US3655607A - Flame-resistant resistor coatings - Google Patents
Flame-resistant resistor coatings Download PDFInfo
- Publication number
- US3655607A US3655607A US652412A US3655607DA US3655607A US 3655607 A US3655607 A US 3655607A US 652412 A US652412 A US 652412A US 3655607D A US3655607D A US 3655607DA US 3655607 A US3655607 A US 3655607A
- Authority
- US
- United States
- Prior art keywords
- flame
- resistor
- coating
- coatings
- resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000576 coating method Methods 0.000 title description 15
- 229920001721 polyimide Polymers 0.000 abstract description 20
- 229920006389 polyphenyl polymer Polymers 0.000 abstract description 19
- 239000004642 Polyimide Substances 0.000 abstract description 11
- -1 ANTIMONYL Chemical class 0.000 abstract description 2
- 239000008199 coating composition Substances 0.000 description 24
- 239000010408 film Substances 0.000 description 22
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 20
- 239000009719 polyimide resin Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000011253 protective coating Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BTAGRXWGMYTPBY-UHFFFAOYSA-N 1,2,3-trichloro-4-(2,3,4-trichlorophenyl)benzene Chemical compound ClC1=C(Cl)C(Cl)=CC=C1C1=CC=C(Cl)C(Cl)=C1Cl BTAGRXWGMYTPBY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 235000012216 bentonite Nutrition 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 125000001880 stiboryl group Chemical group *[Sb](*)(*)=O 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C09D179/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S260/00—Chemistry of carbon compounds
- Y10S260/24—Flameproof
Definitions
- the film resistors containing the protective coatings of the prior art suffer from the further disadvantage that upon severe overload the protective coatings not only burn, but become electrically conductive. This very often results in external arcing and a failure of the resistor to open the circuit in which it is contained. Accordingly, an intensive search has been conducted for a film resistor protective coating which will not burn under severe overload, and also cause the resistor to open the circuit in which it is contained.
- An object of the present invention is to provide a flameresistant organic coating composition suitable for the protection of film resistors.
- a further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which will not burn at the high temperature attained in film resistors upon severe overload.
- a further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which is resistant to burning and which at the same time promotes the destruction of the ented Apr. 11, 1972 BRIEF SUMMARY OF THE INVENTION
- the objects of the present invention are achieved by the provision of a film resistor protective coating composition comprising a polyimide resin containing from about 1% to 60%, preferably from about 2% to about 10% of a chlorinated polyphenyl and from about 1% to about preferably from about 2% to about 10% of antimony trioxide.
- polyimide resins are highly suitable as coating compositions for the protection of film resistors due to their exceptional dielectric properties, their hardness and solvent resistance.
- these-polyimide resins are susceptible to burning, at the high temperatures attained in film resistors due to severe overloads much in the same manner as described above.
- Applicant has found that the addition of from about 1% to about of c h lorinated..polyphenyl and from about 1% to 50% of antimonyftrioxide to a polyimide resin results in a coating composition having vastly improved flame-resistant properties.
- the coating compositions" of the present invention are stable against burning, when resistors containing these coatings are placed under severe overload.
- the coating compositions of the present invention possess the additional property of being somewhat intumescent. This results in the phenomenon that, frequently, upon the film resistor attaining a high temperature due to severe overload, the coating of the present invention will swell and form a protective cocoon. This cocoon adds further to the protective qualities of the coating of the present invention in that it confines the external arcing. No other coating composition has been found which possessess this intumescent property. It is noteworthy that the polyimide resin coatings alone, i.e., without the addition of chlorinated polyphenyl or antimony trioxide, do not possess intumescent properties. Furthermore, the coating compositions are homogeneous and have long pot lives, unlike the heretofore employed flame-resistant coating com-positions.
- polyimide resins suitable as a base material for the coating compositions of the present invention are described in US. Pat. No. 3,179,634. Generally, these cured resins are characterized by a recurring unit having the following structural formula:
- R is a tetravalent aromatic radical, preferably containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring character-' ized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
- duPonts RK-692 which is a polyimide according to the above structural formula wherein R is and wherein R' is Generally, these polyimides are prepared by reacting an appropriate organic diamine with a suitable tetracarboxylic acid dianhydride. This and other processes for the preparation of these polyimides are more specifically described in US. Pat. No. 3,179,634.
- polyimides wherein the degree of polymerization is controlled such that the resin has an inherent viscosity from about 30 to about 90 poises when measured at 25 C. are suitable as base materials for the coating compositions of the present invention.
- the desirable flame-resistant and intumescent properties are imparted to the polyimide resin material by incorporating therein from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide.
- chlorinated polyphenyls are well known in the art, it being preferred that a chlorinated polyphenyl like Aroclor 5460, made by Monsanto, or similar chlorinated polyphenyls having about the same degree of polymerization and degree of chlorination be employed as one of the flame-resistant additives of the present invention.
- Suitable chlorinated polyphenyl resins are those sol under the name Aroclor. These materials are prepared by the chlorination of crude biphenyl and are resinous materials possessing high melting points and containing from 18 to 66 percent chlorine.
- Useful chlorinated polyphenyl resins include Aroclor 1260, Aroclor 1262, Aroclor 1268, Aroclor 1270, Aroclor 4465, Aroclor 5442, Aroclor 2565, and Arclor 5460, the most preferred being the latter, which has a softening point of about 100-105 C.
- chlorinated polyphenyl and antimony trioxide may be effected by any of the well known, conventional methods.
- Film resistors are well known in the art and are generally manufactured as follows.
- a suitable substrate such as glass, after being appropriately sensitized according to methods well known in the art is heated to a high temperature and coated with a thin spray of a solution of stannic chloride.
- the stannic chloride solution Upon contact of the stannic chloride solution with the hot glass surface, the stannic chloride is pyrolized to tin oxide which deposits out as an extremely thin uniform layer on said glass surface.
- This tin oxide layer acts as the resistor material.
- the coating compositions of the present invention are applicable for the protection of any resistor regardless of its method of preparation, composition, shape or structure.
- the coating compositions according to the present invention may be applied to the film resistor by any of the well known coating methods.
- the composition may be solvent sprayed onto the film resistor, or the film resistors may be dip-coated by immersion thereof in a suitable solution of the coating composition.
- the coatings may also be applied by brush or roller coating applications. It is to be further understood that the invention is not limited to any particular method of applying the novel coating compositions of the present invention and that any of the conventional, well known coat- 4 ing methods may be employed to effect the deposition of the flame-resistant coating composition on the resistor.
- Suitable solvents for use in conjunction with the coating compositions of the present invention are any organic liquids capable of dissolving the components of the composition and which are chemically inert with respect thereto.
- Suitable solvents include the liquid dialkylcarboxylamides such as N,N-diethylacetamide and dimethyl sulfoxide, and N-methyl-Z-pyrrolidone.
- coating compositions may be modified with inert pigments, dyes, inorganic and organic fillers as desired.
- inert pigments for example, titanium dioxide, carbon, earth pigments or mixtures thereof may be added to the compositions to provide desired colors.
- Fillers such as asbestos, bentonites, silica, etc. may also be incorporated.
- a stable, intumescent coating composition adapted for coating film resistors which does not burn under electrical overload of the resistor and which confines external electrical arcing consisting essentially of a polyimide resin containing from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide, all percentages being weight percentages of the amount of polyimide resin.
- R is a tetravalent radical containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl groups being attached directly to separate carbon atoms in a ring and each pair of carbonyl groups being attached to adjacent carbon atoms in a ring of the R radical; and wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring characterized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
- a stable coating composition as claimed in claim 3 containing 20% chlorinated polyphenyl containing from 18 to 66% chlorine and 10 percent antimony trioxide.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paints Or Removers (AREA)
- Insulated Conductors (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Details Of Resistors (AREA)
Abstract
FLAME RESISTANT POLYIMIDE RESISTORY COATINGS CONTAINING CHLORINATED POLYPHENYL AND ANTIMONYL TRIOXIDE.
Description
United 1 3,655,607 FLAME-RESISTANT RESISTOR COATINGS Lawrence G. Bockstie, Jr., Bradford, Pa., assignor to Corning Glass Works, Corning, NY.
No Drawing. Filed July 11, 1967, Ser. No. 652,412
Int. Cl. C08g 41/02; C09d /18 US. Cl. 260-33.8 5 Claims ABSTRACT OF THE DISCLOSURE Flame resistant polyimide resistory coatings containing chlorinated polyphenyl and antimonyl trioxide.
BACKGROUND OF THE INVENTION THE PRIOR ART Recently, electrical film resistors have come into wide use. Normally, these film resistors comprise a substrate such as glass, coated with a thin film of resistor material such as tin oxide, for example. Also, it is known in the art to overcoat these film resistors with a protective layer. The prior artis faced with the problem, however, that these protective coatings due to the heat resulting from severe overloads on the film resistor, very often burn. This burning of the resistor coating not only results in the destruction of the resistor itself but, very often, results in damage to adjacent elements in the system in which it is employed. The consequent damage to electrical equipment and systems from this burning of resistor coatings has led to an intensive search for a flame-resistant coating, which will not burn due to the heat arising from severe overloads on the resistor.
The film resistors containing the protective coatings of the prior art suffer from the further disadvantage that upon severe overload the protective coatings not only burn, but become electrically conductive. This very often results in external arcing and a failure of the resistor to open the circuit in which it is contained. Accordingly, an intensive search has been conducted for a film resistor protective coating which will not burn under severe overload, and also cause the resistor to open the circuit in which it is contained.
*It has been proposed to add several conventional flameretardants to film resistor protective coatings. These efforts, however, have consistently met with failure. One drawback common to most of the conventional flame-retardant coatings is the fact that they become electrically conductive when the resistor is severely overloaded. This causes the resistor to burn, promotes severe external arcing and does not permit the resitor to open the circuit in which it is contained. Moreover, many of these conventional flame-retardant coatings were ineffective to inhibit burning at the extremely high temperatures (500-600 C.) attained in film resistors under severe overload,
An object of the present invention is to provide a flameresistant organic coating composition suitable for the protection of film resistors.
A further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which will not burn at the high temperature attained in film resistors upon severe overload.
A further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which is resistant to burning and which at the same time promotes the destruction of the ented Apr. 11, 1972 BRIEF SUMMARY OF THE INVENTION The objects of the present invention are achieved by the provision of a film resistor protective coating composition comprising a polyimide resin containing from about 1% to 60%, preferably from about 2% to about 10% of a chlorinated polyphenyl and from about 1% to about preferably from about 2% to about 10% of antimony trioxide.
It has recently been discovered that polyimide resins are highly suitable as coating compositions for the protection of film resistors due to their exceptional dielectric properties, their hardness and solvent resistance. Unfortunately, these-polyimide resins are susceptible to burning, at the high temperatures attained in film resistors due to severe overloads much in the same manner as described above. Applicant has found that the addition of from about 1% to about of c h lorinated..polyphenyl and from about 1% to 50% of antimonyftrioxide to a polyimide resin results in a coating composition having vastly improved flame-resistant properties. Thus, the coating compositions" of the present invention are stable against burning, when resistors containing these coatings are placed under severe overload.
Moreover, the coating compositions of the present invention possess the additional property of being somewhat intumescent. This results in the phenomenon that, frequently, upon the film resistor attaining a high temperature due to severe overload, the coating of the present invention will swell and form a protective cocoon. This cocoon adds further to the protective qualities of the coating of the present invention in that it confines the external arcing. No other coating composition has been found which possessess this intumescent property. It is noteworthy that the polyimide resin coatings alone, i.e., without the addition of chlorinated polyphenyl or antimony trioxide, do not possess intumescent properties. Furthermore, the coating compositions are homogeneous and have long pot lives, unlike the heretofore employed flame-resistant coating com-positions.
DETAILED DESCIPTION OFTHE INVENTION The polyimide resins suitable as a base material for the coating compositions of the present invention are described in US. Pat. No. 3,179,634. Generally, these cured resins are characterized by a recurring unit having the following structural formula:
wherein R is a tetravalent aromatic radical, preferably containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring character-' ized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
The most preferred of the polyimides is duPonts RK-692, which is a polyimide according to the above structural formula wherein R is and wherein R' is Generally, these polyimides are prepared by reacting an appropriate organic diamine with a suitable tetracarboxylic acid dianhydride. This and other processes for the preparation of these polyimides are more specifically described in US. Pat. No. 3,179,634.
Generally, polyimides wherein the degree of polymerization is controlled such that the resin has an inherent viscosity from about 30 to about 90 poises when measured at 25 C. are suitable as base materials for the coating compositions of the present invention.
As mentioned above, the desirable flame-resistant and intumescent properties are imparted to the polyimide resin material by incorporating therein from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide.
The chlorinated polyphenyls are well known in the art, it being preferred that a chlorinated polyphenyl like Aroclor 5460, made by Monsanto, or similar chlorinated polyphenyls having about the same degree of polymerization and degree of chlorination be employed as one of the flame-resistant additives of the present invention.
Suitable chlorinated polyphenyl resins are those sol under the name Aroclor. These materials are prepared by the chlorination of crude biphenyl and are resinous materials possessing high melting points and containing from 18 to 66 percent chlorine. Useful chlorinated polyphenyl resins include Aroclor 1260, Aroclor 1262, Aroclor 1268, Aroclor 1270, Aroclor 4465, Aroclor 5442, Aroclor 2565, and Arclor 5460, the most preferred being the latter, which has a softening point of about 100-105 C.
The incorporation of chlorinated polyphenyl and antimony trioxide into the polyimide base material may be effected by any of the well known, conventional methods.
Film resistors are well known in the art and are generally manufactured as follows. A suitable substrate, such as glass, after being appropriately sensitized according to methods well known in the art is heated to a high temperature and coated with a thin spray of a solution of stannic chloride. Upon contact of the stannic chloride solution with the hot glass surface, the stannic chloride is pyrolized to tin oxide which deposits out as an extremely thin uniform layer on said glass surface. This tin oxide layer acts as the resistor material. It is to be understood, however, that the coating compositions of the present invention are applicable for the protection of any resistor regardless of its method of preparation, composition, shape or structure.
The coating compositions according to the present invention may be applied to the film resistor by any of the well known coating methods. For example, the composition may be solvent sprayed onto the film resistor, or the film resistors may be dip-coated by immersion thereof in a suitable solution of the coating composition. The coatings may also be applied by brush or roller coating applications. It is to be further understood that the invention is not limited to any particular method of applying the novel coating compositions of the present invention and that any of the conventional, well known coat- 4 ing methods may be employed to effect the deposition of the flame-resistant coating composition on the resistor.
Suitable solvents for use in conjunction with the coating compositions of the present invention are any organic liquids capable of dissolving the components of the composition and which are chemically inert with respect thereto. Suitable solvents include the liquid dialkylcarboxylamides such as N,N-diethylacetamide and dimethyl sulfoxide, and N-methyl-Z-pyrrolidone.
It should also be understood that the coating compositions may be modified with inert pigments, dyes, inorganic and organic fillers as desired. For example, titanium dioxide, carbon, earth pigments or mixtures thereof may be added to the compositions to provide desired colors. Fillers such as asbestos, bentonites, silica, etc. may also be incorporated.
The invention is more specifically explained by the following illustrative examples which are not necessarily intended to be limiting. In these examples, all parts and percentages are by weight except as noted.
EXAMPLE I Parts Polyimide (Du Pont RK-692) Chlorinated Polyphenyl (Monsanto Aroclor 5460) 10 Antimony Trioxide 5 A dimethylformarnide solution of the above composition was solvent sprayed onto a conventional film resistor. The resistor was subjected to a severe electrical overload resulting in a body temperature of between 500 and 600 C. No burning, smoking'or flaming of the coating EXAMPLE II Parts Polyimide (Du Pont RK-692) 100 Chlorinated polyphenyl (Monsanto Aroclor 5460)-- 20 Antimony trioxide 10 EXAMPLE 111 Parts Polyimide (Du Pont 'RK-692) 100 Chlorinated polyphenyl (Monsanto Aroclor 5460) -2 10 Antimony trioxide 10 The invention herein disclosed may be variously modified and embodied within the scope of the following claims.
What is claimed is:
1. A stable, intumescent coating composition adapted for coating film resistors which does not burn under electrical overload of the resistor and which confines external electrical arcing consisting essentially of a polyimide resin containing from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide, all percentages being weight percentages of the amount of polyimide resin.
2. A stable coating composition as claimed in claim 1 wherein said resin contains from about 2% to about 10% of a chlorinated polyphenyl and from about 2% to about 10% of antimony trioxide.
3. A stable coating composition as claimed in claim 1 wherein said resin is one having the recurring unit:
i E E i wherein R is a tetravalent radical containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl groups being attached directly to separate carbon atoms in a ring and each pair of carbonyl groups being attached to adjacent carbon atoms in a ring of the R radical; and wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring characterized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
4. A stable coating composition as claimed in claim 1 wherein said chlorinated polyphenyl is one containing from 18 to 66 percent chlorine.
5. A stable coating composition as claimed in claim 3 containing 20% chlorinated polyphenyl containing from 18 to 66% chlorine and 10 percent antimony trioxide..
References Cited UNITED STATES PATENTS 2,044,176 6/1936 McCulloch 10615 FP 3,034,939 5/1962 Newkirk et al. 106-15 FP 3,179,634 4/1965 Edwards 26078 TF 3,333,970 8/1967 Green 106-15 FP OTHER REFERENCES Uses of Antimony Compoundsas Fire & Flame Retardants (Metal & Thermit Corp., Rahway, NJ.) (1962) title page, and pages 3, 5, 6, 13 & 18.
Miles.et al. -P0lymer Technology(Temple Press) (London) (1965) pp. 342-343. T
Encyclopedia of Polymer Science and Technology, vol. 7, pp. 1;" 17, 18, and 58 (Interscience) (N.Y.) (1967).
MORRIS LIEBMAN, Primary Examiner H. H. FLETCHER, Assistant Examiner US. Cl. X.R.
106--15 FP; 117201,'229; 260-37 N, 78 TF, Dig. 24
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US65241267A | 1967-07-11 | 1967-07-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3655607A true US3655607A (en) | 1972-04-11 |
Family
ID=24616740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US652412A Expired - Lifetime US3655607A (en) | 1967-07-11 | 1967-07-11 | Flame-resistant resistor coatings |
Country Status (7)
Country | Link |
---|---|
US (1) | US3655607A (en) |
DE (1) | DE1769619A1 (en) |
DK (1) | DK115562B (en) |
ES (1) | ES356007A1 (en) |
FR (1) | FR1574424A (en) |
GB (1) | GB1235710A (en) |
NL (1) | NL6802533A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928673A (en) * | 1973-08-16 | 1975-12-23 | Ball Brothers Res Corp | Release and lubricating composition for glass molds and method and apparatus utilizing such composition |
US4600606A (en) * | 1979-04-18 | 1986-07-15 | White Chemical Corporation | Process for rendering non-thermoplastic fibrous materials flame resistant to molten materials by application thereto of a flame resistant composition, and related articles and compositions |
US4623583A (en) * | 1979-04-18 | 1986-11-18 | White Chemical Corporation | Flame retardant textile fabrics |
-
1967
- 1967-07-11 US US652412A patent/US3655607A/en not_active Expired - Lifetime
-
1968
- 1968-02-22 NL NL6802533A patent/NL6802533A/xx unknown
- 1968-06-19 DE DE19681769619 patent/DE1769619A1/en active Pending
- 1968-07-02 ES ES356007A patent/ES356007A1/en not_active Expired
- 1968-07-03 FR FR1574424D patent/FR1574424A/fr not_active Expired
- 1968-07-08 GB GB32415/68A patent/GB1235710A/en not_active Expired
- 1968-07-10 DK DK338168AA patent/DK115562B/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3928673A (en) * | 1973-08-16 | 1975-12-23 | Ball Brothers Res Corp | Release and lubricating composition for glass molds and method and apparatus utilizing such composition |
US4600606A (en) * | 1979-04-18 | 1986-07-15 | White Chemical Corporation | Process for rendering non-thermoplastic fibrous materials flame resistant to molten materials by application thereto of a flame resistant composition, and related articles and compositions |
US4623583A (en) * | 1979-04-18 | 1986-11-18 | White Chemical Corporation | Flame retardant textile fabrics |
Also Published As
Publication number | Publication date |
---|---|
DK115562B (en) | 1969-10-20 |
FR1574424A (en) | 1969-07-11 |
DE1769619A1 (en) | 1971-07-01 |
GB1235710A (en) | 1971-06-16 |
NL6802533A (en) | 1969-01-14 |
ES356007A1 (en) | 1969-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2258222A (en) | Methyl aryl silicones and insulated conductors and other products utilizing the same | |
US2686738A (en) | Dispersion of polymeric trifluorochloroethylene, method of preparing said dispersion, and method of coating a base therewith | |
US4578427A (en) | Coating resin composition | |
US2258221A (en) | Aroxy silicones and insulated conductors and other products utilizing the same | |
US3922442A (en) | Flame retardant compositions | |
US3804669A (en) | Flame-resistant resistor coatings | |
US4098756A (en) | Fluoropolymer primer compositions | |
US3418267A (en) | Flame-resistant polyamides and process thereof | |
US3803103A (en) | Polyimides from dimer diamines and electrical insulation | |
US3104985A (en) | Conducting polymer compositions | |
US3741929A (en) | Inorganic flameproofing composition for organic materials | |
US2891033A (en) | Process for the preparation of flameretardant silicone rubber and composition thereof | |
DE69005936T2 (en) | Processable, halogen-free and low-smoke wire coating compound based on silicone imide. | |
DE69733045T2 (en) | Antistatic aromatic polyimide film | |
US3655607A (en) | Flame-resistant resistor coatings | |
US2522501A (en) | Vinyl diaryl ether polymers | |
US3669738A (en) | Polyester coated wire | |
US3100136A (en) | Method of making polyethylene-insulated power cables | |
US4447572A (en) | Fire retardant polyamide | |
US4212914A (en) | Electroinsulating material | |
US4170686A (en) | Substrates and articles of manufacture incorporating a fluoropolymer primer coating | |
US3788997A (en) | Resistance material and electrical resistor made therefrom | |
US2624777A (en) | Insulated electrical conductor | |
US2775569A (en) | Dispersion of fluorochlorocarbon polymers | |
US3440215A (en) | Aromatic polyimides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VISHAY INTERTECHNOLOGY, INC., 63 LINCOLN HIGHWAY, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED;ASSIGNOR:CORNING GLASS WORKS;REEL/FRAME:004821/0304 Effective date: 19871110 Owner name: VISHAY INTERTECHNOLOGY, INC.,PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORNING GLASS WORKS;REEL/FRAME:004821/0304 Effective date: 19871110 |