944071B2 (en) | 1997-04-07 | 2015-02-03 | Asthmatx, Inc. | Method for treating an asthma attack |
US20030159700A1 (en) * | 1997-04-07 | 2003-08-28 | Laufer Michael D. | Method of increasing gas exchange of a lung |
US11033317B2 (en) | 1997-04-07 | 2021-06-15 | Boston Scientific Scimed, Inc. | Methods for treating a lung |
US7938123B2 (en) | 1997-04-07 | 2011-05-10 | Asthmatx, Inc. | Modification of airways by application of cryo energy |
US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease |
US20050187579A1 (en) * | 1997-04-07 | 2005-08-25 | Asthmatx, Inc. | Method for treating an asthma attack |
US10058370B2 (en) | 1997-04-07 | 2018-08-28 | Boston Scientific Scimed, Inc. | Method for treating a lung |
US9956023B2 (en) | 1997-04-07 | 2018-05-01 | Boston Scientific Scimed, Inc. | System for treating a lung |
US7556624B2 (en) | 1997-04-07 | 2009-07-07 | Asthmatx, Inc. | Method of increasing gas exchange of a lung |
US9027564B2 (en) | 1997-04-07 | 2015-05-12 | Asthmatx, Inc. | Method for treating a lung |
US7770584B2 (en) | 1997-04-07 | 2010-08-10 | Asthmatx, Inc. | Modification of airways by application of microwave energy |
US8267094B2 (en) | 1997-04-07 | 2012-09-18 | Asthmatx, Inc. | Modification of airways by application of ultrasound energy |
US20040049223A1 (en) * | 1997-10-01 | 2004-03-11 | Scimed Life Systems, Inc. | Dilation systems and related methods |
US7090688B2 (en) | 1997-10-01 | 2006-08-15 | Boston Scientific Scimed, Inc. | Dilation systems and related methods |
US6616678B2 (en) * | 1997-10-01 | 2003-09-09 | Scimed Life Systems, Inc. | Dilation systems and related methods |
US20100204689A1 (en) * | 1998-01-07 | 2010-08-12 | Asthmatx, Inc. | Method for treating an asthma attack |
US7027869B2 (en) | 1998-01-07 | 2006-04-11 | Asthmatx, Inc. | Method for treating an asthma attack |
US7921855B2 (en) | 1998-01-07 | 2011-04-12 | Asthmatx, Inc. | Method for treating an asthma attack |
US9789331B2 (en) | 1998-01-07 | 2017-10-17 | Boston Scientific Scimed, Inc. | Methods of treating a lung |
US20070083197A1 (en) * | 1998-01-07 | 2007-04-12 | Asthmatx, Inc. | Method for treating an asthma attack |
US8584681B2 (en) | 1998-01-07 | 2013-11-19 | Asthmatx, Inc. | Method for treating an asthma attack |
US6350252B2 (en) | 1998-01-23 | 2002-02-26 | Heartport, Inc. | Methods and devices for occluding the ascending aorta and maintaining circulation of oxygenated blood in the patient when the patient's heart is arrested |
US6176822B1 (en) | 1998-03-31 | 2001-01-23 | Impella Cardiotechnik Gmbh | Intracardiac blood pump |
US8100935B2 (en) | 1998-05-01 | 2012-01-24 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US8784441B2 (en) | 1998-05-01 | 2014-07-22 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US20100145371A1 (en) * | 1998-05-01 | 2010-06-10 | Rosenbluth Robert F | Embolectomy Catheters And Methods For Treating Stroke And Other Small Vessel Thromboembolic Disorders |
US6685722B1 (en) * | 1998-05-01 | 2004-02-03 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US7691121B2 (en) * | 1998-05-01 | 2010-04-06 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US20080015541A1 (en) * | 1998-05-01 | 2008-01-17 | Rosenbluth Robert F | Embolectomy Catheters And Methods For Treating Stroke And Other Small Vessel Thromboembolic Disorders |
US20040133232A1 (en) * | 1998-05-01 | 2004-07-08 | Microvention, Inc. | Embolectomy catheters and methods for treating stroke and other small vessel thromboembolic disorders |
US7264002B2 (en) | 1998-06-10 | 2007-09-04 | Asthmatx, Inc. | Methods of treating reversible obstructive pulmonary disease |
US8733367B2 (en) | 1998-06-10 | 2014-05-27 | Asthmatx, Inc. | Methods of treating inflammation in airways |
US8464723B2 (en) | 1998-06-10 | 2013-06-18 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease |
US8443810B2 (en) | 1998-06-10 | 2013-05-21 | Asthmatx, Inc. | Methods of reducing mucus in airways |
US8181656B2 (en) | 1998-06-10 | 2012-05-22 | Asthmatx, Inc. | Methods for treating airways |
US7273055B2 (en) | 1998-06-10 | 2007-09-25 | Asthmatx, Inc. | Methods of treating asthma |
US20040182399A1 (en) * | 1998-06-10 | 2004-09-23 | Asthmatx, Inc. | Methods of treating reversible obstructive pulmonary disease |
US20040031494A1 (en) * | 1998-06-10 | 2004-02-19 | Broncus Technologies, Inc. | Methods of treating asthma |
US7542802B2 (en) | 1998-06-10 | 2009-06-02 | Asthmatx, Inc. | Methods of regenerating tissue in airways |
US7425212B1 (en) | 1998-06-10 | 2008-09-16 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
US20070118184A1 (en) * | 1998-06-10 | 2007-05-24 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
US20070118190A1 (en) * | 1998-06-10 | 2007-05-24 | Asthmatx, Inc. | Methods of treating asthma |
US20060278243A1 (en) * | 1998-06-10 | 2006-12-14 | Asthmatx, Inc. | Methods of treating inflammation in airways |
US7992572B2 (en) | 1998-06-10 | 2011-08-09 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease |
US20060278244A1 (en) * | 1998-06-10 | 2006-12-14 | Asthmatx, Inc. | Methods of reducing mucus in airways |
US8534291B2 (en) | 1998-06-10 | 2013-09-17 | Asthmatx, Inc. | Methods of treating inflammation in airways |
US20070062545A1 (en) * | 1998-06-10 | 2007-03-22 | Asthmatx, Inc. | Methods of regenerating tissue in airways |
US20070102011A1 (en) * | 1998-06-10 | 2007-05-10 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease |
US6245007B1 (en) | 1999-01-28 | 2001-06-12 | Terumo Cardiovascular Systems Corporation | Blood pump |
US6846308B2 (en) | 1999-06-02 | 2005-01-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US6793652B1 (en) | 1999-06-02 | 2004-09-21 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US20070055304A1 (en) * | 1999-06-02 | 2007-03-08 | Whitman Michael P | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US9241716B2 (en) | 1999-06-02 | 2016-01-26 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US8690913B2 (en) | 1999-06-02 | 2014-04-08 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US9247940B2 (en) | 1999-06-02 | 2016-02-02 | Covidien Lp | Surgical cutting and stapling device |
US7077856B2 (en) | 1999-06-02 | 2006-07-18 | Power Medical Interventions, Inc. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US9078654B2 (en) | 1999-06-02 | 2015-07-14 | Covidien Lp | Surgical device |
US7032798B2 (en) | 1999-06-02 | 2006-04-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US20020084304A1 (en) * | 1999-06-02 | 2002-07-04 | Whitman Michael P. | Surgical clamping, cutting and stapling device |
US6981941B2 (en) | 1999-06-02 | 2006-01-03 | Power Medical Interventions | Electro-mechanical surgical device |
US9782172B2 (en) | 1999-06-02 | 2017-10-10 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US9662109B2 (en) | 1999-06-02 | 2017-05-30 | Covidien Lp | Electromechanical drive and remote surgical instrument attachment having computer assisted control capabilities |
US9033868B2 (en) | 1999-06-02 | 2015-05-19 | Covidien Lp | Couplings for interconnecting components of an electro-mechanical surgical device |
US20050192609A1 (en) * | 1999-06-02 | 2005-09-01 | Whitman Michael P. | Electro-mechanical surgical device |
US7951071B2 (en) | 1999-06-02 | 2011-05-31 | Tyco Healthcare Group Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US10335143B2 (en) | 1999-06-02 | 2019-07-02 | Covidien Lp | Surgical cutting and stapling device |
US6849071B2 (en) | 1999-06-02 | 2005-02-01 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US6846309B2 (en) | 1999-06-02 | 2005-01-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US8016858B2 (en) | 1999-06-02 | 2011-09-13 | Tyco Healthcare Group Ip | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US9113847B2 (en) | 1999-06-02 | 2015-08-25 | Covidien Lp | Electro-mechanical surgical device |
US6846307B2 (en) | 1999-06-02 | 2005-01-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US8357144B2 (en) | 1999-06-02 | 2013-01-22 | Covidien, LP | Electro-mechanical surgical device |
US6843403B2 (en) | 1999-06-02 | 2005-01-18 | Power Medical Interventions, Inc. | Surgical clamping, cutting and stapling device |
US10314659B2 (en) | 1999-06-02 | 2019-06-11 | Covidien Lp | Electro-mechanical surgical device |
US8628467B2 (en) | 1999-06-02 | 2014-01-14 | Covidien Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US7758613B2 (en) | 1999-06-02 | 2010-07-20 | Power Medical Interventions, Llc | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US20040153124A1 (en) * | 1999-06-02 | 2004-08-05 | Whitman Michael P. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US20040111081A1 (en) * | 1999-06-02 | 2004-06-10 | Whitman Michael P. | Electro-mechanical surgical device |
US6716233B1 (en) | 1999-06-02 | 2004-04-06 | Power Medical Interventions, Inc. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US9364200B2 (en) | 1999-06-02 | 2016-06-14 | Covidien Lp | Electro-mechanical surgical device |
US20100276471A1 (en) * | 1999-06-02 | 2010-11-04 | Power Medical Interventions, Llc | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US6716230B2 (en) | 2000-02-22 | 2004-04-06 | Power Medical Interventions, Inc. | Vessel and lumen expander attachment for use with an electromechanical driver device |
US6348061B1 (en) * | 2000-02-22 | 2002-02-19 | Powermed, Inc. | Vessel and lumen expander attachment for use with an electromechanical driver device |
US10561458B2 (en) | 2000-03-27 | 2020-02-18 | Boston Scientific Scimed, Inc. | Methods for treating airways |
US20060254600A1 (en) * | 2000-03-27 | 2006-11-16 | Asthmatx, Inc. | Methods for treating airways |
US10278766B2 (en) | 2000-03-27 | 2019-05-07 | Boston Scientific Scimed, Inc. | Methods for treating airways |
US8251070B2 (en) | 2000-03-27 | 2012-08-28 | Asthmatx, Inc. | Methods for treating airways |
US9358024B2 (en) | 2000-03-27 | 2016-06-07 | Asthmatx, Inc. | Methods for treating airways |
US8459268B2 (en) | 2000-03-27 | 2013-06-11 | Asthmatx, Inc. | Methods for treating airways |
WO2001097875A2 (en) * | 2000-06-20 | 2001-12-27 | Applied Medical Resources Corporation | Self-deploying catheter assembly |
WO2001097875A3 (en) * | 2000-06-20 | 2002-04-25 | Applied Med Resources | Self-deploying catheter assembly |
US8888769B2 (en) | 2000-10-17 | 2014-11-18 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US8465486B2 (en) | 2000-10-17 | 2013-06-18 | Asthmatx, Inc. | Modification of airways by application of energy |
US9033976B2 (en) | 2000-10-17 | 2015-05-19 | Asthmatx, Inc. | Modification of airways by application of energy |
US8257413B2 (en) | 2000-10-17 | 2012-09-04 | Asthmatx, Inc. | Modification of airways by application of energy |
US7837679B2 (en) | 2000-10-17 | 2010-11-23 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US20060247726A1 (en) * | 2000-10-17 | 2006-11-02 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US9931163B2 (en) | 2000-10-17 | 2018-04-03 | Boston Scientific Scimed, Inc. | Energy delivery devices |
US7854734B2 (en) | 2000-10-17 | 2010-12-21 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US20030050659A1 (en) * | 2001-02-28 | 2003-03-13 | Chase Medical, Lp | Ventricular restoration shaping apparatus |
US6959711B2 (en) | 2001-02-28 | 2005-11-01 | Chase Medical, L.P. | Kit and method for use during ventricular restoration |
US20060137697A1 (en) * | 2001-02-28 | 2006-06-29 | Chase Medical, L.P. | Ventricular restoration shaping apparatus and method of use |
US20030181940A1 (en) * | 2001-02-28 | 2003-09-25 | Gregory Murphy | Ventricular restoration shaping apparatus and method of use |
US6681773B2 (en) | 2001-02-28 | 2004-01-27 | Chase Medical, Inc. | Kit and method for use during ventricular restoration |
US6702763B2 (en) | 2001-02-28 | 2004-03-09 | Chase Medical, L.P. | Sizing apparatus and method for use during ventricular restoration |
US6994093B2 (en) | 2001-02-28 | 2006-02-07 | Chase Medical, L.P. | Ventricular restoration shaping apparatus and method of use |
US20050278024A1 (en) * | 2001-02-28 | 2005-12-15 | Gregory Murphy | Kit and method for use during ventricular restoration |
US20040249408A1 (en) * | 2001-09-05 | 2004-12-09 | Chase Medical, Lp | Method and device for endoscopic surgical ventricular repair |
US20040243170A1 (en) * | 2001-09-05 | 2004-12-02 | Mitta Suresh | Method and device for percutaneous surgical ventricular repair |
US7485088B2 (en) | 2001-09-05 | 2009-02-03 | Chase Medical L.P. | Method and device for percutaneous surgical ventricular repair |
US10016592B2 (en) | 2001-10-17 | 2018-07-10 | Boston Scientific Scimed, Inc. | Control system and process for application of energy to airway walls and other mediums |
US8021373B2 (en) | 2001-11-30 | 2011-09-20 | Tyco Healthcare Group Lp | Surgical device |
US8512359B2 (en) | 2001-11-30 | 2013-08-20 | Covidien Lp | Surgical device |
US20100249816A1 (en) * | 2001-11-30 | 2010-09-30 | Power Medical Interventions Llc | Surgical device |
US7695485B2 (en) | 2001-11-30 | 2010-04-13 | Power Medical Interventions, Llc | Surgical device |
US20030105478A1 (en) * | 2001-11-30 | 2003-06-05 | Whitman Michael P. | Surgical device |
US8740932B2 (en) | 2001-11-30 | 2014-06-03 | Covidien Lp | Surgical device |
US8858589B2 (en) | 2002-01-08 | 2014-10-14 | Covidien Lp | Surgical device |
US9113878B2 (en) | 2002-01-08 | 2015-08-25 | Covidien Lp | Pinion clip for right angle linear cutter |
US8016855B2 (en) | 2002-01-08 | 2011-09-13 | Tyco Healthcare Group Lp | Surgical device |
US8518074B2 (en) | 2002-01-08 | 2013-08-27 | Covidien Lp | Surgical device |
US20030130677A1 (en) * | 2002-01-08 | 2003-07-10 | Whitman Michael P. | Surgical device |
US7743960B2 (en) | 2002-06-14 | 2010-06-29 | Power Medical Interventions, Llc | Surgical device |
US9861362B2 (en) | 2002-06-14 | 2018-01-09 | Covidien Lp | Surgical device |
US8540733B2 (en) | 2002-06-14 | 2013-09-24 | Covidien Lp | Surgical method and device having a first jaw and a second jaw in opposed correspondence for clamping, cutting, and stapling tissue |
US8056786B2 (en) | 2002-06-14 | 2011-11-15 | Tyco Healthcare Group Lp | Surgical device |
US9339618B2 (en) | 2003-05-13 | 2016-05-17 | Holaira, Inc. | Method and apparatus for controlling narrowing of at least one airway |
US10953170B2 (en) | 2003-05-13 | 2021-03-23 | Nuvaira, Inc. | Apparatus for treating asthma using neurotoxin |
US11219452B2 (en) | 2004-02-23 | 2022-01-11 | Covidien Lp | Surgical cutting and stapling device |
US20050187576A1 (en) * | 2004-02-23 | 2005-08-25 | Whitman Michael P. | Surgical cutting and stapling device |
US8025199B2 (en) | 2004-02-23 | 2011-09-27 | Tyco Healthcare Group Lp | Surgical cutting and stapling device |
US7853331B2 (en) | 2004-11-05 | 2010-12-14 | Asthmatx, Inc. | Medical device with procedure improvement features |
US10076380B2 (en) | 2004-11-05 | 2018-09-18 | Boston Scientific Scimed, Inc. | Energy delivery devices and methods |
US20060247618A1 (en) * | 2004-11-05 | 2006-11-02 | Asthmatx, Inc. | Medical device with procedure improvement features |
US20070106292A1 (en) * | 2004-11-05 | 2007-05-10 | Asthmatx, Inc. | Energy delivery devices and methods |
US7949407B2 (en) | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods |
US10398502B2 (en) | 2004-11-05 | 2019-09-03 | Boston Scientific Scimed, Inc. | Energy delivery devices and methods |
US8480667B2 (en) | 2004-11-05 | 2013-07-09 | Asthmatx, Inc. | Medical device with procedure improvement features |
US20060247617A1 (en) * | 2004-11-12 | 2006-11-02 | Asthmatx, Inc. | Energy delivery devices and methods |
US20070123961A1 (en) * | 2004-11-12 | 2007-05-31 | Asthmax, Inc. | Energy delivery and illumination devices and methods |
US8920413B2 (en) | 2004-11-12 | 2014-12-30 | Asthmatx, Inc. | Energy delivery devices and methods |
JP2006334083A (en) * | 2005-06-01 | 2006-12-14 | Olympus Medical Systems Corp | Endoscopic catheter |
US20070078386A1 (en) * | 2005-08-30 | 2007-04-05 | Cytyc Corporation | Movable anchoring catheter |
US20070112349A1 (en) * | 2005-10-21 | 2007-05-17 | Asthmatx, Inc. | Energy delivery devices and methods |
US20110166565A1 (en) * | 2006-10-20 | 2011-07-07 | Asthmatx, Inc. | Method of delivering energy to a lung airway using markers |
US20080097424A1 (en) * | 2006-10-20 | 2008-04-24 | Asthmatx, Inc. | Electrode markers and methods of use |
US7931647B2 (en) | 2006-10-20 | 2011-04-26 | Asthmatx, Inc. | Method of delivering energy to a lung airway using markers |
US8235983B2 (en) | 2007-07-12 | 2012-08-07 | Asthmatx, Inc. | Systems and methods for delivering energy to passageways in a patient |
US12029476B2 (en) | 2007-07-12 | 2024-07-09 | Boston Scientific Scimed, Inc. | Systems and methods for delivering energy to passageways in a patient |
US11478299B2 (en) | 2007-07-12 | 2022-10-25 | Boston Scientific Scimed, Inc. | Systems and methods for delivering energy to passageways in a patient |
US20090018538A1 (en) * | 2007-07-12 | 2009-01-15 | Asthmatx, Inc. | Systems and methods for delivering energy to passageways in a patient |
US10368941B2 (en) | 2007-07-12 | 2019-08-06 | Boston Scientific Scimed, Inc. | Systems and methods for delivering energy to passageways in a patient |
US20090043301A1 (en) * | 2007-08-09 | 2009-02-12 | Asthmatx, Inc. | Monopolar energy delivery devices and methods for controlling current density in tissue |
US20110192884A1 (en) * | 2007-09-21 | 2011-08-11 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US7992758B2 (en) | 2007-09-21 | 2011-08-09 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US9017371B2 (en) | 2007-09-21 | 2015-04-28 | Covidien Lp | Surgical device having multiple drivers |
US10881397B2 (en) | 2007-09-21 | 2021-01-05 | Covidien Lp | Surgical device having a rotatable jaw portion |
US7918230B2 (en) | 2007-09-21 | 2011-04-05 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US20110132960A1 (en) * | 2007-09-21 | 2011-06-09 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US20110132961A1 (en) * | 2007-09-21 | 2011-06-09 | Tyco Healthcare Group Lp | Surgical device having a rotatable jaw portion |
US11317909B2 (en) | 2007-09-21 | 2022-05-03 | Covidien Lp | Surgical device having multiple drivers |
US10117651B2 (en) | 2007-09-21 | 2018-11-06 | Covidien Lp | Surgical device having a rotatable jaw portion |
US7963433B2 (en) | 2007-09-21 | 2011-06-21 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US8752748B2 (en) | 2007-09-21 | 2014-06-17 | Covidien Lp | Surgical device having a rotatable jaw portion |
US9282961B2 (en) | 2007-09-21 | 2016-03-15 | Covidien Lp | Surgical device having multiple drivers |
US8342379B2 (en) | 2007-09-21 | 2013-01-01 | Covidien Lp | Surgical device having multiple drivers |
US10420548B2 (en) | 2007-09-21 | 2019-09-24 | Covidien Lp | Surgical device having multiple drivers |
US20110198385A1 (en) * | 2007-09-21 | 2011-08-18 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US8353440B2 (en) | 2007-09-21 | 2013-01-15 | Covidien Lp | Surgical device having a rotatable jaw portion |
US9204877B2 (en) | 2007-09-21 | 2015-12-08 | Covidien Lp | Surgical device having a rotatable jaw portion |
US8272554B2 (en) | 2007-09-21 | 2012-09-25 | Tyco Healthcare Group Lp | Surgical device having multiple drivers |
US8439859B2 (en) * | 2007-10-08 | 2013-05-14 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US9919087B2 (en) | 2007-10-08 | 2018-03-20 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US10874783B2 (en) | 2007-10-08 | 2020-12-29 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US11786700B2 (en) | 2007-10-08 | 2023-10-17 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US11583659B2 (en) | 2007-10-08 | 2023-02-21 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US11338124B2 (en) | 2007-10-08 | 2022-05-24 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US9072825B2 (en) | 2007-10-08 | 2015-07-07 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US11273301B2 (en) | 2007-10-08 | 2022-03-15 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US11253693B2 (en) | 2007-10-08 | 2022-02-22 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US10894115B2 (en) | 2007-10-08 | 2021-01-19 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US20090093796A1 (en) * | 2007-10-08 | 2009-04-09 | Ais Gmbh Aachen Innovative Solutions | Catheter device |
US10433714B2 (en) | 2008-01-11 | 2019-10-08 | Boston Scientific Scimed, Inc. | Endoscope anchoring device |
US20090281374A1 (en) * | 2008-01-11 | 2009-11-12 | Leanna Gary | Endoscope Anchoring Device |
US9538903B2 (en) | 2008-01-11 | 2017-01-10 | Boston Scientific Scimed, Inc. | Endoscope anchoring device |
US8489192B1 (en) | 2008-02-15 | 2013-07-16 | Holaira, Inc. | System and method for bronchial dilation |
US9125643B2 (en) | 2008-02-15 | 2015-09-08 | Holaira, Inc. | System and method for bronchial dilation |
US8731672B2 (en) | 2008-02-15 | 2014-05-20 | Holaira, Inc. | System and method for bronchial dilation |
US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
US11058879B2 (en) | 2008-02-15 | 2021-07-13 | Nuvaira, Inc. | System and method for bronchial dilation |
US8808280B2 (en) | 2008-05-09 | 2014-08-19 | Holaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US8961507B2 (en) | 2008-05-09 | 2015-02-24 | Holaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US8961508B2 (en) | 2008-05-09 | 2015-02-24 | Holaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US10149714B2 (en) | 2008-05-09 | 2018-12-11 | Nuvaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US8821489B2 (en) | 2008-05-09 | 2014-09-02 | Holaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US9668809B2 (en) | 2008-05-09 | 2017-06-06 | Holaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US11937868B2 (en) | 2008-05-09 | 2024-03-26 | Nuvaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
US8998792B2 (en) | 2008-12-05 | 2015-04-07 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US9404505B2 (en) | 2008-12-05 | 2016-08-02 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US9964115B2 (en) | 2008-12-05 | 2018-05-08 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US12209593B2 (en) | 2008-12-05 | 2025-01-28 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US11852155B2 (en) | 2008-12-05 | 2023-12-26 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US10662967B2 (en) | 2008-12-05 | 2020-05-26 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US10495101B2 (en) | 2008-12-05 | 2019-12-03 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump with a rotor |
US11969560B2 (en) | 2009-02-04 | 2024-04-30 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a catheter and an actuation device |
US9089670B2 (en) | 2009-02-04 | 2015-07-28 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a catheter and an actuation device |
US9981110B2 (en) | 2009-02-04 | 2018-05-29 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a catheter and an actuation device |
US11229774B2 (en) | 2009-02-04 | 2022-01-25 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a catheter and an actuation device |
US10406323B2 (en) | 2009-02-04 | 2019-09-10 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a catheter and an actuation device |
US9649475B2 (en) | 2009-02-04 | 2017-05-16 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a catheter and an actuation device |
US8979493B2 (en) | 2009-03-18 | 2015-03-17 | ECP Entwicklungsgesellscaft mbH | Fluid pump |
US8900060B2 (en) | 2009-04-29 | 2014-12-02 | Ecp Entwicklungsgesellschaft Mbh | Shaft arrangement having a shaft which extends within a fluid-filled casing |
US10265448B2 (en) | 2009-05-05 | 2019-04-23 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump changeable in diameter, in particular for medical application |
US11577066B2 (en) | 2009-05-05 | 2023-02-14 | Ecp Entwicklundgesellschaft Mbh | Fluid pump changeable in diameter, in particular for medical application |
US11278711B2 (en) | 2009-05-05 | 2022-03-22 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump changeable in diameter, in particular for medical application |
US9512839B2 (en) | 2009-05-05 | 2016-12-06 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump changeable in diameter, in particular for medical application |
US11786718B2 (en) | 2009-05-05 | 2023-10-17 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump changeable in diameter, in particular for medical application |
US8944748B2 (en) | 2009-05-05 | 2015-02-03 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump changeable in diameter, in particular for medical application |
US11268521B2 (en) | 2009-06-25 | 2022-03-08 | Ecp Entwicklungsgesellschaft Mbh | Compressible and expandable blade for a fluid pump |
US9067006B2 (en) | 2009-06-25 | 2015-06-30 | Ecp Entwicklungsgesellschaft Mbh | Compressible and expandable blade for a fluid pump |
US10330101B2 (en) | 2009-06-25 | 2019-06-25 | Ecp Entwicklungsgesellschaft Mbh | Compressible and expandable blade for a fluid pump |
US11994133B2 (en) | 2009-06-25 | 2024-05-28 | Ecp Entwicklungsgesellschaft Mbh | Compressible and expandable blade for a fluid pump |
US20190054278A1 (en) * | 2009-07-21 | 2019-02-21 | Lake Region Medical, Inc. | Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires |
US10933224B2 (en) * | 2009-07-21 | 2021-03-02 | Lake Region Manufacturing, Inc. | Methods and devices for delivering drugs using drug-delivery or drug-coated guidewires |
US11116960B2 (en) | 2009-08-06 | 2021-09-14 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a coupling device for a drive device |
US12042647B2 (en) | 2009-08-06 | 2024-07-23 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a coupling device for a drive device |
US10172985B2 (en) | 2009-08-06 | 2019-01-08 | Ecp Entwicklungsgesellschaft Mbh | Catheter device having a coupling device for a drive device |
US9089634B2 (en) | 2009-09-22 | 2015-07-28 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having at least one impeller blade and a support device |
US10107299B2 (en) | 2009-09-22 | 2018-10-23 | Ecp Entwicklungsgesellschaft Mbh | Functional element, in particular fluid pump, having a housing and a conveying element |
US9416783B2 (en) | 2009-09-22 | 2016-08-16 | Ecp Entwicklungsgellschaft Mbh | Compressible rotor for a fluid pump |
US12066030B2 (en) | 2009-09-22 | 2024-08-20 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having at least one impeller blade and a support device |
US11592028B2 (en) | 2009-09-22 | 2023-02-28 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having at least one impeller blade and a support device |
US10208763B2 (en) | 2009-09-22 | 2019-02-19 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having at least one impeller blade and a support device |
US11773861B2 (en) | 2009-09-22 | 2023-10-03 | Ecp Entwicklungsgesellschaft Mbh | Compressible rotor for a fluid pump |
US9028216B2 (en) | 2009-09-22 | 2015-05-12 | Ecp Entwicklungsgesellschaft Mbh | Rotor for an axial flow pump for conveying a fluid |
US11421701B2 (en) | 2009-09-22 | 2022-08-23 | Ecp Entwicklungsgesellschaft Mbh | Compressible rotor for a fluid pump |
US8932141B2 (en) | 2009-10-23 | 2015-01-13 | Ecp Entwicklungsgesellschaft Mbh | Flexible shaft arrangement |
US9603983B2 (en) | 2009-10-23 | 2017-03-28 | Ecp Entwicklungsgesellschaft Mbh | Catheter pump arrangement and flexible shaft arrangement having a core |
US10792406B2 (en) | 2009-10-23 | 2020-10-06 | Ecp Entwicklungsgesellschaft Mbh | Catheter pump arrangement and flexible shaft arrangement having a core |
US9675412B2 (en) | 2009-10-27 | 2017-06-13 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US8932289B2 (en) | 2009-10-27 | 2015-01-13 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US9005195B2 (en) | 2009-10-27 | 2015-04-14 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US9649153B2 (en) | 2009-10-27 | 2017-05-16 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US8777943B2 (en) | 2009-10-27 | 2014-07-15 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US8740895B2 (en) | 2009-10-27 | 2014-06-03 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US9017324B2 (en) | 2009-10-27 | 2015-04-28 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US9931162B2 (en) | 2009-10-27 | 2018-04-03 | Nuvaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US11712283B2 (en) | 2009-11-11 | 2023-08-01 | Nuvaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
US11389233B2 (en) | 2009-11-11 | 2022-07-19 | Nuvaira, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
US9149328B2 (en) | 2009-11-11 | 2015-10-06 | Holaira, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
US9649154B2 (en) | 2009-11-11 | 2017-05-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
US10610283B2 (en) | 2009-11-11 | 2020-04-07 | Nuvaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
US10806838B2 (en) | 2009-12-23 | 2020-10-20 | Ecp Entwicklungsgesellschaft Mbh | Conveying blades for a compressible rotor |
US9903384B2 (en) | 2009-12-23 | 2018-02-27 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a fluid pump |
US11781557B2 (en) | 2009-12-23 | 2023-10-10 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a fluid pump |
US11266824B2 (en) | 2009-12-23 | 2022-03-08 | Ecp Entwicklungsgesellschaft Mbh | Conveying blades for a compressible rotor |
US11815097B2 (en) | 2009-12-23 | 2023-11-14 | Ecp Entwicklungsgesellschaft Mbh | Pump device having a detection device |
US9314558B2 (en) | 2009-12-23 | 2016-04-19 | Ecp Entwicklungsgesellschaft Mbh | Conveying blades for a compressible rotor |
US10561772B2 (en) | 2009-12-23 | 2020-02-18 | Ecp Entwicklungsgesellschaft Mbh | Pump device having a detection device |
US10557475B2 (en) | 2009-12-23 | 2020-02-11 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a fluid pump |
US9795727B2 (en) | 2009-12-23 | 2017-10-24 | Ecp Entwicklungsgesellschaft Mbh | Pump device having a detection device |
US9339596B2 (en) | 2009-12-23 | 2016-05-17 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a fluid pump |
US12158151B2 (en) | 2009-12-23 | 2024-12-03 | Ecp Entwicklungsgesellschaft Mbh | Pump device having a detection device |
US9358330B2 (en) | 2009-12-23 | 2016-06-07 | Ecp Entwicklungsgesellschaft Mbh | Pump device having a detection device |
US11549517B2 (en) | 2009-12-23 | 2023-01-10 | Ecp Entwicklungsgesellschaft Mbh | Conveying blades for a compressible rotor |
US12117014B2 (en) | 2009-12-23 | 2024-10-15 | Ecp Entwicklungsgesellschaft Mbh | Conveying blades for a compressible rotor |
US11434922B2 (en) | 2009-12-23 | 2022-09-06 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a fluid pump |
US12085088B2 (en) | 2009-12-23 | 2024-09-10 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a fluid pump |
US11773863B2 (en) | 2009-12-23 | 2023-10-03 | Ecp Entwicklungsgesellschaft Mbh | Conveying blades for a compressible rotor |
US11486400B2 (en) | 2009-12-23 | 2022-11-01 | Ecp Entwicklungsgesellschaft Mbh | Pump device having a detection device |
US9416791B2 (en) | 2010-01-25 | 2016-08-16 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having a radially compressible rotor |
US10316853B2 (en) | 2010-01-25 | 2019-06-11 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having a radially compressible rotor |
US11517739B2 (en) | 2010-01-25 | 2022-12-06 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having a radially compressible rotor |
US12018698B2 (en) | 2010-01-25 | 2024-06-25 | Ecp Entwicklungsgesellschaft Mbh | Fluid pump having a radially compressible rotor |
US10413646B2 (en) | 2010-03-05 | 2019-09-17 | Ecp Entwicklungsgesellschaft Mbh | Pump or rotary cutter for operation in a fluid |
US11986205B2 (en) | 2010-03-05 | 2024-05-21 | Ecp Entwicklungsgesellschaft Mbh | Pump or rotary cutter for operation in a fluid |
US9217442B2 (en) | 2010-03-05 | 2015-12-22 | Ecp Entwicklungsgesellschaft Mbh | Pump or rotary cutter for operation in a fluid |
US9907891B2 (en) | 2010-03-05 | 2018-03-06 | Ecp Entwicklungsgesellschaft Mbh | Pump or rotary cutter for operation in a fluid |
US10221866B2 (en) | 2010-05-17 | 2019-03-05 | Ecp Entwicklungsgesellschaft Mbh | Pump arrangement |
US11168705B2 (en) | 2010-05-17 | 2021-11-09 | Ecp Entwicklungsgesellschaft Mbh | Pump arrangement |
US9328741B2 (en) | 2010-05-17 | 2016-05-03 | Ecp Entwicklungsgesellschaft Mbh | Pump arrangement |
US9759237B2 (en) | 2010-05-17 | 2017-09-12 | Ecp Entwicklungsgesellschaft Mbh | Pump arrangement |
US11976674B2 (en) | 2010-05-17 | 2024-05-07 | Ecp Entwicklungsgesellschaft Mbh | Pump arrangement |
US10898625B2 (en) | 2010-06-25 | 2021-01-26 | Ecp Entwicklungsgesellschaft Mbh | System for introducing a pump |
US10874781B2 (en) | 2010-06-25 | 2020-12-29 | Ecp Entwicklungsgesellschaft Mbh | System for introducing a pump |
US9974893B2 (en) | 2010-06-25 | 2018-05-22 | Ecp Entwicklungsgesellschaft Mbh | System for introducing a pump |
US11957846B2 (en) | 2010-06-25 | 2024-04-16 | Ecp Entwicklungsgesellschaft Mbh | System for introducing a pump |
US10589012B2 (en) | 2010-07-15 | 2020-03-17 | Ecp Entwicklungsgesellschaft Mbh | Blood pump for the invasive application within a body of a patient |
US9895475B2 (en) | 2010-07-15 | 2018-02-20 | Ecp Entwicklungsgesellschaft Mbh | Blood pump for the invasive application within a body of a patient |
US10584589B2 (en) | 2010-07-15 | 2020-03-10 | Ecp Entwicklungsgellschaft Mbh | Rotor for a pump having helical expandable blades |
US9611743B2 (en) | 2010-07-15 | 2017-04-04 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a pump having an impeller blade |
US12065941B2 (en) | 2010-07-15 | 2024-08-20 | Ecp Entwicklungsgesellschaft Mbh | Rotor for a pump, produced with a first elastic material |
US9771801B2 (en) | 2010-07-15 | 2017-09-26 | Ecp Entwicklungsgesellschaft Mbh | Rotor for a pump, produced with a first elastic material |
US11702938B2 (en) | 2010-07-15 | 2023-07-18 | Ecp Entwicklungsgesellschaft Mbh | Rotor for a pump, produced with a first elastic material |
US10920596B2 (en) | 2010-07-15 | 2021-02-16 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a pump having an impeller blade |
US11913467B2 (en) | 2010-07-15 | 2024-02-27 | Ecp Entwicklungsgesellschaft Mbh | Radially compressible and expandable rotor for a pump having an impeller blade |
US11844939B2 (en) | 2010-07-15 | 2023-12-19 | Ecp Entwicklungsgesellschaft Mbh | Blood pump for the invasive application within a body of a patient |
US11083885B2 (en) | 2010-08-27 | 2021-08-10 | Berlin Heart Gmbh | Implantable blood conveying device, manipulating device and coupling device |
US9867916B2 (en) | 2010-08-27 | 2018-01-16 | Berlin Heart Gmbh | Implantable blood conveying device, manipulating device and coupling device |
US10391278B2 (en) | 2011-03-10 | 2019-08-27 | Ecp Entwicklungsgesellschaft Mbh | Push device for the axial insertion of an elongate, flexible body |
US11235125B2 (en) | 2011-03-10 | 2022-02-01 | Ecp Entwicklungsgesellschaft Mbh | Push device for the axial insertion of an elongate, flexible body |
US11666746B2 (en) | 2011-09-05 | 2023-06-06 | Ecp Entwicklungsgesellschaft Mbh | Medical product comprising a functional element for the invasive use in a patient's body |
US10561773B2 (en) | 2011-09-05 | 2020-02-18 | Ecp Entwicklungsgesellschaft Mbh | Medical product comprising a functional element for the invasive use in a patient's body |
US8926492B2 (en) | 2011-10-11 | 2015-01-06 | Ecp Entwicklungsgesellschaft Mbh | Housing for a functional element |
US10661056B1 (en) * | 2012-02-24 | 2020-05-26 | Christian M. Heesch | Guide catheter support instrument |
US10569050B1 (en) | 2012-02-24 | 2020-02-25 | Christian M. Heesch | Guide catheter support instrument |
US20150051576A1 (en) * | 2012-03-30 | 2015-02-19 | Koninklijke Philips N.V. | Nested cannula tips |
US9770293B2 (en) | 2012-06-04 | 2017-09-26 | Boston Scientific Scimed, Inc. | Systems and methods for treating tissue of a passageway within a body |
US9592086B2 (en) | 2012-07-24 | 2017-03-14 | Boston Scientific Scimed, Inc. | Electrodes for tissue treatment |
US9572619B2 (en) | 2012-11-02 | 2017-02-21 | Boston Scientific Scimed, Inc. | Medical device for treating airways and related methods of use |
US9272132B2 (en) | 2012-11-02 | 2016-03-01 | Boston Scientific Scimed, Inc. | Medical device for treating airways and related methods of use |
US10492859B2 (en) | 2012-11-05 | 2019-12-03 | Boston Scientific Scimed, Inc. | Devices and methods for delivering energy to body lumens |
US9283374B2 (en) | 2012-11-05 | 2016-03-15 | Boston Scientific Scimed, Inc. | Devices and methods for delivering energy to body lumens |
US9974609B2 (en) | 2012-11-05 | 2018-05-22 | Boston Scientific Scimed, Inc. | Devices and methods for delivering energy to body lumens |
US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
US9814618B2 (en) | 2013-06-06 | 2017-11-14 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use |
US11801090B2 (en) | 2013-08-09 | 2023-10-31 | Boston Scientific Scimed, Inc. | Expandable catheter and related methods of manufacture and use |
US10478247B2 (en) | 2013-08-09 | 2019-11-19 | Boston Scientific Scimed, Inc. | Expandable catheter and related methods of manufacture and use |
US10143824B2 (en) | 2014-03-05 | 2018-12-04 | Invatec S.P.A. | Catheter assemblies and methods for stabilizing a catheter assembly within a subintimal space |
US9446222B2 (en) | 2014-03-05 | 2016-09-20 | Invatec S.P.A. | Catheter assemblies and methods for stabilizing a catheter assembly within a subintimal space |
WO2015134331A1 (en) * | 2014-03-05 | 2015-09-11 | Invatec S.P.A. | Catheter assemblies for stabilizing a catheter assembly within a subintimal space |
US20160106939A1 (en) * | 2014-10-20 | 2016-04-21 | Talal Sharaiha LLC | Expandable intubation assemblies |
US10172632B2 (en) | 2015-09-22 | 2019-01-08 | Medtronic Vascular, Inc. | Occlusion bypassing apparatus with a re-entry needle and a stabilization tube |
US10327791B2 (en) | 2015-10-07 | 2019-06-25 | Medtronic Vascular, Inc. | Occlusion bypassing apparatus with a re-entry needle and a distal stabilization balloon |
US11717670B2 (en) | 2017-06-07 | 2023-08-08 | Shifamed Holdings, LLP | Intravascular fluid movement devices, systems, and methods of use |
US11185677B2 (en) | 2017-06-07 | 2021-11-30 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11511103B2 (en) | 2017-11-13 | 2022-11-29 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US11368081B2 (en) | 2018-01-24 | 2022-06-21 | Kardion Gmbh | Magnetic coupling element with a magnetic bearing function |
US11804767B2 (en) | 2018-01-24 | 2023-10-31 | Kardion Gmbh | Magnetic coupling element with a magnetic bearing function |
US11229784B2 (en) | 2018-02-01 | 2022-01-25 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US12076545B2 (en) | 2018-02-01 | 2024-09-03 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US10722631B2 (en) | 2018-02-01 | 2020-07-28 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use and manufacture |
US12005248B2 (en) | 2018-05-16 | 2024-06-11 | Kardion Gmbh | Rotor bearing system |
US12107474B2 (en) | 2018-05-16 | 2024-10-01 | Kardion Gmbh | End-face rotating joint for transmitting torques |
US12201823B2 (en) | 2018-05-30 | 2025-01-21 | Kardion Gmbh | Line device for conducting a blood flow for a heart support system, heart support system, and method for producing a line device |
US12064615B2 (en) | 2018-05-30 | 2024-08-20 | Kardion Gmbh | Axial-flow pump for a ventricular assist device and method for producing an axial-flow pump for a ventricular assist device |
US12194287B2 (en) | 2018-05-30 | 2025-01-14 | Kardion Gmbh | Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump |
US12144976B2 (en) | 2018-06-21 | 2024-11-19 | Kardion Gmbh | Method and device for detecting a wear condition of a ventricular assist device and for operating same, and ventricular assist device |
US11754075B2 (en) | 2018-07-10 | 2023-09-12 | Kardion Gmbh | Impeller for an implantable, vascular support system |
US12076549B2 (en) | 2018-07-20 | 2024-09-03 | Kardion Gmbh | Feed line for a pump unit of a cardiac assistance system, cardiac assistance system and method for producing a feed line for a pump unit of a cardiac assistance system |
US12161857B2 (en) | 2018-07-31 | 2024-12-10 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
US12220570B2 (en) | 2018-10-05 | 2025-02-11 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of use |
US11964145B2 (en) | 2019-07-12 | 2024-04-23 | Shifamed Holdings, Llc | Intravascular blood pumps and methods of manufacture and use |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
US12102815B2 (en) | 2019-09-25 | 2024-10-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
US11724089B2 (en) | 2019-09-25 | 2023-08-15 | Shifamed Holdings, Llc | Intravascular blood pump systems and methods of use and control thereof |
US12121713B2 (en) | 2019-09-25 | 2024-10-22 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible blood conduits |
US11944805B2 (en) | 2020-01-31 | 2024-04-02 | Kardion Gmbh | Pump for delivering a fluid and method of manufacturing a pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3568659A (en) | Disposable percutaneous intracardiac pump and method of pumping blood | |
US5820542A (en) | Modified circulatory assist device | |
US3504662A (en) | Intra-arterial blood pump | |
US3939820A (en) | Single-chamber, multi-section balloon for cardiac assistance | |
US3692018A (en) | Cardiac assistance device | |
US4902272A (en) | Intra-arterial cardiac support system | |
US5385528A (en) | Intrapericardial assist device and associated method | |
US5827171A (en) | Intravascular circulatory assist device | |
US6200280B1 (en) | Cardiac massage apparatus and method | |
US4685446A (en) | Method for using a ventricular assist device | |
US4522195A (en) | Apparatus for left heart assist | |
US4785795A (en) | High-frequency intra-arterial cardiac support system | |
US4861330A (en) | Cardiac assist device and method | |
US3791374A (en) | Programmer for segmented balloon pump | |
US7914436B1 (en) | Method and apparatus for pumping blood | |
EP0471029B1 (en) | Heart-assist balloon pump | |
US4407271A (en) | Apparatus for left heart assist | |
AU625556B2 (en) | High-frequency transvalvular axisymmetric blood pump | |
US5484411A (en) | Spiral shaped perfusion balloon and method of use and manufacture | |
US3585983A (en) | Cardiac assisting pump | |
US4741328A (en) | Means for intraaortic assist and method of positioning a catheter therefor | |
US3426744A (en) | Heart pump cannula | |
US9421017B2 (en) | Methods and apparatus using branched balloon for treating pulmonary arterial hypertension | |
CN111683711A (en) | Balloon Catheter Assisted by Pulling the Retractor Wire | |
US20080207986A1 (en) | Heart assist device |