US3590808A - Biopsy tool - Google Patents
Biopsy tool Download PDFInfo
- Publication number
- US3590808A US3590808A US757366A US3590808DA US3590808A US 3590808 A US3590808 A US 3590808A US 757366 A US757366 A US 757366A US 3590808D A US3590808D A US 3590808DA US 3590808 A US3590808 A US 3590808A
- Authority
- US
- United States
- Prior art keywords
- knife
- biopsy tool
- tool according
- cylinder
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001574 biopsy Methods 0.000 title claims abstract description 37
- 238000004891 communication Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 2
- 238000002627 tracheal intubation Methods 0.000 abstract description 12
- 230000000968 intestinal effect Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 7
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000036544 posture Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/04—Endoscopic instruments, e.g. catheter-type instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320783—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions through side-hole, e.g. sliding or rotating cutter inside catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00535—Surgical instruments, devices or methods pneumatically or hydraulically operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/30—Surgical pincettes, i.e. surgical tweezers without pivotal connections
- A61B2017/306—Surgical pincettes, i.e. surgical tweezers without pivotal connections holding by means of suction
Definitions
- a biopsy tool that includes a rigid tip affixed to the distal end of a flexible intestinal intubation tube and is provided with a body portion having a longitudinal duct for the passage of an exchange guide and a radial cavity connected through the lumen of the tube to a vacuum source to draw a tissue sample thereinto.
- a pneumatically operable knife is 1ongitudinally reciprocable across the open end of the cavity to sever the tissue sample contained therein.
- BIOPSY TOOL THE INVENTION This invention relates generally to new and useful improvements in biopsy tools and particularly seeks to provide a novel biopsy tool that is affixed to and forms the distal tip of a flexible intestinal intubation tube, particularly of the type of intubation tube that is adapted to be advanced along a previously inserted exchange guide.
- a past approach to solving this problem has been through the use of an intubation tube having its distal end closed by a rigid hollow tip with a radial aperture extending through the wall of the tip and of the tube.
- a wire-operated cylindrical knife is reciprocable within the tip to sever a tissue sample that has been drawn through the wall aperture by vacuum applied from within the tube.
- a biopsy tool constructed in accordance with this invention overcomes the abovediscussed problems and is fully compatible with the exchange guide technique of insertIon.
- an object of this invention is to provide a novel tool for taking biopsy samples, especially those from the upper gastrointestinal tract.
- Another object of this invention is to provide a tool of the character stated that may be quickly and simply inserted to its final position over a prepositioned exchange guide.
- Another object of this invention is to provide a tool of the character stated that includes a rigid tip affixed to the distal end of a flexible intubation tube and is provided with a body portion having a longitudinal duct for the passage of an exchange guide.
- Another object of this invention is to provide a tool of the character stated in which the body portion thereof is provided with a radial cavity having a flat outer end and having its inner end connected through the lumen of the tube to a source of vacuum whereby a predetermined and controllable quantity of tissue sample is drawn into the cavity.
- a further object of this invention is to provide a tool of the character stated that includes a pneumatically operated knife assembly removably attached to the tip body to clearly and positively sever the tissue sample contained within the radial cavity.
- a further object of this invention is to provide a tool of the character stated in which a friction-reducing tube is positioned within the lumen of the tube and extends from the proximal end of the exchange guide-receiving duct in the tip body to the proximal end of the tube to facilitate advance of the tube over the guide.
- a further object of this invention is to provide a tool of the character stated in which vacuum is applied to the radial cavity through the lumen of the tube and air under positive or negative pressure is supplied to the knife assembly for reciprocation of the knife through a separate tube positioned within the lumen of the tube and extending from the proximal end of the knife assembly to the proximal end of the tube.
- a further object of this invention is to provide a tool of the character stated in which the reciprocable knife is a flat spearpointed blade arranged to have its point pass across a diameter of the body cavity whereby to first pierce the tissue sample and then clearly sever same as the knife is advanced.
- FIG. I is a side elevation of an assembled unit constructed in accordance with this invention.
- FIG. 2 is a top plan view of the body 'of the biopsy tool
- FIG. 3 is a transverse section taken along line 3-3 of FIG. 2;
- FIG. 4 is a side elevation of the body thereof
- FIG. 5 is a left end elevation of the body thereof
- FIG. 6 is a right end elevation of the body thereof
- FIG. 7 is a top plan view of the operating cylinder
- FIG. 8 is a side elevation of the operating cylinder
- FIG. 9 is a left end elevation of the cylinder
- FIG. 10 is a top plan view of the piston and knife blade assembly
- FIG. 11 is a side elevation of the piston and knife blade assembly
- FIG. 12 is an isometric view of the cylinder retaining split sleeve.
- a biopsy tool assembly generally designated 5 and includes a body 6 (see FIGS. 26) machined from solid rod stock and having a rounded distal end 7 and a flanged proximal end 8 adapted to be secured within the distal end of a long flexible plastic catheter or intestinal intubation tube indicated at 9 by dotted lines on FIG. I.
- a transverse channel 10 of rectangular cross section is machined across the top of the body 6 intermediate the ends thereof and has its flat bottom 11 forming a plane surface passing through the centerline of the body.
- the channel 10 is adapted to receive the knife guiding portion of an operating cylinder as will be hereinafter more fully explained.
- a longitudinal channel 12 of rectangular cross section is machined along the top of the body 6 at the proximal end thereof and has its flat bottom 13.l'ying ina plane slightly above that of the channel bottom 11.
- the top of the distal end of the body 6 is machined to a flat surface 14 which in turn is machined to define an open-ended U-shaped pocket 15 having undercut lateral walls 16 to receive and guide the lateral edges of a knife blade as will be hereinafter more fully described.
- a cylindrical cavity 17 for receiving and retaining a biopsy sample extends downwardly from the surface 14 and terminates at a plane slightly below that containing the centerline of the body 6.
- a short radial duct 18, located adjacent the wall of the cavity 17, has its upper end in open communication with the cavity and its lower end in open communication with a longitudinal duct 19 extending therefrom to the proximal end of the body 6.
- a fitting 20 is affixed within the proximal end of the duct 19 for connection through tubing (not shown) to a source of vacuum so that a biopsy sample may be drawn into the cavity "when the tool has become properly positioned within a patient.
- a duct 21 is disposed in spaced parallel relation to the duct 19 and extends the full length of the body 6 to permit passage of an exchange guide therethrough.
- the proximal end of the duct 21 is provided with a fitting 22 for connection with the distal end of a friction-reducing tubular sheath (not shown) so that the tool and its associated intubation tube 9 may be more readily advanced over the exchange guide.
- the body 6 also carries a pneumatically operable knife to sever the biopsy sample that has been drawn into the cavity 17.
- a cylinder having a generally hemicylindrical distal portion 23 and a tubular proximal extension 24, is fitted in the transverse and.longitudinal channels and 12 and is provided with a horizontal knife receiving and guiding slot 25, the bottom of which is coplanar with the bottom of the U-shaped pocket 15.
- the upper portion of the distal end portion 23 is bevelled as at 26 to reduce resistence when the tool is being inserted into a patient.
- a cylindrical piston 27 is reciprocable within the bore of the cylinder 24 and is provided at its distal end with a flat knife blade 28 having a double bevel spear point cutting edge 29.
- the cylinder and knife assembly is removably retained within the body 6 by a sleeve 30 (see FIG. I and 12) having a longitudinal split 31 of a width somewhat greater than the outside diameter of the tubular extension 24 so that when the sleeve is rotated until the split 31 is aligned therewith, the entire cylinder and knife assembly may be readily removed for cleaning and for replacement of the knife whenever it becomes too dull for further use.
- the proximal end 8 of the body 6 is provided with a round-headed stud 32 that is received within the split 31 when the sleeve 30 has been rotated to its cylinder-securing position. Springiness of the sleeve 30 permits the edge of the split 31 to ride up over the stud 32 when the sleeve is rotated.
- a fitting 33 is affixed to the proximal end of the tubular extension 24 for connection through suitable tubing to an air syringe (not shown) for actuation of the piston 27 and its knife blade 28.
- Advancement of the plunger of the syringe will compress air to effect advancement of the knife to sever the tissue sample that has been drawn into the cavity 17, and withdrawal of the syringe plunger will create a vacuum to retract the knife.
- the knife After the knife has thus been reciprocated one or two times, it is again advanced to cover the cavity 17 and the biopsy sample contained therein and is kept in this advanced position until the tool has been withdrawn from the patient, thus assuring retention of the sample and preventing it from being contaminated during withdrawal of the tool.
- the biopsy tool of this invention must be quite small, otherwise it would not be readily insertable throughthe designated internal passages.
- the body 6 would have an outside diameter in a range ofO. 10 inch to 0.65 inch, preferably about 0.25 inch and a length in a range of 0.30 inch to 2.0 inch,
- this invention provides a novel biopsy tool in which a tissue sample is vacuum displaced within a cavity of fixed volume and severed by a reciprocable knife that can be actuated to close the sample-containing cavity as the tool is withdrawn.
- a biopsy tool comprising a generally cylindrical body having a smoothly rounded distal end, a proximal end and a longitudinal axis, a plane surface extending proximally from the distal end of said body, a sample-receiving cavity extending into said body from said plane surface, aflat-bladed knife reciprocable across said cavity along said surface, knife actuating means adjacent to said surface, a first bore extending axially from end-to-end of the body and open at both ends, and a second bore extending axially from the proximal end of the body to a point adjacent said cavity and being in communication with said cavity.
- a biopsy tool according to claim 1 in which said surface lies parallel to said axis and said knife is reciprocable axially.
- a biopsy tool according to claim 1 in which the knife actuating means includes a piston fixed to the knife, a cylinder adapted to receive said piston and a fitting for connection of the cylinder to a source of actuating fluid.
- a biopsy tool in which the cylindrical body is longitudinally recessed adjacent its proximal end, the cylinder is formed in the distal end of a separate cylinder block, said block is fitted in said longitudinal recess, and which includes releasable means for holding said block in said recess.
- a biopsy tool according to claim 4 in which said releasable means is a rotatable collar.
- a biopsy tool according to claim 2 in which the knife has parallel sides and a double bevel spear point cutting edge, the distance between said sides being greater than the corresponding dimension of the sample-receiving cavity.
- a biopsy tool in which the plane surface is bounded by a U-shaped rim around the distal and lateral edges of said surface, the lateral portions of said rim being parallel and spaced to guide freely the parallel sides of the knife.
- a biopsy tool in which the cylinder block is provided with a distally extending portion slotted in a plane parallel to the axis of the cylinder, the knife being slidable in said slot.
- a biopsy tool which includes a fitting at the proximal end of said second bore for connection thereof to a source of vacuum.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
A biopsy tool that includes a rigid tip affixed to the distal end of a flexible intestinal intubation tube and is provided with a body portion having a longitudinal duct for the passage of an exchange guide and a radial cavity connected through the lumen of the tube to a vacuum source to draw a tissue sample thereinto. A pneumatically operable knife is longitudinally reciprocable across the open end of the cavity to sever the tissue sample contained therein.
Description
United States Patent W011 F. Muller Southampton, N.Y. [21] AppLNo. 757,366
[72] Inventor [22] Filed Sept. 4, 1968 [45] Patented July 6, 1971 [73] Assignee United States Catheter & Instrument Corporation Glens Falls, N.Y.
[54] BIOPSY TOOL 9 Claims, 12 Drawing Figs.
[52] US. Cl 128/2 B, 128/305 [51] lnt.C1 ..A61b 10/00 (50] Field of Search 128/2, 2 B, 349, 356, 305, 309, 303-314 [56] References Cited UNITED STATES PATENTS 2,212,133 8/1940 Stadle 128/305 2,684,069 7/1954 Donaldson et al 128/303 2,708,437 5/1955 Hutchins 128/7 3,033,194 5/1962 Lippert 128/2 3,253,524 5/1966 Ashizawa et al. 128/2 UX 3,289,669 12/1966 Dwyer et a1 128/2 3,401 ,684 9/1968 Dremann 128/2 FOREIGN PATENTS 1,451,726 7/1966 France 128/2 Primary Examiner-Richard A. Gaudet Assistant Examiner-Kyle L. Howell Attorney-Saxton Seward ABSTRACT: A biopsy tool that includes a rigid tip affixed to the distal end of a flexible intestinal intubation tube and is provided with a body portion having a longitudinal duct for the passage of an exchange guide and a radial cavity connected through the lumen of the tube to a vacuum source to draw a tissue sample thereinto. A pneumatically operable knife is 1ongitudinally reciprocable across the open end of the cavity to sever the tissue sample contained therein.
PATENTEUJUL 61971 3,590,808
SHEET 2 BF 2 INVENTOR.
ZlfoZfFWZaZZer ATTORNEY.
BIOPSY TOOL THE INVENTION This invention relates generally to new and useful improvements in biopsy tools and particularly seeks to provide a novel biopsy tool that is affixed to and forms the distal tip of a flexible intestinal intubation tube, particularly of the type of intubation tube that is adapted to be advanced along a previously inserted exchange guide.
Heretofore it has been a long and difficult procedure to insert intubation tubes into the upper gastrointestinal tract through a patients nostril because it was necessary to slowly advance (over a period of several hours) the tube under fluoroscopic control while manipulating the patient through many difflcult postures or positions so that the distal end of the tube would follow the desired path of travel into the stomach and the several sections of the duodenum.
More recently techniques have been developed through which a soft woven catheter containing a proximally controllable distal tip spring guide may be fully inserted into a patient in from -l5 minutes under fluoroscopic control with a minimum of manipulation of the patient. After this initial insertion has been completed the spring guide is withdrawn from its associated catheter and is replaced by an exchange guide normally having a length somewhat greater than twice the inserted length of the catheter so that its exposed proximal end portion is sufficiently long to accept the full length of the intubation tube to be inserted. Then the catheter is withdrawn over the exchange guide, leaving the exchange guide in place ready to receive and lead the intubation tube into its fully inserted position.
A particularly suitable type of controllable tip spring guide for these techniques is disclosed and claimed in my copending application Ser. No. 563,927, filed June 29, 1966, now U.S. Pat. No. 3,452,742 and a particularly suitable exchange guide therefor is disclosed and claimed in my copending application Ser. No. 757,326, filed Sept. 4, 1968.
Although the above-described techniques and equipment are effective for the simple and rapid insertion of intubation tubes, the problem still remains of how to quickly and safely obtain biopsy samples, especially from locations in the upper gastrointestinal tract.
A past approach to solving this problem has been through the use of an intubation tube having its distal end closed by a rigid hollow tip with a radial aperture extending through the wall of the tip and of the tube. A wire-operated cylindrical knife is reciprocable within the tip to sever a tissue sample that has been drawn through the wall aperture by vacuum applied from within the tube.
Even though such knife-containing tubes are believed to be the best currently available for obtaining biopsy samples, several objections have been made thereto; principally that they can be inserted only through the above-mentioned hours long technique and cannot be used with the short time exchange guide technique, and that there is no way to control the total force of the vacuum so that there is a substantial risk of rupturing the tissue wall by drawing too much tissue through the wall aperture of the tube. Furthermore, there is no positive control over operation of the cylinder knife and it is difficult to determine whether or not a tissue sample has been fully and cleanly severed.
However, a biopsy tool constructed in accordance with this invention overcomes the abovediscussed problems and is fully compatible with the exchange guide technique of insertIon.
Therefore, an object of this invention is to provide a novel tool for taking biopsy samples, especially those from the upper gastrointestinal tract.
Another object of this invention is to provide a tool of the character stated that may be quickly and simply inserted to its final position over a prepositioned exchange guide.
Another object of this invention is to provide a tool of the character stated that includes a rigid tip affixed to the distal end of a flexible intubation tube and is provided with a body portion having a longitudinal duct for the passage of an exchange guide.
Another object of this invention is to provide a tool of the character stated in which the body portion thereof is provided with a radial cavity having a flat outer end and having its inner end connected through the lumen of the tube to a source of vacuum whereby a predetermined and controllable quantity of tissue sample is drawn into the cavity.
A further object of this invention is to provide a tool of the character stated that includes a pneumatically operated knife assembly removably attached to the tip body to clearly and positively sever the tissue sample contained within the radial cavity.
A further object of this invention is to provide a tool of the character stated in which a friction-reducing tube is positioned within the lumen of the tube and extends from the proximal end of the exchange guide-receiving duct in the tip body to the proximal end of the tube to facilitate advance of the tube over the guide.
A further object of this invention is to provide a tool of the character stated in which vacuum is applied to the radial cavity through the lumen of the tube and air under positive or negative pressure is supplied to the knife assembly for reciprocation of the knife through a separate tube positioned within the lumen of the tube and extending from the proximal end of the knife assembly to the proximal end of the tube.
A further object of this invention is to provide a tool of the character stated in which the reciprocable knife is a flat spearpointed blade arranged to have its point pass across a diameter of the body cavity whereby to first pierce the tissue sample and then clearly sever same as the knife is advanced.
With these and other objects in view, the nature of which will become apparent, the invention will be more fully understood by reference to the drawings, the accompanying detailed description and the appended claims.
IN THE DRAWINGS:
FIG. I is a side elevation of an assembled unit constructed in accordance with this invention;
FIG. 2 is a top plan view of the body 'of the biopsy tool;
FIG. 3 is a transverse section taken along line 3-3 of FIG. 2;
FIG. 4 is a side elevation of the body thereof;
FIG. 5 is a left end elevation of the body thereof;
FIG. 6 is a right end elevation of the body thereof;
FIG. 7 is a top plan view of the operating cylinder;
FIG. 8 is a side elevation of the operating cylinder;
FIG. 9 is a left end elevation of the cylinder;
FIG. 10 is a top plan view of the piston and knife blade assembly;
FIG. 11 is a side elevation of the piston and knife blade assembly; and
FIG. 12 is an isometric view of the cylinder retaining split sleeve.
Referring to the drawings in detail, the invention as illustrated is embodied in a biopsy tool assembly generally designated 5 and includes a body 6 (see FIGS. 26) machined from solid rod stock and having a rounded distal end 7 and a flanged proximal end 8 adapted to be secured within the distal end of a long flexible plastic catheter or intestinal intubation tube indicated at 9 by dotted lines on FIG. I.
A transverse channel 10 of rectangular cross section is machined across the top of the body 6 intermediate the ends thereof and has its flat bottom 11 forming a plane surface passing through the centerline of the body. The channel 10 is adapted to receive the knife guiding portion of an operating cylinder as will be hereinafter more fully explained. A longitudinal channel 12 of rectangular cross section is machined along the top of the body 6 at the proximal end thereof and has its flat bottom 13.l'ying ina plane slightly above that of the channel bottom 11.
The top of the distal end of the body 6 is machined to a flat surface 14 which in turn is machined to define an open-ended U-shaped pocket 15 having undercut lateral walls 16 to receive and guide the lateral edges of a knife blade as will be hereinafter more fully described.
A cylindrical cavity 17 for receiving and retaining a biopsy sample extends downwardly from the surface 14 and terminates at a plane slightly below that containing the centerline of the body 6. A short radial duct 18, located adjacent the wall of the cavity 17, has its upper end in open communication with the cavity and its lower end in open communication with a longitudinal duct 19 extending therefrom to the proximal end of the body 6. A fitting 20 is affixed within the proximal end of the duct 19 for connection through tubing (not shown) to a source of vacuum so that a biopsy sample may be drawn into the cavity "when the tool has become properly positioned within a patient.
A duct 21 is disposed in spaced parallel relation to the duct 19 and extends the full length of the body 6 to permit passage of an exchange guide therethrough. The proximal end of the duct 21 is provided with a fitting 22 for connection with the distal end of a friction-reducing tubular sheath (not shown) so that the tool and its associated intubation tube 9 may be more readily advanced over the exchange guide.
The body 6 also carries a pneumatically operable knife to sever the biopsy sample that has been drawn into the cavity 17. To this end (see FIGS. 7, 8 and 9) a cylinder having a generally hemicylindrical distal portion 23 and a tubular proximal extension 24, is fitted in the transverse and.longitudinal channels and 12 and is provided with a horizontal knife receiving and guiding slot 25, the bottom of which is coplanar with the bottom of the U-shaped pocket 15. The upper portion of the distal end portion 23 is bevelled as at 26 to reduce resistence when the tool is being inserted into a patient.
A cylindrical piston 27 is reciprocable within the bore of the cylinder 24 and is provided at its distal end with a flat knife blade 28 having a double bevel spear point cutting edge 29.
The cylinder and knife assembly is removably retained within the body 6 by a sleeve 30 (see FIG. I and 12) having a longitudinal split 31 of a width somewhat greater than the outside diameter of the tubular extension 24 so that when the sleeve is rotated until the split 31 is aligned therewith, the entire cylinder and knife assembly may be readily removed for cleaning and for replacement of the knife whenever it becomes too dull for further use. The proximal end 8 of the body 6 is provided with a round-headed stud 32 that is received within the split 31 when the sleeve 30 has been rotated to its cylinder-securing position. Springiness of the sleeve 30 permits the edge of the split 31 to ride up over the stud 32 when the sleeve is rotated.
A fitting 33 is affixed to the proximal end of the tubular extension 24 for connection through suitable tubing to an air syringe (not shown) for actuation of the piston 27 and its knife blade 28. Advancement of the plunger of the syringe will compress air to effect advancement of the knife to sever the tissue sample that has been drawn into the cavity 17, and withdrawal of the syringe plunger will create a vacuum to retract the knife. After the knife has thus been reciprocated one or two times, it is again advanced to cover the cavity 17 and the biopsy sample contained therein and is kept in this advanced position until the tool has been withdrawn from the patient, thus assuring retention of the sample and preventing it from being contaminated during withdrawal of the tool.
It will be appreciated from the foregoing description that the biopsy tool of this invention must be quite small, otherwise it would not be readily insertable throughthe designated internal passages. Typically, the body 6 would have an outside diameter in a range ofO. 10 inch to 0.65 inch, preferably about 0.25 inch and a length in a range of 0.30 inch to 2.0 inch,
preferabl about0.75 inch. h I
Thus I will be seen that this invention provides a novel biopsy tool in which a tissue sample is vacuum displaced within a cavity of fixed volume and severed by a reciprocable knife that can be actuated to close the sample-containing cavity as the tool is withdrawn. 7
It is, of course, to be understood that variations in arrangement and proportions of parts may be made within the scope of the appended claims.
I claim:
1. A biopsy tool comprising a generally cylindrical body having a smoothly rounded distal end, a proximal end and a longitudinal axis, a plane surface extending proximally from the distal end of said body, a sample-receiving cavity extending into said body from said plane surface, aflat-bladed knife reciprocable across said cavity along said surface, knife actuating means adjacent to said surface, a first bore extending axially from end-to-end of the body and open at both ends, and a second bore extending axially from the proximal end of the body to a point adjacent said cavity and being in communication with said cavity.
2. A biopsy tool according to claim 1 in which said surface lies parallel to said axis and said knife is reciprocable axially.
3. A biopsy tool according to claim 1 in which the knife actuating means includes a piston fixed to the knife, a cylinder adapted to receive said piston and a fitting for connection of the cylinder to a source of actuating fluid.
4. A biopsy tool according to claim 3 in which the cylindrical body is longitudinally recessed adjacent its proximal end, the cylinder is formed in the distal end of a separate cylinder block, said block is fitted in said longitudinal recess, and which includes releasable means for holding said block in said recess.
5. A biopsy tool according to claim 4 in which said releasable means is a rotatable collar.
6. A biopsy tool according to claim 2 in which the knife has parallel sides and a double bevel spear point cutting edge, the distance between said sides being greater than the corresponding dimension of the sample-receiving cavity.
7. A biopsy tool according to claim 6 in which the plane surface is bounded by a U-shaped rim around the distal and lateral edges of said surface, the lateral portions of said rim being parallel and spaced to guide freely the parallel sides of the knife.
8. A biopsy tool according to claim 4 in which the cylinder block is provided with a distally extending portion slotted in a plane parallel to the axis of the cylinder, the knife being slidable in said slot.
9. A biopsy tool according to claim 1 which includes a fitting at the proximal end of said second bore for connection thereof to a source of vacuum.
Claims (9)
1. A biopsy tool comprising a generally cylindrical body having a smoothly rounded distal end, a proximal end and a longitudinal axis, a plane surface extending proximally from the distal end of said body, a sample-receiving cavity extending into said body from said plane surface, a flat-bladed knife reciprocable across said cavity along said surface, knife actuating means adjacent to said surface, a first bore extending axially from end-to-end of the body and open at both ends, and a second bore extending axially from the proximal end of the body to a point adjacent said cavity and being in communication with said cavity.
2. A biopsy tool according to claim 1 in which said surface lies parallel to said axis and said knife is reciprocable axially.
3. A biopsy tool according to claim 1 in which the knife actuating means includes a piston fixed to the knife, a cylinder adapted to receive said piston and a fitting for connection of the cylinder to a source of actuating fluid.
4. A biopsy tool according to claim 3 in which the cylindrical body is longitudinally recessed adjacent its proximal end, the cylinder is formed in the distal end of a separate cylinder block, said block is fitted in said longitudinal recess, and which includes releasable means for holding said block in said recess.
5. A biopsy tool according to claim 4 in which said releasable means is a rotatable collar.
6. A biopsy tool according to claim 2 in which the knife has parallel sides and a double bevel spear point cutting edge, the distance between said sides being greater than the corresponding dimension of the sample-receiving cavity.
7. A biopsy tool according to claim 6 in which the plane surface is bounded by a U-shaped rim around the distal and lateral edges of said surface, the lateral portions of said rim being parallel and spaced to guide freely the parallel sides of the knife.
8. A biopsy tool according to claim 4 in which the cylinder block is provided with a distally extending portion slotted in a plane parallel to the axis of the cylinder, the knife being slidable in said slot.
9. A biopsy tool according to claim 1 which includes a fitting at the proximal end of said second bore for connection thereof to a source of vacuum.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75736668A | 1968-09-04 | 1968-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3590808A true US3590808A (en) | 1971-07-06 |
Family
ID=25047548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US757366A Expired - Lifetime US3590808A (en) | 1968-09-04 | 1968-09-04 | Biopsy tool |
Country Status (1)
Country | Link |
---|---|
US (1) | US3590808A (en) |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4620547A (en) * | 1983-12-31 | 1986-11-04 | Richard Wolf Gmbh | Instrument for sampling tissue specimens |
US4781202A (en) * | 1987-08-31 | 1988-11-01 | Janese Woodrow W | Biopsy cannula |
WO1994028803A1 (en) * | 1993-06-11 | 1994-12-22 | Hec Medical Arts Ltd. | Catheter and method of use thereof |
EP0647121A1 (en) * | 1992-06-22 | 1995-04-12 | MANN, David | Apparatus and method to obtain arterial biopsies |
US5526822A (en) * | 1994-03-24 | 1996-06-18 | Biopsys Medical, Inc. | Method and apparatus for automated biopsy and collection of soft tissue |
US5542432A (en) * | 1992-02-18 | 1996-08-06 | Symbiosis Corporation | Endoscopic multiple sample bioptome |
US5649547A (en) * | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US5665099A (en) * | 1995-05-12 | 1997-09-09 | Pilo; Giuseppe | Surgical scalpel with automatically retractable blade |
US5674232A (en) * | 1990-06-05 | 1997-10-07 | Halliburton; Alexander George | Catheter and method of use thereof |
US5810744A (en) * | 1993-05-17 | 1998-09-22 | Boston Scientific Corporation | Instrument for collecting multiple biopsy specimens |
US5817115A (en) * | 1995-12-04 | 1998-10-06 | Chiron Vision Corporation | Apparatus for resecting corneal tissue |
US5860993A (en) * | 1996-09-25 | 1999-01-19 | Medworks Corp. | Suture cutter |
US5871453A (en) * | 1994-02-08 | 1999-02-16 | Boston Scientific Corporation | Moveable sample tube multiple biopsy sampling device |
WO1999007288A1 (en) | 1997-08-08 | 1999-02-18 | Endonetics, Inc. | Multiple sample biopsy forceps |
US5895370A (en) * | 1992-08-12 | 1999-04-20 | Vidamed, Inc. | Medical probe (with stylets) device |
US5897507A (en) * | 1996-11-25 | 1999-04-27 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US5944673A (en) * | 1998-05-14 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with multi-port needle |
US5964716A (en) * | 1998-05-14 | 1999-10-12 | Ethicon Endo-Surgery, Inc. | Method of use for a multi-port biopsy instrument |
US6017316A (en) * | 1997-06-18 | 2000-01-25 | Biopsys Medical | Vacuum control system and method for automated biopsy device |
US6019733A (en) * | 1997-09-19 | 2000-02-01 | United States Surgical Corporation | Biopsy apparatus and method |
US6050955A (en) * | 1997-09-19 | 2000-04-18 | United States Surgical Corporation | Biopsy apparatus and method |
US6077230A (en) * | 1998-05-14 | 2000-06-20 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with removable extractor |
US6142956A (en) * | 1996-11-25 | 2000-11-07 | Symbiosis Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US6142955A (en) * | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US6142957A (en) * | 1993-09-20 | 2000-11-07 | Boston Scientific Corporation | Multiple biopsy sampling device |
US6193673B1 (en) | 1998-02-20 | 2001-02-27 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US6193671B1 (en) | 1994-02-01 | 2001-02-27 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US6231522B1 (en) | 2000-02-18 | 2001-05-15 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with breakable sample segments |
US6241687B1 (en) | 2000-02-18 | 2001-06-05 | Ethicon Endo-Surgery, Inc. | Method of use for a biopsy instrument with breakable sample segments |
US20020029006A1 (en) * | 1996-11-25 | 2002-03-07 | Scimed Life Systems, Inc. | Biopsy instrument having irrigation and aspiration capabilities |
US6402701B1 (en) | 1999-03-23 | 2002-06-11 | Fna Concepts, Llc | Biopsy needle instrument |
US20020107457A1 (en) * | 1996-11-25 | 2002-08-08 | Francese Jose L. | Suction adapter for medical instrument |
US6436054B1 (en) | 1998-11-25 | 2002-08-20 | United States Surgical Corporation | Biopsy system |
US20030216740A1 (en) * | 1989-04-24 | 2003-11-20 | Gary Karlin Michelson | Method for using a surgical rongeur |
US20040059254A1 (en) * | 2001-03-23 | 2004-03-25 | Stryker Puerto Rico Limited | Micro-invasive breast biopsy device |
US6712773B1 (en) | 2000-09-11 | 2004-03-30 | Tyco Healthcare Group Lp | Biopsy system |
US6860860B2 (en) | 2000-11-27 | 2005-03-01 | Tyco Healthcare Group, Lp | Tissue sampling and removal apparatus and method |
US20050054945A1 (en) * | 2003-09-10 | 2005-03-10 | Scimed Life Systems, Inc | Forceps and collection assembly with accompanying mechanisms and related methods of use |
US20050080441A1 (en) * | 2003-10-10 | 2005-04-14 | Duke University | Surgical instruments which are especially useful for ophthalmic surgical procedures, and methods of making the same |
US20050209530A1 (en) * | 2001-03-23 | 2005-09-22 | Stryker Puerto Rico Limited | Micro-invasive tissue removal device |
US20060100492A1 (en) * | 2004-10-29 | 2006-05-11 | Medtronic, Inc. | Intra-esophageal catheter |
US20060129185A1 (en) * | 1999-10-25 | 2006-06-15 | Boston Scientific Scimed, Inc. | Forceps for medical use |
US20060149271A1 (en) * | 1989-08-28 | 2006-07-06 | Michelson Gary K | Method for cutting bone or cartilage with a rongeur |
US20070255172A1 (en) * | 2001-03-23 | 2007-11-01 | Stryker Puerto Rico Limited | Micro-invasive nucleotomy device and method |
US20080132804A1 (en) * | 2000-10-13 | 2008-06-05 | Stephens Randy R | Remote Thumbwheel For Surgical Biopsy Device |
US20100152663A1 (en) * | 2007-04-05 | 2010-06-17 | Darr Allan J | Stylet for bilumenal flexible medical device |
US7762960B2 (en) | 2005-05-13 | 2010-07-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US20110028898A1 (en) * | 2005-09-07 | 2011-02-03 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US7942896B2 (en) | 2003-11-25 | 2011-05-17 | Scimed Life Systems, Inc. | Forceps and collection assembly and related methods of use and manufacture |
EP2382923A1 (en) | 2010-04-28 | 2011-11-02 | Sanovas Inc. | Pressure/vaccum actuated biopsy device |
US8439940B2 (en) | 2010-12-22 | 2013-05-14 | Cabochon Aesthetics, Inc. | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
US8518069B2 (en) | 2005-09-07 | 2013-08-27 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9011473B2 (en) | 2005-09-07 | 2015-04-21 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9226757B2 (en) | 2011-06-28 | 2016-01-05 | Globus Medical, Inc. | Bone removal instrument |
US9248317B2 (en) | 2005-12-02 | 2016-02-02 | Ulthera, Inc. | Devices and methods for selectively lysing cells |
US9272124B2 (en) | 2005-12-02 | 2016-03-01 | Ulthera, Inc. | Systems and devices for selective cell lysis and methods of using same |
US9358064B2 (en) | 2009-08-07 | 2016-06-07 | Ulthera, Inc. | Handpiece and methods for performing subcutaneous surgery |
US9358033B2 (en) | 2005-09-07 | 2016-06-07 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
US10548659B2 (en) | 2006-01-17 | 2020-02-04 | Ulthera, Inc. | High pressure pre-burst for improved fluid delivery |
US11096708B2 (en) | 2009-08-07 | 2021-08-24 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2212133A (en) * | 1937-05-04 | 1940-08-20 | Fred J Melges | Surgical instrument |
US2684069A (en) * | 1952-07-05 | 1954-07-20 | Donaldson | Precision linear-fracture instrument for heart valve surgery |
US2708437A (en) * | 1952-03-31 | 1955-05-17 | Elizabeth Painter Hutchins | Surgical instrument |
US3033194A (en) * | 1960-11-08 | 1962-05-08 | Henry E Lippert | Biopsy capsule and apparatus |
FR1451726A (en) * | 1965-10-22 | 1966-01-07 | Ake Samuel Gidlund | Stomach and intestines biopsy instrument |
US3253524A (en) * | 1962-05-24 | 1966-05-31 | Olympus Optical Co | Flexible tube assembly |
US3289669A (en) * | 1964-02-25 | 1966-12-06 | Donald J Dwyer | Biopsy capsule arrangement |
US3401684A (en) * | 1965-12-16 | 1968-09-17 | Weck & Co Edward | Biopsy capsules |
-
1968
- 1968-09-04 US US757366A patent/US3590808A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2212133A (en) * | 1937-05-04 | 1940-08-20 | Fred J Melges | Surgical instrument |
US2708437A (en) * | 1952-03-31 | 1955-05-17 | Elizabeth Painter Hutchins | Surgical instrument |
US2684069A (en) * | 1952-07-05 | 1954-07-20 | Donaldson | Precision linear-fracture instrument for heart valve surgery |
US3033194A (en) * | 1960-11-08 | 1962-05-08 | Henry E Lippert | Biopsy capsule and apparatus |
US3253524A (en) * | 1962-05-24 | 1966-05-31 | Olympus Optical Co | Flexible tube assembly |
US3289669A (en) * | 1964-02-25 | 1966-12-06 | Donald J Dwyer | Biopsy capsule arrangement |
FR1451726A (en) * | 1965-10-22 | 1966-01-07 | Ake Samuel Gidlund | Stomach and intestines biopsy instrument |
US3401684A (en) * | 1965-12-16 | 1968-09-17 | Weck & Co Edward | Biopsy capsules |
Cited By (137)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4620547A (en) * | 1983-12-31 | 1986-11-04 | Richard Wolf Gmbh | Instrument for sampling tissue specimens |
US4781202A (en) * | 1987-08-31 | 1988-11-01 | Janese Woodrow W | Biopsy cannula |
US7922723B2 (en) * | 1989-04-24 | 2011-04-12 | Gary Karlin Michelson | Method for using a surgical rongeur |
US20030216740A1 (en) * | 1989-04-24 | 2003-11-20 | Gary Karlin Michelson | Method for using a surgical rongeur |
US7297147B2 (en) * | 1989-08-28 | 2007-11-20 | Gary Karlin Michelson | Method for cutting bone or cartilage with a rongeur |
US20060149271A1 (en) * | 1989-08-28 | 2006-07-06 | Michelson Gary K | Method for cutting bone or cartilage with a rongeur |
US5674232A (en) * | 1990-06-05 | 1997-10-07 | Halliburton; Alexander George | Catheter and method of use thereof |
US5951488A (en) * | 1992-02-18 | 1999-09-14 | Symbiosis Corporation | Endoscopic multiple sample bioptome |
US5542432A (en) * | 1992-02-18 | 1996-08-06 | Symbiosis Corporation | Endoscopic multiple sample bioptome |
EP0647121A1 (en) * | 1992-06-22 | 1995-04-12 | MANN, David | Apparatus and method to obtain arterial biopsies |
EP0647121A4 (en) * | 1992-06-22 | 1995-08-02 | David Mann | Apparatus and method to obtain arterial biopsies. |
EP1031320A1 (en) * | 1992-06-22 | 2000-08-30 | MANN, David | Method for obtaining an arterial biopsy |
US6206847B1 (en) * | 1992-08-12 | 2001-03-27 | Vidamed, Inc. | Medical probe device |
US6464661B2 (en) | 1992-08-12 | 2002-10-15 | Vidamed, Inc. | Medical probe with stylets |
US5895370A (en) * | 1992-08-12 | 1999-04-20 | Vidamed, Inc. | Medical probe (with stylets) device |
US5810744A (en) * | 1993-05-17 | 1998-09-22 | Boston Scientific Corporation | Instrument for collecting multiple biopsy specimens |
WO1994028803A1 (en) * | 1993-06-11 | 1994-12-22 | Hec Medical Arts Ltd. | Catheter and method of use thereof |
US8241290B2 (en) | 1993-08-18 | 2012-08-14 | Michelson Gary K | Surgical rongeur |
US20110190773A1 (en) * | 1993-08-18 | 2011-08-04 | Gary Karlin Michelson | Surgical rongeur |
US6142957A (en) * | 1993-09-20 | 2000-11-07 | Boston Scientific Corporation | Multiple biopsy sampling device |
US6193671B1 (en) | 1994-02-01 | 2001-02-27 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US6561988B1 (en) | 1994-02-01 | 2003-05-13 | Symbiosis Corporation | Endoscopic multiple sample bioptome with enhanced biting action |
US5871453A (en) * | 1994-02-08 | 1999-02-16 | Boston Scientific Corporation | Moveable sample tube multiple biopsy sampling device |
US6053877A (en) * | 1994-02-08 | 2000-04-25 | Boston Scientific Corporation | Movable sample tube multiple biopsy sampling device |
US7981050B2 (en) | 1994-03-24 | 2011-07-19 | Devicor Medical Products, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US7918803B2 (en) | 1994-03-24 | 2011-04-05 | Devicor Medical Products, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US7794411B2 (en) | 1994-03-24 | 2010-09-14 | Devicor Medical Products, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US5980469A (en) * | 1994-03-24 | 1999-11-09 | Ethicon Endo-Surgery, Inc. | Method and apparatus for automated biopsy and collection of soft tissue |
US20100063415A1 (en) * | 1994-03-24 | 2010-03-11 | Ritchart Mark A | Methods and devices for automated biopsy and collection of soft tissue |
US20110160611A1 (en) * | 1994-03-24 | 2011-06-30 | Devicor Medical Products, Inc. | Methods and devices for biopsy and collection of soft tissue |
US20080154151A1 (en) * | 1994-03-24 | 2008-06-26 | Ritchart Mark A | Methods and Devices for Automated Biopsy and Collection of Soft Tissue |
US5928164A (en) * | 1994-03-24 | 1999-07-27 | Ethicon Endo-Surgery, Inc. | Apparatus for automated biopsy and collection of soft tissue |
US8591435B2 (en) | 1994-03-24 | 2013-11-26 | Devicor Medical Products, Inc. | Methods and devices for biopsy and collection of soft tissue |
US7226424B2 (en) | 1994-03-24 | 2007-06-05 | Ethicon Endo-Surgery, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US20060167377A1 (en) * | 1994-03-24 | 2006-07-27 | Ritchart Mark A | Methods and devices for automated biopsy and collection of soft tissue |
US5775333A (en) * | 1994-03-24 | 1998-07-07 | Ethicon Endo-Surgery, Inc. | Apparatus for automated biopsy and collection of soft tissue |
US8808199B2 (en) | 1994-03-24 | 2014-08-19 | Devicor Medical Products, Inc. | Methods and devices for biopsy and collection of soft tissue |
US5649547A (en) * | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US20040019299A1 (en) * | 1994-03-24 | 2004-01-29 | Ritchart Mark A. | Methods and devices for automated biopsy and collection of soft tissue |
EP0751744A1 (en) * | 1994-03-24 | 1997-01-08 | Biopsys Medical, Inc. | Method and apparatus for automated biopsy and collection of soft tissue |
US5526822A (en) * | 1994-03-24 | 1996-06-18 | Biopsys Medical, Inc. | Method and apparatus for automated biopsy and collection of soft tissue |
US6428486B2 (en) | 1994-03-24 | 2002-08-06 | Ethicon Endo-Surgery, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US8790276B2 (en) | 1995-02-10 | 2014-07-29 | Devicor Medical Products, Inc. | Methods and devices for biopsy and collection of soft tissue |
US5665099A (en) * | 1995-05-12 | 1997-09-09 | Pilo; Giuseppe | Surgical scalpel with automatically retractable blade |
US5817115A (en) * | 1995-12-04 | 1998-10-06 | Chiron Vision Corporation | Apparatus for resecting corneal tissue |
US5860993A (en) * | 1996-09-25 | 1999-01-19 | Medworks Corp. | Suture cutter |
US6142956A (en) * | 1996-11-25 | 2000-11-07 | Symbiosis Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US7347828B2 (en) | 1996-11-25 | 2008-03-25 | Boston Scientific Miami Corporation | Suction adapter for medical instrument |
US6544194B1 (en) | 1996-11-25 | 2003-04-08 | Symbiosis Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US20020029006A1 (en) * | 1996-11-25 | 2002-03-07 | Scimed Life Systems, Inc. | Biopsy instrument having irrigation and aspiration capabilities |
US6174292B1 (en) | 1996-11-25 | 2001-01-16 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US20020107457A1 (en) * | 1996-11-25 | 2002-08-08 | Francese Jose L. | Suction adapter for medical instrument |
US7204811B2 (en) | 1996-11-25 | 2007-04-17 | Boston Scientific Miami Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US5897507A (en) * | 1996-11-25 | 1999-04-27 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US6832990B2 (en) | 1996-11-25 | 2004-12-21 | Symbiosis Corporation | Biopsy instrument having aspiration capabilities |
US7297121B2 (en) | 1996-11-25 | 2007-11-20 | Boston Scientific Scimed, Inc. | Biopsy instrument having irrigation and aspiration capabilities |
US20070270709A1 (en) * | 1996-11-25 | 2007-11-22 | Boston Scientific Miami Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US7833167B2 (en) | 1996-11-25 | 2010-11-16 | Boston Scientific Miami Corporation | Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities |
US6926676B2 (en) | 1996-11-25 | 2005-08-09 | Boston Scientific Scimed, Inc. | Biopsy instrument having irrigation and aspiration capabilities |
US20050245841A1 (en) * | 1996-11-25 | 2005-11-03 | Vincent Turturro | Biopsy instrument having irrigation and aspiration capabilities |
US6017316A (en) * | 1997-06-18 | 2000-01-25 | Biopsys Medical | Vacuum control system and method for automated biopsy device |
WO1999007288A1 (en) | 1997-08-08 | 1999-02-18 | Endonetics, Inc. | Multiple sample biopsy forceps |
US6050955A (en) * | 1997-09-19 | 2000-04-18 | United States Surgical Corporation | Biopsy apparatus and method |
US6142955A (en) * | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US6019733A (en) * | 1997-09-19 | 2000-02-01 | United States Surgical Corporation | Biopsy apparatus and method |
US6488636B2 (en) | 1997-09-19 | 2002-12-03 | United States Surgical Corporation | Biopsy apparatus |
US6554779B2 (en) | 1998-02-20 | 2003-04-29 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US6193673B1 (en) | 1998-02-20 | 2001-02-27 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US5964716A (en) * | 1998-05-14 | 1999-10-12 | Ethicon Endo-Surgery, Inc. | Method of use for a multi-port biopsy instrument |
US6077230A (en) * | 1998-05-14 | 2000-06-20 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with removable extractor |
US5944673A (en) * | 1998-05-14 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with multi-port needle |
US6436054B1 (en) | 1998-11-25 | 2002-08-20 | United States Surgical Corporation | Biopsy system |
US6402701B1 (en) | 1999-03-23 | 2002-06-11 | Fna Concepts, Llc | Biopsy needle instrument |
US6689072B2 (en) | 1999-03-23 | 2004-02-10 | Leopold S. Kaplan | Biopsy needle instrument |
US20060129185A1 (en) * | 1999-10-25 | 2006-06-15 | Boston Scientific Scimed, Inc. | Forceps for medical use |
US7909850B2 (en) | 1999-10-25 | 2011-03-22 | Boston Scientific Scimed, Inc. | Forceps for medical use |
US6231522B1 (en) | 2000-02-18 | 2001-05-15 | Ethicon Endo-Surgery, Inc. | Biopsy instrument with breakable sample segments |
US6241687B1 (en) | 2000-02-18 | 2001-06-05 | Ethicon Endo-Surgery, Inc. | Method of use for a biopsy instrument with breakable sample segments |
US8128577B2 (en) | 2000-09-11 | 2012-03-06 | Tyco Healthcare Group Lp | Biopsy system |
US6712773B1 (en) | 2000-09-11 | 2004-03-30 | Tyco Healthcare Group Lp | Biopsy system |
US7189207B2 (en) | 2000-09-11 | 2007-03-13 | Tyco Healthcare Group Lp | Biopsy system having a single use loading unit operable with a trocar driver, a knife driver and firing module |
US7648466B2 (en) | 2000-10-13 | 2010-01-19 | Ethicon Endo-Surgery, Inc. | Manually rotatable piercer |
US20080132804A1 (en) * | 2000-10-13 | 2008-06-05 | Stephens Randy R | Remote Thumbwheel For Surgical Biopsy Device |
US7513877B2 (en) | 2000-11-27 | 2009-04-07 | Tyco Healthcare Group Lp | Tissue sampling and removal apparatus and method |
US6860860B2 (en) | 2000-11-27 | 2005-03-01 | Tyco Healthcare Group, Lp | Tissue sampling and removal apparatus and method |
US20090299219A1 (en) * | 2001-03-23 | 2009-12-03 | Stryker Puerto Rico Limited | Micro-invasive device |
US7591790B2 (en) | 2001-03-23 | 2009-09-22 | Stryker Puerto Rico Limited | Micro-invasive device |
US20040059254A1 (en) * | 2001-03-23 | 2004-03-25 | Stryker Puerto Rico Limited | Micro-invasive breast biopsy device |
US20050209530A1 (en) * | 2001-03-23 | 2005-09-22 | Stryker Puerto Rico Limited | Micro-invasive tissue removal device |
US20070255172A1 (en) * | 2001-03-23 | 2007-11-01 | Stryker Puerto Rico Limited | Micro-invasive nucleotomy device and method |
US20050054945A1 (en) * | 2003-09-10 | 2005-03-10 | Scimed Life Systems, Inc | Forceps and collection assembly with accompanying mechanisms and related methods of use |
US8083686B2 (en) | 2003-09-10 | 2011-12-27 | Boston Scientific Scimed, Inc. | Forceps and collection assembly with accompanying mechanisms and related methods of use |
US7588545B2 (en) | 2003-09-10 | 2009-09-15 | Boston Scientific Scimed, Inc. | Forceps and collection assembly with accompanying mechanisms and related methods of use |
US8460205B2 (en) | 2003-09-10 | 2013-06-11 | Boston Scientific Scimed, Inc. | Forceps and collection assembly with accompanying mechanisms and related methods of use |
US20050080441A1 (en) * | 2003-10-10 | 2005-04-14 | Duke University | Surgical instruments which are especially useful for ophthalmic surgical procedures, and methods of making the same |
US7942896B2 (en) | 2003-11-25 | 2011-05-17 | Scimed Life Systems, Inc. | Forceps and collection assembly and related methods of use and manufacture |
US20060100492A1 (en) * | 2004-10-29 | 2006-05-11 | Medtronic, Inc. | Intra-esophageal catheter |
US8672859B2 (en) | 2005-05-13 | 2014-03-18 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US7762960B2 (en) | 2005-05-13 | 2010-07-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US8317726B2 (en) | 2005-05-13 | 2012-11-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US9486274B2 (en) | 2005-09-07 | 2016-11-08 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9005229B2 (en) | 2005-09-07 | 2015-04-14 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US8518069B2 (en) | 2005-09-07 | 2013-08-27 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9011473B2 (en) | 2005-09-07 | 2015-04-21 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US20110028898A1 (en) * | 2005-09-07 | 2011-02-03 | Cabochon Aesthetics, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9364246B2 (en) | 2005-09-07 | 2016-06-14 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9358033B2 (en) | 2005-09-07 | 2016-06-07 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
US9179928B2 (en) | 2005-09-07 | 2015-11-10 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US9272124B2 (en) | 2005-12-02 | 2016-03-01 | Ulthera, Inc. | Systems and devices for selective cell lysis and methods of using same |
US9248317B2 (en) | 2005-12-02 | 2016-02-02 | Ulthera, Inc. | Devices and methods for selectively lysing cells |
US10548659B2 (en) | 2006-01-17 | 2020-02-04 | Ulthera, Inc. | High pressure pre-burst for improved fluid delivery |
US20100152663A1 (en) * | 2007-04-05 | 2010-06-17 | Darr Allan J | Stylet for bilumenal flexible medical device |
US10220122B2 (en) | 2007-10-09 | 2019-03-05 | Ulthera, Inc. | System for tissue dissection and aspiration |
US9039722B2 (en) | 2007-10-09 | 2015-05-26 | Ulthera, Inc. | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
US8979881B2 (en) | 2009-08-07 | 2015-03-17 | Ulthera, Inc. | Methods and handpiece for use in tissue dissection |
US9510849B2 (en) | 2009-08-07 | 2016-12-06 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
US9044259B2 (en) | 2009-08-07 | 2015-06-02 | Ulthera, Inc. | Methods for dissection of subcutaneous tissue |
US11337725B2 (en) | 2009-08-07 | 2022-05-24 | Ulthera, Inc. | Handpieces for tissue treatment |
US11096708B2 (en) | 2009-08-07 | 2021-08-24 | Ulthera, Inc. | Devices and methods for performing subcutaneous surgery |
US8920452B2 (en) | 2009-08-07 | 2014-12-30 | Ulthera, Inc. | Methods of tissue release to reduce the appearance of cellulite |
US8906054B2 (en) | 2009-08-07 | 2014-12-09 | Ulthera, Inc. | Apparatus for reducing the appearance of cellulite |
US9358064B2 (en) | 2009-08-07 | 2016-06-07 | Ulthera, Inc. | Handpiece and methods for performing subcutaneous surgery |
US8900261B2 (en) | 2009-08-07 | 2014-12-02 | Ulthera, Inc. | Tissue treatment system for reducing the appearance of cellulite |
US8900262B2 (en) | 2009-08-07 | 2014-12-02 | Ulthera, Inc. | Device for dissection of subcutaneous tissue |
US8894678B2 (en) | 2009-08-07 | 2014-11-25 | Ulthera, Inc. | Cellulite treatment methods |
US9078688B2 (en) | 2009-08-07 | 2015-07-14 | Ulthera, Inc. | Handpiece for use in tissue dissection |
US9757145B2 (en) | 2009-08-07 | 2017-09-12 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
US10531888B2 (en) | 2009-08-07 | 2020-01-14 | Ulthera, Inc. | Methods for efficiently reducing the appearance of cellulite |
US10271866B2 (en) | 2009-08-07 | 2019-04-30 | Ulthera, Inc. | Modular systems for treating tissue |
US10485573B2 (en) | 2009-08-07 | 2019-11-26 | Ulthera, Inc. | Handpieces for tissue treatment |
EP2382923A1 (en) | 2010-04-28 | 2011-11-02 | Sanovas Inc. | Pressure/vaccum actuated biopsy device |
US9241692B2 (en) | 2010-04-28 | 2016-01-26 | Sanovas, Inc. | Pressure/vacuum actuated catheter forceps |
US10603066B2 (en) | 2010-05-25 | 2020-03-31 | Ulthera, Inc. | Fluid-jet dissection system and method for reducing the appearance of cellulite |
US8439940B2 (en) | 2010-12-22 | 2013-05-14 | Cabochon Aesthetics, Inc. | Dissection handpiece with aspiration means for reducing the appearance of cellulite |
US11213618B2 (en) | 2010-12-22 | 2022-01-04 | Ulthera, Inc. | System for tissue dissection and aspiration |
US10368879B2 (en) | 2011-06-28 | 2019-08-06 | Globus Medical, Inc. | Bone removal instrument |
US9226757B2 (en) | 2011-06-28 | 2016-01-05 | Globus Medical, Inc. | Bone removal instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3590808A (en) | Biopsy tool | |
US4249541A (en) | Biopsy device | |
US4643196A (en) | Biopsy needle set | |
US4651753A (en) | Endoscopic multiple biopsy instrument | |
EP0993277B1 (en) | Flexible trocar with an upturning tube system | |
US4799494A (en) | Percutaneous aspiration lung biopsy needle assembly | |
US5667514A (en) | Device and method for inserting a flexible element into soft tissue | |
EP2382923B1 (en) | Pressure/vaccum actuated biopsy device | |
CN100508897C (en) | Biopsy device incorporating an adjustable probe sleeve | |
US3777743A (en) | Endometrial sampler | |
US4807593A (en) | Endoscope guide tube | |
US3685509A (en) | Foetal blood sampling endoscope | |
ES2278468T3 (en) | SURGICAL BIOPSY AND INSTRUMENTAL NEEDLE. | |
US4966162A (en) | Flexible encoscope assembly | |
EP0609239B1 (en) | Lateral biopsy device | |
JP6388413B2 (en) | Biopsy site marker applier | |
EP1886634A1 (en) | Device and method for mucosal detachment | |
DE3909290A1 (en) | COVERED ENDOSCOPE | |
DE2305815A1 (en) | DEVICE FOR SEPARATING SURGICAL FEEDS | |
US5339828A (en) | Apparatus and method for taking cultures endoscopically | |
US20050054945A1 (en) | Forceps and collection assembly with accompanying mechanisms and related methods of use | |
EP1575430B1 (en) | Optical biopsy instrument | |
US20050070818A1 (en) | Biopsy device with viewing assembly | |
DE102007014634B3 (en) | Instrument for the medical examination of narrow body canals | |
CN219629676U (en) | Ultrasonic guided thyroid puncture needle |