US3634735A - Self-holding electromagnetically driven device - Google Patents
Self-holding electromagnetically driven device Download PDFInfo
- Publication number
- US3634735A US3634735A US23619A US3634735DA US3634735A US 3634735 A US3634735 A US 3634735A US 23619 A US23619 A US 23619A US 3634735D A US3634735D A US 3634735DA US 3634735 A US3634735 A US 3634735A
- Authority
- US
- United States
- Prior art keywords
- armature
- magnets
- coils
- sleeves
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1638—Armatures not entering the winding
- H01F7/1646—Armatures or stationary parts of magnetic circuit having permanent magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
- H01F7/122—Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
Definitions
- Each permanent magnet is provided with an electromagnetic coil wound around it which is adapted, when energized by a pulse of short duration, to produce a magnetic field in the same direction as that of the associated permanent magnet, whereby the armature is driven from a position next to the other permanent magnet to a position adjacent the associated permanent magnet and held onto it by virtue of the magnetic force thereof, without requiring any further application of electric power to maintain the armature in its displaced posi- PATENTED JAN! 1 1972 3534.7 5
- This invention relates to a self-holding or bistable electromagnetically driven device used for switching on and off a relay, an electric switch, a valve or the like, and more particularly to a device of this kind wherein an armature secured to an operating rod is driven from a first stable position to a second stable position in response to energization of an electromagnetic coil which is employed to actuate the armature,
- a self-holding electromagnetically driven device which comprises a pair of permanent magnets, preferably in the form of disks, which are spaced. apart and face each other in opposed polarity relationship.
- Each permanent magnet is provided with a central aperture and has an electromagnetic coil wound around it.
- An armature preferably in the form of a disk, is provided between the permanent magnets in aligned relationship therewith. The armature issecured to an operating rod which extends through the central apertures of the permanent magnets.
- Each electromagnetic coil is adapted, when energized, to produce a magnetic filed in the same direction as that of the associated permanent magnet.
- the armature has two stable positions, i.e.
- the electromagnetically driven device in accordance with the invention does not require a constant or continuous energization of coils to maintain the armature in the last position into which it is moved, and therefore it can be referred to as a self-holding or bistable device.
- the device according to the invention can minimize the electric power consumed and the heat generated during operation, and is very simple in construction and reliable in operation.
- FIG. I shows diagrammatically, partially in vertical section, one embodiment of the self-holding electromagnetically driven device according to the invention together with an'external power source therefor;
- FIG. 2 is a top plan view of the device shown in FIG. 1;
- FIG. 3 and FIG. 4 are a sectional perspective and a sectional side view of the device, respectively, illustrating how the elements of the device of FIG. I are assembled in a casing in practice;
- FIG. 5 shows a modification of the device in accordance with the invention.
- the self-holding electromagnetically driven device in accordance with the invention comprises a pair of permanent magnets 1A and 18 in the form of disks which are facing each other in aligned relationship and .are spaced apart from each other.
- the permanent magnets 1A and IB have substantially the same diameter, and are disposed in opposed or bucking polarity relationship, as indicated by symbols N and S in FIG. 1.
- the permanent magnets 1A and 18 have electromagnetic coils 2A and 28 would respectively around the peripheries thereof in the same number of turns.
- the permanent magnets 1A and 1B are respectively provided with central apertures 6A and 6B, in which a control shaft or an operating rod 3 of metal is slidably mounted.
- an armature 4 of magnetic material in the form of a disk Positioned between the permanent magnets and secured to the operating rod is an armature 4 of magnetic material in the form of a disk.
- the armature 4 can rest in either a first position, in which it is held fast to the magnet 1A by virtue of its magnetic force, or a second position, in which it is held fast to the magnet lB by virtue of the magnetic force of the latter.
- the operating rod 3 is provided at its lower end with a valve body 5 secured thereto.
- the valve body 5 is a part of valve means 7 comprising a valve housing 8 and a valve aperture 9. Feed pipes 10A and 10B are connected to opposite sides of the housing 8.
- the valve body 5 is adapted to open the aperture 9 so as to permit the passage of liquid through the valve means 7 when the armature 4 is held fast to the magnet 1A, and to close the aperture 9 so as to interrupt the liquid flow when the armature 4 is held fast to the magnet 1B.
- the electromagnetic coils 2A and 2B are connected respectively to a pair of alternating current power-supply means 11A and 118 through switching means 12A and 128, respectively, and through fullwave rectifier means 13A and 138, respectively.
- the armature 4 is held fast to the magnet 1A as shown in FIG. 1 so that the valve aperture 9 is not closed by the valve body 5.
- the switching means 128 is closed for an extremely short time, the coil 23 will be energized by the pulse of rectified current from the rectifying means 13B to reinforce the magnetic field of the magnet 18 so as to cause the armature 4 to be pulled toward the magnet 18 through the inherent magnetic force thereof plus the magnetic force of the coil 28 against the magnetic force of the magnet 1A, whereby the armature 4 will be lowered together with the operating rod 3 and the valve body 5, as a result of which the valve seat 5 will close the aperture 9 to stop the flow of liquid through the valve means 7.
- each electromagnetic coil is selected so that it can produce a magnetic force large enough to attract the armature from the opposite pennanent magnet.
- the operating rod 3 is shown provided only at its lower end with a valve body 5. However, it should be understood that another valve body or any other operating member can be secured to the upper end of the operating rod so that two interrupter devices (valve, switch etc.) are controlled simultaneously.
- FIGS. 3 and 4 l have shown how the elements of the device of FIG. 1 are assembled in practice.
- the permanent magnets 1A and 18 having electromagnetic coils 2A and 2B wound respectively around them are inserted in a tubular casing 16 of nonmagnetic material with the armature 4 disposed between the magnets and with the operating rod 3 extended through the central apertures 6A and 6B in the magnets 4.
- the opposite ends of the casing 16 are closed by end plates A and 15B of magnetic material. EAch of the end plates has a cylindrical skirt which surrounds the associated coil, as shown in FIG. 4.
- Lead wires to the coils 2A and 2B are designated 14A and 148, respectively.
- FIG. 5 shows a modified form of the device according to the invention which comprises substantially cylindrical coil-enveloping sleeve 17A and 17B of magnetic material in addition to the elements employed in the device of FIG. 4. Furthermore, in the device of FIG. 5, configurations of the armature and the end plates have been modified with respect to the corresponding elements of FIG. 4.
- the armature 4' employed in FIG. 5 is in the form of a cylinder having an annular projection or rib 4P midway along its axis.
- Each of the magnetically permeable sleeves 17A and 17B surrounds the associated coil and has an inwardly bent terminal portion or flange 17', 17" at its inner end.
- This bent portion of the sleeve permits the quick starting of the armature toward the associated permanent magnet upon the energization of the coil since a part of the lines of magnetic force generated by the energized coil pass through the gap between the central rib l8 and the corresponding flange 17' or 17" also functions as a stop for the armature.
- the structure of FIG. 5 may preferably be used where quick starting of the armature is required.
- the coils 2A and 28 extend axially toward each other, beyond the confronting ends (of like polarity) of the bar magnets IA and IE, to receive part of the central body of armature 4 in a corresponding armature position, this body being coextensive in cross section with the magnets so as to fit inside the coils as clearly shown in FIG. 5.
- the intumed terminations 17, 17'' of sleeves 17A, 17B projecting toward each other on opposite sides of rib 4P beyond the two coils, surround the central body with small annular clearance so that some of the flux passes directly into that body without traversing the rib 4?.
- the spacing of the coils 2A, 2B exceeds the axial length of the armature body, the latter is never enveloped by both coils simultaneously.
- each of the end plates 15A and 15B is provided with an aperture to permit the operating rod to pass through.
- either of the end plates can be deprived of its aperture so that one end of the casing is closed completely, by selecting the length of the operating rod appropriately.
- the completed device was 36 mm. in diameter and 37 mm. in length
- each permanent magnet was 15 mm. in diameter and 8 mm. in length and had a central aperture of 5 mm. in diameter
- each coil had 780 turns (AWG American Wire Gauge No. 30).
- a current of 0.65A was conducted for 20 milliseconds each time to shift the armature with certainty.
- the attraction force clue to excitation of the coil was 5 kg./cm. and the force required to pull away the armature from the permanent magnet was 3 kg./cm..
- the device according to this invention permits to minimize the electric power consumed and the heat generated during operation thereof. Furthermore, the device according to this invention is very simple in construction, inexpensive to manufacture, and reliable in operation under any operational condition.
- the AC power supply 11A, switching means 12A and full-wave rectifier means 13A may be replaced by a combination of a direct current power supply and an electric switch, or further it may be possible to replace the whole arrangement of the full-wave rectifier means 13A and 13B, switching means 12A and 12B, and AC power supply means 11A and 118 by a single DC power supply by employing a single-pole, doublethrow switch which is connected between the electromagnetic coils and the DC power supply and switched selectively between the coil 2A and the coil 2B.
- a bistable electromagnetic device comprising:
- an armature of magnetically penneable material axially movable between said confronting ends, said armature having a central body of a cross section substantially coextensive with that of said magnets provided with a peripheral rib in the midplane of said body projecting radially beyond said confronting ends, the spacing of said coils exceeding the axial length of said body;
- circuit means for the selective energization of either of said coils to reinforce temporarily the magnetic force of the respective magnet for attracting said armature toward same from a position adjacent the opposite magnet.
- terminations are intumed flanges surrounding said body with small clearance.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnets (AREA)
Abstract
An armature secured to an operating rod is located between two permanent magnets so as to be normally held fast to one of these two permanent magnets which are spaced apart and in opposed polarity relationship. Each permanent magnet is provided with an electromagnetic coil wound around it which is adapted, when energized by a pulse of short duration, to produce a magnetic field in the same direction as that of the associated permanent magnet, whereby the armature is driven from a position next to the other permanent magnet to a position adjacent the associated permanent magnet and held onto it by virtue of the magnetic force thereof, without requiring any further application of electric power to maintain the armature in its displaced position.
Description
United States Patent Mikio Komatsu No. 384, Tokiwadai, Hodogaya-ku, Yokohama-shi, Kanagawa-ken, Japan Inventor Appl. No. 23,619
Filed Mar. 30, 1970 Patented Jan. 11,1972
Priority Apr. 3, 1969 Japan 44/25774 SELF-HOLDING ELECTROMAGNETICALLY DRIVEN DEVICE [56] References Cited UNITED STATES PATENTS 3,460,081 8/1969 Tillman 335/234 3,514,674 5/1970 Toshio Ito et al. 317/1555 Primary Examiner-L. T. l-lix Attorney-Karl F. Ross ABSTRACT: An armature secured to an operating rod is located between two permanent magnets so as to be normally held fast to one of these two permanent magnets which are spaced apart and in opposed polarity relationship. Each permanent magnet is provided with an electromagnetic coil wound around it which is adapted, when energized by a pulse of short duration, to produce a magnetic field in the same direction as that of the associated permanent magnet, whereby the armature is driven from a position next to the other permanent magnet to a position adjacent the associated permanent magnet and held onto it by virtue of the magnetic force thereof, without requiring any further application of electric power to maintain the armature in its displaced posi- PATENTED JAN! 1 1972 3534.7 5
This invention relates to a self-holding or bistable electromagnetically driven device used for switching on and off a relay, an electric switch, a valve or the like, and more particularly to a device of this kind wherein an armature secured to an operating rod is driven from a first stable position to a second stable position in response to energization of an electromagnetic coil which is employed to actuate the armature,
' being thereupon held in its second stable or actuated position by means of magnetic force.
DESCRIPTION OF THE PRIOR ART In knownelectromagnetically driven system having an armature secured to a control shaft or an operating rod, the armature is driven to an off-normal position when an electromagnetic coil is energized, and in order to maintain the armature inthis off-normal position it is necessary to apply a constant energizing voltage to the electromagnetic coil. This results in consumption of large electric power and generation of large amount of heat in operation.
Other electromagnetically driven devices are known in which the armature is driven to the shifted position in response to energization of the electromagnetic coil and held magnetically in that position bymeans of residual magnetism retained in .the magnetic circuit of the electromagnetic coil. Systems of this type, however, have the drawback that the magnetic force for maintaining the annature in its alternate position is so weak'that they cannot be used where they would be subjected to vibration or shock, and further in that they are usually complicated in construction and costly to manufacture.
SUMMARY OF THE INVENTION In accordance with this invention, a self-holding electromagnetically driven device is provided which comprises a pair of permanent magnets, preferably in the form of disks, which are spaced. apart and face each other in opposed polarity relationship. Each permanent magnet is provided with a central aperture and has an electromagnetic coil wound around it. An armature, preferably in the form of a disk, is provided between the permanent magnets in aligned relationship therewith. The armature issecured to an operating rod which extends through the central apertures of the permanent magnets. Each electromagnetic coil is adapted, when energized, to produce a magnetic filed in the same direction as that of the associated permanent magnet. The armature has two stable positions, i.e. it is held onto either of the two pennanent magnets by means of magnetic force. With the armature attracted by one permanent magnet, when the electromagnetic coil would around the other permanent magnet is energized by an electric pulse of short duration, the magnetic force produced by the energized coil in cooperation with the magnetic force of the other permanent magnet causes the annature to be pulled toward that other magnet, whereupon the armature is held onto same by virtue of its magnetic force without requiring any further application of electric power to the electromagnetic coil. In this state, when the electromagnetic coil wound around the first permanent magnet is energized by another electric pulse of short duration, a similar operation takes place and the armature is driven from the other permanent magnet to the first one and held fast thereto by means of its magnetic force. Thus, the electromagnetically driven device in accordance with the invention does not require a constant or continuous energization of coils to maintain the armature in the last position into which it is moved, and therefore it can be referred to as a self-holding or bistable device. The device according to the invention can minimize the electric power consumed and the heat generated during operation, and is very simple in construction and reliable in operation.
The other features and advantages of the invention will become apparent from the following description taken in connection with the accompanying drawing in which;
FIG. I shows diagrammatically, partially in vertical section, one embodiment of the self-holding electromagnetically driven device according to the invention together with an'external power source therefor;
FIG. 2 is a top plan view of the device shown in FIG. 1;
FIG. 3 and FIG. 4 are a sectional perspective and a sectional side view of the device, respectively, illustrating how the elements of the device of FIG. I are assembled in a casing in practice; and
FIG. 5 shows a modification of the device in accordance with the invention.
DESCRIPTION OF PREFERRED EMBODIMENTS For the present purpose, the invention is described as it is utilized in a valve device to control the passage of liquid. However, it should be understood that its use is not limited to this function.
As shown in FIGS. 1 and 2, the self-holding electromagnetically driven device in accordance with the invention comprises a pair of permanent magnets 1A and 18 in the form of disks which are facing each other in aligned relationship and .are spaced apart from each other. The permanent magnets 1A and IB have substantially the same diameter, and are disposed in opposed or bucking polarity relationship, as indicated by symbols N and S in FIG. 1. The permanent magnets 1A and 18 have electromagnetic coils 2A and 28 would respectively around the peripheries thereof in the same number of turns. The permanent magnets 1A and 1B are respectively provided with central apertures 6A and 6B, in which a control shaft or an operating rod 3 of metal is slidably mounted. Positioned between the permanent magnets and secured to the operating rod is an armature 4 of magnetic material in the form of a disk. Thus, the armature 4 can rest in either a first position, in which it is held fast to the magnet 1A by virtue of its magnetic force, or a second position, in which it is held fast to the magnet lB by virtue of the magnetic force of the latter. The operating rod 3 is provided at its lower end with a valve body 5 secured thereto. The valve body 5 is a part of valve means 7 comprising a valve housing 8 and a valve aperture 9. Feed pipes 10A and 10B are connected to opposite sides of the housing 8. The valve body 5 is adapted to open the aperture 9 so as to permit the passage of liquid through the valve means 7 when the armature 4 is held fast to the magnet 1A, and to close the aperture 9 so as to interrupt the liquid flow when the armature 4 is held fast to the magnet 1B. The electromagnetic coils 2A and 2B are connected respectively to a pair of alternating current power-supply means 11A and 118 through switching means 12A and 128, respectively, and through fullwave rectifier means 13A and 138, respectively.
Now, the operation of the device shown in FIG. I will be described.
It is supposed that initially the armature 4 is held fast to the magnet 1A as shown in FIG. 1 so that the valve aperture 9 is not closed by the valve body 5. When the switching means 128 is closed for an extremely short time, the coil 23 will be energized by the pulse of rectified current from the rectifying means 13B to reinforce the magnetic field of the magnet 18 so as to cause the armature 4 to be pulled toward the magnet 18 through the inherent magnetic force thereof plus the magnetic force of the coil 28 against the magnetic force of the magnet 1A, whereby the armature 4 will be lowered together with the operating rod 3 and the valve body 5, as a result of which the valve seat 5 will close the aperture 9 to stop the flow of liquid through the valve means 7. In this condition, however, even if the switching means 128 is opened to deenergize the coil 28, the armature 4 will remain held fast to the magnet 18 by virtue of the magnetic force of the magnet 18, thus assuringthat the valve aperture 9 is kept closed. Thereafter, if the other switching means 12A is closed for a short duration, the coil 2A will be energized to reinforce the magnetic field of the magnet 1A so as to cause the armature 4 to be pulled toward the magnet lA through the inherent magnetic force thereof plus the magnetic force of the coil 2A against the magnetic force of the magnet 18, so that the armature 4 will be raised together with the operating rod 3 and the valve body 5, as a result of which the valve body 5 will open the valve aperture 9 to recommence the flow of liquid from the pipe 10A to the pipe 108. In this condition, however, even if the switching means 12A is opened to deenergize the coil 2A, the armature 4 will remain held fast to the magnet 1A by virtue of the magnetic force thereof, thus assuring that the valve is kept open. The number of turns of each electromagnetic coil is selected so that it can produce a magnetic force large enough to attract the armature from the opposite pennanent magnet.
In FIG. I, the operating rod 3 is shown provided only at its lower end with a valve body 5. However, it should be understood that another valve body or any other operating member can be secured to the upper end of the operating rod so that two interrupter devices (valve, switch etc.) are controlled simultaneously.
In FIGS. 3 and 4 l have shown how the elements of the device of FIG. 1 are assembled in practice. The permanent magnets 1A and 18 having electromagnetic coils 2A and 2B wound respectively around them are inserted in a tubular casing 16 of nonmagnetic material with the armature 4 disposed between the magnets and with the operating rod 3 extended through the central apertures 6A and 6B in the magnets 4. The opposite ends of the casing 16 are closed by end plates A and 15B of magnetic material. EAch of the end plates has a cylindrical skirt which surrounds the associated coil, as shown in FIG. 4. Lead wires to the coils 2A and 2B are designated 14A and 148, respectively.
FIG. 5 shows a modified form of the device according to the invention which comprises substantially cylindrical coil- enveloping sleeve 17A and 17B of magnetic material in addition to the elements employed in the device of FIG. 4. Furthermore, in the device of FIG. 5, configurations of the armature and the end plates have been modified with respect to the corresponding elements of FIG. 4. The armature 4' employed in FIG. 5 is in the form of a cylinder having an annular projection or rib 4P midway along its axis. Each of the magnetically permeable sleeves 17A and 17B surrounds the associated coil and has an inwardly bent terminal portion or flange 17', 17" at its inner end. This bent portion of the sleeve permits the quick starting of the armature toward the associated permanent magnet upon the energization of the coil since a part of the lines of magnetic force generated by the energized coil pass through the gap between the central rib l8 and the corresponding flange 17' or 17" also functions as a stop for the armature. Thus, the structure of FIG. 5 may preferably be used where quick starting of the armature is required. It will be noted that the coils 2A and 28 extend axially toward each other, beyond the confronting ends (of like polarity) of the bar magnets IA and IE, to receive part of the central body of armature 4 in a corresponding armature position, this body being coextensive in cross section with the magnets so as to fit inside the coils as clearly shown in FIG. 5. It will also be seen that the intumed terminations 17, 17'' of sleeves 17A, 17B, projecting toward each other on opposite sides of rib 4P beyond the two coils, surround the central body with small annular clearance so that some of the flux passes directly into that body without traversing the rib 4?. As the spacing of the coils 2A, 2B exceeds the axial length of the armature body, the latter is never enveloped by both coils simultaneously.
In the devices of FIGS. 4 and 5, each of the end plates 15A and 15B is provided with an aperture to permit the operating rod to pass through. However, it is to be noted that either of the end plates can be deprived of its aperture so that one end of the casing is closed completely, by selecting the length of the operating rod appropriately.
In one embodiment of the invention which showed good result, the completed device was 36 mm. in diameter and 37 mm. in length, each permanent magnet was 15 mm. in diameter and 8 mm. in length and had a central aperture of 5 mm. in diameter, and each coil had 780 turns (AWG American Wire Gauge No. 30). A current of 0.65A was conducted for 20 milliseconds each time to shift the armature with certainty. The attraction force clue to excitation of the coil was 5 kg./cm. and the force required to pull away the armature from the permanent magnet was 3 kg./cm..
As seen from the foregoing, with the device according to this invention, it is suflicient for each operation of the device to supply energizing DC current to the selected one of the two electromagnetic coils for an extremely short time, and it is assured that the operating member. such as valve body 5, when displaced can be held fast in its alternate position by means of the magnetic force of the permanent magnet. without requiring any further application of electric power. Thus, the device according to this invention permits to minimize the electric power consumed and the heat generated during operation thereof. Furthermore, the device according to this invention is very simple in construction, inexpensive to manufacture, and reliable in operation under any operational condition.
Though this invention has been described in connection with the opening and closing of valve by way of an example, it is to be understood that its application is not restricted to such use. For example, it can be applied to electric apparatus, such as a refrigerator, washing machine, dishwasher, airconditioner, etc., as well as a magnetic switch, magnetic relay, magnetic valve, magnetic clutch, and other magnetic switching units. Furthermore, it is to be understood that many modifications and alterations can be attained without departing from the spirit of the invention. Besides, also with respect to the external power supply, many modification can be possible. For example, the AC power supply 11A, switching means 12A and full-wave rectifier means 13A may be replaced by a combination of a direct current power supply and an electric switch, or further it may be possible to replace the whole arrangement of the full-wave rectifier means 13A and 13B, switching means 12A and 12B, and AC power supply means 11A and 118 by a single DC power supply by employing a single-pole, doublethrow switch which is connected between the electromagnetic coils and the DC power supply and switched selectively between the coil 2A and the coil 2B.
I claim:
1. A bistable electromagnetic device comprising:
a pair of aligned permanent magnets with confronting ends of like polarity spaced apart along an axis;
a pair of electromagnetic coils respectively surrounding said magnets and centered on said axis;
an armature of magnetically penneable material axially movable between said confronting ends, said armature having a central body of a cross section substantially coextensive with that of said magnets provided with a peripheral rib in the midplane of said body projecting radially beyond said confronting ends, the spacing of said coils exceeding the axial length of said body;
a pair of magnetically permeable sleeves respectively surrounding said coils and extending therebeyond toward each other on opposite sides of said rib, said sleeves having confronting terminations constituting abutments for said rib in two alternate positions of said armature in which said body closely adjoins the corresponding magnets;
a pair of magnetically permeable end plates remote from said terminations forming part of a flux path from said magnets into said sleeves;
an operating element connected with said armature for displacement thereby; and
circuit means for the selective energization of either of said coils to reinforce temporarily the magnetic force of the respective magnet for attracting said armature toward same from a position adjacent the opposite magnet.
2. A device as defined in claim 1 wherein said terminations are intumed flanges surrounding said body with small clearance.
3. A device as defined in 'claim I wherein said coils extend 5. A device as defined in claim I wherein at least one of said toward each other beyond said magnets to receive part of said magnets and the adjoining end plate are provided with aligned body in corresponding positions f said a t re. axial bores, said operating element passing from said body 4. A device as defined in claim 1, further comprising a nonthrough Said boresmagnetic cylindrical housing embracing said sleeves. 5
Claims (5)
1. A bistable electromagnetic device comprising: a pair of aligned permanent magnets with confronting ends of like polarity spaced apart along an axis; a pair of electromagnetic coils respectively surrounding said magnets and centered on said axis; an armature of magnetically permeable material axially movable between said confronting ends, said armature having a central body of a cross section substantially coextensive with that of said magnets provided with a peripheral rib in the midplane of said body projecting radially beyond said confronting ends, the spacing of said coils exceeding the axial length of said body; a pair of magnetically permeable sleeves respectively surrounding said coils and extending therebeyond toward each other on opposite sides of said rib, said sleeves having confronting terminations constituting abutments for said rib in two alternate positions of said armature in which said body closely adjoins the corresponding magnets; a pair of magnetically permeable end plates remote from said terminations forming part of a flux path from said magnets into said sleeves; an operating element connected with said armature for displacement thereby; and circuit means for the selective energization of either of said coils to reinforce temporarily the magnetic force of the respective magnet for attracting said armature toward same from a position adjacent the opposite magnet.
2. A device as defined in claim 1 wherein said terminations are inturned flanges surrounding said body with small clearance.
3. A device as defined in claim 1 wherein said coils extend toward each other beyond said magnets to receive part of said body in corresponding positions of said armature.
4. A device as defined in claim 1, further comprising a nonmagnetic cylindrical housing embracing said sleeves.
5. A device as defined in claim 1 wherein at least one of said magnets and the adjoining end plate are provided with aligned axial bores, said operating element passing from said body through said bores.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2577469 | 1969-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3634735A true US3634735A (en) | 1972-01-11 |
Family
ID=12175180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US23619A Expired - Lifetime US3634735A (en) | 1969-04-03 | 1970-03-30 | Self-holding electromagnetically driven device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3634735A (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2460533A1 (en) * | 1979-06-29 | 1981-01-23 | Seim | Linear bistable electromagnetic setting mechanism - uses two pole pieces connected together by magnetic crosspieces to reduce wt. and increase efficiency |
US4263589A (en) * | 1978-07-25 | 1981-04-21 | Jacques Lewiner | Devices for detecting the rupture of an electrical circuit element |
WO1982003944A1 (en) * | 1981-04-30 | 1982-11-11 | Matsushita Hidetoshi | Polarized electromagnetic relay |
US4533890A (en) * | 1984-12-24 | 1985-08-06 | General Motors Corporation | Permanent magnet bistable solenoid actuator |
US4577658A (en) * | 1983-06-30 | 1986-03-25 | Michel Bosteels | Calibrated fluid flow control device |
US4751487A (en) * | 1987-03-16 | 1988-06-14 | Deltrol Corp. | Double acting permanent magnet latching solenoid |
US4847726A (en) * | 1987-12-14 | 1989-07-11 | Eastman Kodak Company | Magnetic actuator |
US4890129A (en) * | 1987-12-14 | 1989-12-26 | Eastman Kodak Company | Exposure control device |
US4905031A (en) * | 1987-12-14 | 1990-02-27 | Eastman Kodak Company | Axial magnetic actuator |
US5034714A (en) * | 1989-11-03 | 1991-07-23 | Westinghouse Electric Corp. | Universal relay |
GB2271668A (en) * | 1992-05-29 | 1994-04-20 | Westinghouse Electric Corp | Bistable magnetic actuator |
GB2278959A (en) * | 1993-05-29 | 1994-12-14 | Richard David Harwood | Bistable latching solenoid actuator |
US5470043A (en) * | 1994-05-26 | 1995-11-28 | Lockheed Idaho Technologies Company | Magnetic latching solenoid |
US5815365A (en) * | 1996-12-03 | 1998-09-29 | Erie Manufacturing Company | Control circuit for a magnetic solenoid in a modulating valve application |
US5889646A (en) * | 1994-08-23 | 1999-03-30 | Bsh Bosch Und Siemens Hausgeraete Gmbh | Circuit configuration and method for triggering at least one electrically triggerable magnet |
US6246561B1 (en) * | 1998-07-31 | 2001-06-12 | Magnetic Revolutions Limited, L.L.C | Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same |
US6262648B1 (en) * | 1997-09-18 | 2001-07-17 | Holec Holland N.V. | Electromagnetic actuator |
US6265956B1 (en) | 1999-12-22 | 2001-07-24 | Magnet-Schultz Of America, Inc. | Permanent magnet latching solenoid |
US20050237140A1 (en) * | 2002-08-02 | 2005-10-27 | Commissariat A L'energie Atomique | Magnetic levitation actuator |
US20060202583A1 (en) * | 2005-03-13 | 2006-09-14 | Shinichirou Takeuchi | Power consumption apparatus making use of vector quantity |
US20070035371A1 (en) * | 2005-06-30 | 2007-02-15 | Hitachi, Ltd. | Electromagnetic actuator, clutch device using it, and power transmission device for automobile |
GB2430686A (en) * | 2005-09-29 | 2007-04-04 | Schlumberger Holdings | Bistable magnetic actuator |
US20070217100A1 (en) * | 2006-03-06 | 2007-09-20 | General Protecht Group, Inc. | Movement mechanism for a ground fault circuit interrupter with automatic pressure balance compensation |
US20120175974A1 (en) * | 2011-01-10 | 2012-07-12 | Robertson Glen A | Compact electromechanical mechanism and devices incorporating the same |
US20160035502A1 (en) * | 2013-03-29 | 2016-02-04 | Xiamen Hongfa Electric Power Controls Co., Ltd. | Magnetic latching relay having asymmetrical solenoid structure |
US9478339B2 (en) | 2015-01-27 | 2016-10-25 | American Axle & Manufacturing, Inc. | Magnetically latching two position actuator and a clutched device having a magnetically latching two position actuator |
US20180017179A1 (en) * | 2016-07-15 | 2018-01-18 | Glen A. Robertson | Dual acting solenoid valve using bi-stable permanent magnet activation for energy efficiency and power versatility |
US20190195383A1 (en) * | 2017-12-22 | 2019-06-27 | Delphi Technologies Ip Limited | Control valve assembly |
US20220115170A1 (en) * | 2020-10-08 | 2022-04-14 | The Swatch Group Research And Development Ltd | Solenoid microactuator with magnetic retraction |
US20220181060A1 (en) * | 2019-03-13 | 2022-06-09 | Tds Co. Ltd | Solenoid |
US11361894B2 (en) * | 2018-03-13 | 2022-06-14 | Husco Automotive Holdings Llc | Bi-stable solenoid with an intermediate condition |
US11375789B2 (en) * | 2014-12-22 | 2022-07-05 | Apple Inc. | Magnetic fastener |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3460081A (en) * | 1967-05-31 | 1969-08-05 | Marotta Valve Corp | Electromagnetic actuator with permanent magnets |
US3514674A (en) * | 1966-05-18 | 1970-05-26 | Mitsubishi Electric Corp | Device for electromagnetically controlling the position off an armature |
-
1970
- 1970-03-30 US US23619A patent/US3634735A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3514674A (en) * | 1966-05-18 | 1970-05-26 | Mitsubishi Electric Corp | Device for electromagnetically controlling the position off an armature |
US3460081A (en) * | 1967-05-31 | 1969-08-05 | Marotta Valve Corp | Electromagnetic actuator with permanent magnets |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4263589A (en) * | 1978-07-25 | 1981-04-21 | Jacques Lewiner | Devices for detecting the rupture of an electrical circuit element |
FR2460533A1 (en) * | 1979-06-29 | 1981-01-23 | Seim | Linear bistable electromagnetic setting mechanism - uses two pole pieces connected together by magnetic crosspieces to reduce wt. and increase efficiency |
WO1982003944A1 (en) * | 1981-04-30 | 1982-11-11 | Matsushita Hidetoshi | Polarized electromagnetic relay |
US4509026A (en) * | 1981-04-30 | 1985-04-02 | Matsushita Electric Works, Ltd. | Polarized electromagnetic relay |
DE3243266C2 (en) * | 1981-04-30 | 1986-06-26 | Sds Relais Ag | Polarized relay |
US4577658A (en) * | 1983-06-30 | 1986-03-25 | Michel Bosteels | Calibrated fluid flow control device |
US4533890A (en) * | 1984-12-24 | 1985-08-06 | General Motors Corporation | Permanent magnet bistable solenoid actuator |
US4751487A (en) * | 1987-03-16 | 1988-06-14 | Deltrol Corp. | Double acting permanent magnet latching solenoid |
US4905031A (en) * | 1987-12-14 | 1990-02-27 | Eastman Kodak Company | Axial magnetic actuator |
US4890129A (en) * | 1987-12-14 | 1989-12-26 | Eastman Kodak Company | Exposure control device |
US4847726A (en) * | 1987-12-14 | 1989-07-11 | Eastman Kodak Company | Magnetic actuator |
US5034714A (en) * | 1989-11-03 | 1991-07-23 | Westinghouse Electric Corp. | Universal relay |
GB2271668A (en) * | 1992-05-29 | 1994-04-20 | Westinghouse Electric Corp | Bistable magnetic actuator |
GB2278959A (en) * | 1993-05-29 | 1994-12-14 | Richard David Harwood | Bistable latching solenoid actuator |
US5470043A (en) * | 1994-05-26 | 1995-11-28 | Lockheed Idaho Technologies Company | Magnetic latching solenoid |
US5889646A (en) * | 1994-08-23 | 1999-03-30 | Bsh Bosch Und Siemens Hausgeraete Gmbh | Circuit configuration and method for triggering at least one electrically triggerable magnet |
US5815365A (en) * | 1996-12-03 | 1998-09-29 | Erie Manufacturing Company | Control circuit for a magnetic solenoid in a modulating valve application |
US6262648B1 (en) * | 1997-09-18 | 2001-07-17 | Holec Holland N.V. | Electromagnetic actuator |
US6246561B1 (en) * | 1998-07-31 | 2001-06-12 | Magnetic Revolutions Limited, L.L.C | Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same |
US6265956B1 (en) | 1999-12-22 | 2001-07-24 | Magnet-Schultz Of America, Inc. | Permanent magnet latching solenoid |
US7142078B2 (en) * | 2002-08-02 | 2006-11-28 | Commissariat A L'energie Atomique | Magnetic levitation actuator |
US20050237140A1 (en) * | 2002-08-02 | 2005-10-27 | Commissariat A L'energie Atomique | Magnetic levitation actuator |
US20060202583A1 (en) * | 2005-03-13 | 2006-09-14 | Shinichirou Takeuchi | Power consumption apparatus making use of vector quantity |
US20070035371A1 (en) * | 2005-06-30 | 2007-02-15 | Hitachi, Ltd. | Electromagnetic actuator, clutch device using it, and power transmission device for automobile |
GB2430686A (en) * | 2005-09-29 | 2007-04-04 | Schlumberger Holdings | Bistable magnetic actuator |
GB2430686B (en) * | 2005-09-29 | 2010-09-29 | Schlumberger Holdings | Actuator |
US20070217100A1 (en) * | 2006-03-06 | 2007-09-20 | General Protecht Group, Inc. | Movement mechanism for a ground fault circuit interrupter with automatic pressure balance compensation |
US7515024B2 (en) * | 2006-03-06 | 2009-04-07 | General Protecht Group, Inc. | Movement mechanism for a ground fault circuit interrupter with automatic pressure balance compensation |
US20120175974A1 (en) * | 2011-01-10 | 2012-07-12 | Robertson Glen A | Compact electromechanical mechanism and devices incorporating the same |
US20160035502A1 (en) * | 2013-03-29 | 2016-02-04 | Xiamen Hongfa Electric Power Controls Co., Ltd. | Magnetic latching relay having asymmetrical solenoid structure |
US9640336B2 (en) * | 2013-03-29 | 2017-05-02 | Xiamen Hongfa Electric Power Controls Co., Ltd. | Magnetic latching relay having asymmetrical solenoid structure |
US11375789B2 (en) * | 2014-12-22 | 2022-07-05 | Apple Inc. | Magnetic fastener |
US9899132B2 (en) | 2015-01-27 | 2018-02-20 | American Axle & Manufacturing, Inc. | Magnetically latching two position actuator and a clutched device having a magnetically latching two position actuator |
US9478339B2 (en) | 2015-01-27 | 2016-10-25 | American Axle & Manufacturing, Inc. | Magnetically latching two position actuator and a clutched device having a magnetically latching two position actuator |
US20180017179A1 (en) * | 2016-07-15 | 2018-01-18 | Glen A. Robertson | Dual acting solenoid valve using bi-stable permanent magnet activation for energy efficiency and power versatility |
US10024453B2 (en) * | 2016-07-15 | 2018-07-17 | Glen A. Robertson | Dual acting solenoid valve using bi-stable permanent magnet activation for energy efficiency and power versatility |
US20190195383A1 (en) * | 2017-12-22 | 2019-06-27 | Delphi Technologies Ip Limited | Control valve assembly |
US11231123B2 (en) * | 2017-12-22 | 2022-01-25 | Delphi Technologies Ip Limited | Control valve assembly with solenoid with two magnets for latching |
US11361894B2 (en) * | 2018-03-13 | 2022-06-14 | Husco Automotive Holdings Llc | Bi-stable solenoid with an intermediate condition |
US20220375672A1 (en) * | 2018-03-13 | 2022-11-24 | Husco Automotive Holdings Llc | Bi-Stable Solenoid With an Intermediate Condition |
US11901120B2 (en) * | 2018-03-13 | 2024-02-13 | Husco Automotive Holdings Llc | Bi-stable solenoid with an intermediate condition |
US20220181060A1 (en) * | 2019-03-13 | 2022-06-09 | Tds Co. Ltd | Solenoid |
US12068107B2 (en) * | 2019-03-13 | 2024-08-20 | Tds Co. Ltd | Solenoid |
US20220115170A1 (en) * | 2020-10-08 | 2022-04-14 | The Swatch Group Research And Development Ltd | Solenoid microactuator with magnetic retraction |
US11651882B2 (en) * | 2020-10-08 | 2023-05-16 | The Swatch Group Research And Development Ltd | Solenoid microactuator with magnetic retraction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3634735A (en) | Self-holding electromagnetically driven device | |
US4538129A (en) | Magnetic flux-shifting actuator | |
US3458769A (en) | Electrically controlled valve | |
US3914723A (en) | Positive action magnetic latching relay | |
US4564046A (en) | Solenoid valve | |
US3728654A (en) | Solenoid operated plunger device | |
US4994776A (en) | Magnetic latching solenoid | |
US1142852A (en) | Electromagnet and solenoid. | |
GB1479503A (en) | Magnetic holding means for an electric switching device | |
US3218523A (en) | Electromagnetic device having a permanent magnet armature | |
US4664355A (en) | Double-acting magnetic valve | |
US2348556A (en) | Magnet structure | |
US4282501A (en) | Bi-directional linear actuator | |
ES2012424A6 (en) | Magnetic valve with permanent magnet closing force. | |
US1606164A (en) | Circuit-controlling device | |
US4737750A (en) | Bistable electrical contactor arrangement | |
US4479162A (en) | High speed reciprocal electromagnetic actuator with cancelled retarding-flux | |
US4236130A (en) | Solenoid actuator having a long stroke | |
US2040405A (en) | Switch structure with means to prevent arcing upon circuit closure | |
US2774920A (en) | Electromagnetic switch arrangement | |
US4467304A (en) | Saturable tandem coil transformer relay | |
US2589574A (en) | Electromagnetic valve | |
US4717900A (en) | Low profile electromagnetic linear motion device | |
US3236964A (en) | Plural armature electromagnetic switch | |
US1596468A (en) | Electromagnetic motor |