US3655607A - Flame-resistant resistor coatings - Google Patents

Flame-resistant resistor coatings Download PDF

Info

Publication number
US3655607A
US3655607A US652412A US3655607DA US3655607A US 3655607 A US3655607 A US 3655607A US 652412 A US652412 A US 652412A US 3655607D A US3655607D A US 3655607DA US 3655607 A US3655607 A US 3655607A
Authority
US
United States
Prior art keywords
flame
resistor
coating
coatings
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US652412A
Inventor
Lawrence G Bockstie Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Intertechnology Inc
Original Assignee
Corning Glass Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Glass Works filed Critical Corning Glass Works
Application granted granted Critical
Publication of US3655607A publication Critical patent/US3655607A/en
Assigned to VISHAY INTERTECHNOLOGY, INC. reassignment VISHAY INTERTECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CORNING GLASS WORKS
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S260/00Chemistry of carbon compounds
    • Y10S260/24Flameproof

Definitions

  • the film resistors containing the protective coatings of the prior art suffer from the further disadvantage that upon severe overload the protective coatings not only burn, but become electrically conductive. This very often results in external arcing and a failure of the resistor to open the circuit in which it is contained. Accordingly, an intensive search has been conducted for a film resistor protective coating which will not burn under severe overload, and also cause the resistor to open the circuit in which it is contained.
  • An object of the present invention is to provide a flameresistant organic coating composition suitable for the protection of film resistors.
  • a further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which will not burn at the high temperature attained in film resistors upon severe overload.
  • a further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which is resistant to burning and which at the same time promotes the destruction of the ented Apr. 11, 1972 BRIEF SUMMARY OF THE INVENTION
  • the objects of the present invention are achieved by the provision of a film resistor protective coating composition comprising a polyimide resin containing from about 1% to 60%, preferably from about 2% to about 10% of a chlorinated polyphenyl and from about 1% to about preferably from about 2% to about 10% of antimony trioxide.
  • polyimide resins are highly suitable as coating compositions for the protection of film resistors due to their exceptional dielectric properties, their hardness and solvent resistance.
  • these-polyimide resins are susceptible to burning, at the high temperatures attained in film resistors due to severe overloads much in the same manner as described above.
  • Applicant has found that the addition of from about 1% to about of c h lorinated..polyphenyl and from about 1% to 50% of antimonyftrioxide to a polyimide resin results in a coating composition having vastly improved flame-resistant properties.
  • the coating compositions" of the present invention are stable against burning, when resistors containing these coatings are placed under severe overload.
  • the coating compositions of the present invention possess the additional property of being somewhat intumescent. This results in the phenomenon that, frequently, upon the film resistor attaining a high temperature due to severe overload, the coating of the present invention will swell and form a protective cocoon. This cocoon adds further to the protective qualities of the coating of the present invention in that it confines the external arcing. No other coating composition has been found which possessess this intumescent property. It is noteworthy that the polyimide resin coatings alone, i.e., without the addition of chlorinated polyphenyl or antimony trioxide, do not possess intumescent properties. Furthermore, the coating compositions are homogeneous and have long pot lives, unlike the heretofore employed flame-resistant coating com-positions.
  • polyimide resins suitable as a base material for the coating compositions of the present invention are described in US. Pat. No. 3,179,634. Generally, these cured resins are characterized by a recurring unit having the following structural formula:
  • R is a tetravalent aromatic radical, preferably containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring character-' ized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
  • duPonts RK-692 which is a polyimide according to the above structural formula wherein R is and wherein R' is Generally, these polyimides are prepared by reacting an appropriate organic diamine with a suitable tetracarboxylic acid dianhydride. This and other processes for the preparation of these polyimides are more specifically described in US. Pat. No. 3,179,634.
  • polyimides wherein the degree of polymerization is controlled such that the resin has an inherent viscosity from about 30 to about 90 poises when measured at 25 C. are suitable as base materials for the coating compositions of the present invention.
  • the desirable flame-resistant and intumescent properties are imparted to the polyimide resin material by incorporating therein from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide.
  • chlorinated polyphenyls are well known in the art, it being preferred that a chlorinated polyphenyl like Aroclor 5460, made by Monsanto, or similar chlorinated polyphenyls having about the same degree of polymerization and degree of chlorination be employed as one of the flame-resistant additives of the present invention.
  • Suitable chlorinated polyphenyl resins are those sol under the name Aroclor. These materials are prepared by the chlorination of crude biphenyl and are resinous materials possessing high melting points and containing from 18 to 66 percent chlorine.
  • Useful chlorinated polyphenyl resins include Aroclor 1260, Aroclor 1262, Aroclor 1268, Aroclor 1270, Aroclor 4465, Aroclor 5442, Aroclor 2565, and Arclor 5460, the most preferred being the latter, which has a softening point of about 100-105 C.
  • chlorinated polyphenyl and antimony trioxide may be effected by any of the well known, conventional methods.
  • Film resistors are well known in the art and are generally manufactured as follows.
  • a suitable substrate such as glass, after being appropriately sensitized according to methods well known in the art is heated to a high temperature and coated with a thin spray of a solution of stannic chloride.
  • the stannic chloride solution Upon contact of the stannic chloride solution with the hot glass surface, the stannic chloride is pyrolized to tin oxide which deposits out as an extremely thin uniform layer on said glass surface.
  • This tin oxide layer acts as the resistor material.
  • the coating compositions of the present invention are applicable for the protection of any resistor regardless of its method of preparation, composition, shape or structure.
  • the coating compositions according to the present invention may be applied to the film resistor by any of the well known coating methods.
  • the composition may be solvent sprayed onto the film resistor, or the film resistors may be dip-coated by immersion thereof in a suitable solution of the coating composition.
  • the coatings may also be applied by brush or roller coating applications. It is to be further understood that the invention is not limited to any particular method of applying the novel coating compositions of the present invention and that any of the conventional, well known coat- 4 ing methods may be employed to effect the deposition of the flame-resistant coating composition on the resistor.
  • Suitable solvents for use in conjunction with the coating compositions of the present invention are any organic liquids capable of dissolving the components of the composition and which are chemically inert with respect thereto.
  • Suitable solvents include the liquid dialkylcarboxylamides such as N,N-diethylacetamide and dimethyl sulfoxide, and N-methyl-Z-pyrrolidone.
  • coating compositions may be modified with inert pigments, dyes, inorganic and organic fillers as desired.
  • inert pigments for example, titanium dioxide, carbon, earth pigments or mixtures thereof may be added to the compositions to provide desired colors.
  • Fillers such as asbestos, bentonites, silica, etc. may also be incorporated.
  • a stable, intumescent coating composition adapted for coating film resistors which does not burn under electrical overload of the resistor and which confines external electrical arcing consisting essentially of a polyimide resin containing from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide, all percentages being weight percentages of the amount of polyimide resin.
  • R is a tetravalent radical containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl groups being attached directly to separate carbon atoms in a ring and each pair of carbonyl groups being attached to adjacent carbon atoms in a ring of the R radical; and wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring characterized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
  • a stable coating composition as claimed in claim 3 containing 20% chlorinated polyphenyl containing from 18 to 66% chlorine and 10 percent antimony trioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Details Of Resistors (AREA)

Abstract

FLAME RESISTANT POLYIMIDE RESISTORY COATINGS CONTAINING CHLORINATED POLYPHENYL AND ANTIMONYL TRIOXIDE.

Description

United 1 3,655,607 FLAME-RESISTANT RESISTOR COATINGS Lawrence G. Bockstie, Jr., Bradford, Pa., assignor to Corning Glass Works, Corning, NY.
No Drawing. Filed July 11, 1967, Ser. No. 652,412
Int. Cl. C08g 41/02; C09d /18 US. Cl. 260-33.8 5 Claims ABSTRACT OF THE DISCLOSURE Flame resistant polyimide resistory coatings containing chlorinated polyphenyl and antimonyl trioxide.
BACKGROUND OF THE INVENTION THE PRIOR ART Recently, electrical film resistors have come into wide use. Normally, these film resistors comprise a substrate such as glass, coated with a thin film of resistor material such as tin oxide, for example. Also, it is known in the art to overcoat these film resistors with a protective layer. The prior artis faced with the problem, however, that these protective coatings due to the heat resulting from severe overloads on the film resistor, very often burn. This burning of the resistor coating not only results in the destruction of the resistor itself but, very often, results in damage to adjacent elements in the system in which it is employed. The consequent damage to electrical equipment and systems from this burning of resistor coatings has led to an intensive search for a flame-resistant coating, which will not burn due to the heat arising from severe overloads on the resistor.
The film resistors containing the protective coatings of the prior art suffer from the further disadvantage that upon severe overload the protective coatings not only burn, but become electrically conductive. This very often results in external arcing and a failure of the resistor to open the circuit in which it is contained. Accordingly, an intensive search has been conducted for a film resistor protective coating which will not burn under severe overload, and also cause the resistor to open the circuit in which it is contained.
*It has been proposed to add several conventional flameretardants to film resistor protective coatings. These efforts, however, have consistently met with failure. One drawback common to most of the conventional flame-retardant coatings is the fact that they become electrically conductive when the resistor is severely overloaded. This causes the resistor to burn, promotes severe external arcing and does not permit the resitor to open the circuit in which it is contained. Moreover, many of these conventional flame-retardant coatings were ineffective to inhibit burning at the extremely high temperatures (500-600 C.) attained in film resistors under severe overload,
An object of the present invention is to provide a flameresistant organic coating composition suitable for the protection of film resistors.
A further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which will not burn at the high temperature attained in film resistors upon severe overload.
A further object of the present invention is to provide a flame-resistant coating composition suitable for the protection of film resistors which is resistant to burning and which at the same time promotes the destruction of the ented Apr. 11, 1972 BRIEF SUMMARY OF THE INVENTION The objects of the present invention are achieved by the provision of a film resistor protective coating composition comprising a polyimide resin containing from about 1% to 60%, preferably from about 2% to about 10% of a chlorinated polyphenyl and from about 1% to about preferably from about 2% to about 10% of antimony trioxide.
It has recently been discovered that polyimide resins are highly suitable as coating compositions for the protection of film resistors due to their exceptional dielectric properties, their hardness and solvent resistance. Unfortunately, these-polyimide resins are susceptible to burning, at the high temperatures attained in film resistors due to severe overloads much in the same manner as described above. Applicant has found that the addition of from about 1% to about of c h lorinated..polyphenyl and from about 1% to 50% of antimonyftrioxide to a polyimide resin results in a coating composition having vastly improved flame-resistant properties. Thus, the coating compositions" of the present invention are stable against burning, when resistors containing these coatings are placed under severe overload.
Moreover, the coating compositions of the present invention possess the additional property of being somewhat intumescent. This results in the phenomenon that, frequently, upon the film resistor attaining a high temperature due to severe overload, the coating of the present invention will swell and form a protective cocoon. This cocoon adds further to the protective qualities of the coating of the present invention in that it confines the external arcing. No other coating composition has been found which possessess this intumescent property. It is noteworthy that the polyimide resin coatings alone, i.e., without the addition of chlorinated polyphenyl or antimony trioxide, do not possess intumescent properties. Furthermore, the coating compositions are homogeneous and have long pot lives, unlike the heretofore employed flame-resistant coating com-positions.
DETAILED DESCIPTION OFTHE INVENTION The polyimide resins suitable as a base material for the coating compositions of the present invention are described in US. Pat. No. 3,179,634. Generally, these cured resins are characterized by a recurring unit having the following structural formula:
wherein R is a tetravalent aromatic radical, preferably containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring character-' ized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
The most preferred of the polyimides is duPonts RK-692, which is a polyimide according to the above structural formula wherein R is and wherein R' is Generally, these polyimides are prepared by reacting an appropriate organic diamine with a suitable tetracarboxylic acid dianhydride. This and other processes for the preparation of these polyimides are more specifically described in US. Pat. No. 3,179,634.
Generally, polyimides wherein the degree of polymerization is controlled such that the resin has an inherent viscosity from about 30 to about 90 poises when measured at 25 C. are suitable as base materials for the coating compositions of the present invention.
As mentioned above, the desirable flame-resistant and intumescent properties are imparted to the polyimide resin material by incorporating therein from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide.
The chlorinated polyphenyls are well known in the art, it being preferred that a chlorinated polyphenyl like Aroclor 5460, made by Monsanto, or similar chlorinated polyphenyls having about the same degree of polymerization and degree of chlorination be employed as one of the flame-resistant additives of the present invention.
Suitable chlorinated polyphenyl resins are those sol under the name Aroclor. These materials are prepared by the chlorination of crude biphenyl and are resinous materials possessing high melting points and containing from 18 to 66 percent chlorine. Useful chlorinated polyphenyl resins include Aroclor 1260, Aroclor 1262, Aroclor 1268, Aroclor 1270, Aroclor 4465, Aroclor 5442, Aroclor 2565, and Arclor 5460, the most preferred being the latter, which has a softening point of about 100-105 C.
The incorporation of chlorinated polyphenyl and antimony trioxide into the polyimide base material may be effected by any of the well known, conventional methods.
Film resistors are well known in the art and are generally manufactured as follows. A suitable substrate, such as glass, after being appropriately sensitized according to methods well known in the art is heated to a high temperature and coated with a thin spray of a solution of stannic chloride. Upon contact of the stannic chloride solution with the hot glass surface, the stannic chloride is pyrolized to tin oxide which deposits out as an extremely thin uniform layer on said glass surface. This tin oxide layer acts as the resistor material. It is to be understood, however, that the coating compositions of the present invention are applicable for the protection of any resistor regardless of its method of preparation, composition, shape or structure.
The coating compositions according to the present invention may be applied to the film resistor by any of the well known coating methods. For example, the composition may be solvent sprayed onto the film resistor, or the film resistors may be dip-coated by immersion thereof in a suitable solution of the coating composition. The coatings may also be applied by brush or roller coating applications. It is to be further understood that the invention is not limited to any particular method of applying the novel coating compositions of the present invention and that any of the conventional, well known coat- 4 ing methods may be employed to effect the deposition of the flame-resistant coating composition on the resistor.
Suitable solvents for use in conjunction with the coating compositions of the present invention are any organic liquids capable of dissolving the components of the composition and which are chemically inert with respect thereto. Suitable solvents include the liquid dialkylcarboxylamides such as N,N-diethylacetamide and dimethyl sulfoxide, and N-methyl-Z-pyrrolidone.
It should also be understood that the coating compositions may be modified with inert pigments, dyes, inorganic and organic fillers as desired. For example, titanium dioxide, carbon, earth pigments or mixtures thereof may be added to the compositions to provide desired colors. Fillers such as asbestos, bentonites, silica, etc. may also be incorporated.
The invention is more specifically explained by the following illustrative examples which are not necessarily intended to be limiting. In these examples, all parts and percentages are by weight except as noted.
EXAMPLE I Parts Polyimide (Du Pont RK-692) Chlorinated Polyphenyl (Monsanto Aroclor 5460) 10 Antimony Trioxide 5 A dimethylformarnide solution of the above composition was solvent sprayed onto a conventional film resistor. The resistor was subjected to a severe electrical overload resulting in a body temperature of between 500 and 600 C. No burning, smoking'or flaming of the coating EXAMPLE II Parts Polyimide (Du Pont RK-692) 100 Chlorinated polyphenyl (Monsanto Aroclor 5460)-- 20 Antimony trioxide 10 EXAMPLE 111 Parts Polyimide (Du Pont 'RK-692) 100 Chlorinated polyphenyl (Monsanto Aroclor 5460) -2 10 Antimony trioxide 10 The invention herein disclosed may be variously modified and embodied within the scope of the following claims.
What is claimed is:
1. A stable, intumescent coating composition adapted for coating film resistors which does not burn under electrical overload of the resistor and which confines external electrical arcing consisting essentially of a polyimide resin containing from about 1% to about 60% of a chlorinated polyphenyl and from about 1% to about 50% of antimony trioxide, all percentages being weight percentages of the amount of polyimide resin.
2. A stable coating composition as claimed in claim 1 wherein said resin contains from about 2% to about 10% of a chlorinated polyphenyl and from about 2% to about 10% of antimony trioxide.
3. A stable coating composition as claimed in claim 1 wherein said resin is one having the recurring unit:
i E E i wherein R is a tetravalent radical containing at least one ring of six carbon atoms, said ring characterized by benzenoid unsaturation, the four carbonyl groups being attached directly to separate carbon atoms in a ring and each pair of carbonyl groups being attached to adjacent carbon atoms in a ring of the R radical; and wherein R is a divalent benzenoid radical containing at least two rings of six carbon atoms, each ring characterized by benzenoid unsaturation, and in which no more than one of the valence bonds is located on any one of said rings of said R radical.
4. A stable coating composition as claimed in claim 1 wherein said chlorinated polyphenyl is one containing from 18 to 66 percent chlorine.
5. A stable coating composition as claimed in claim 3 containing 20% chlorinated polyphenyl containing from 18 to 66% chlorine and 10 percent antimony trioxide..
References Cited UNITED STATES PATENTS 2,044,176 6/1936 McCulloch 10615 FP 3,034,939 5/1962 Newkirk et al. 106-15 FP 3,179,634 4/1965 Edwards 26078 TF 3,333,970 8/1967 Green 106-15 FP OTHER REFERENCES Uses of Antimony Compoundsas Fire & Flame Retardants (Metal & Thermit Corp., Rahway, NJ.) (1962) title page, and pages 3, 5, 6, 13 & 18.
Miles.et al. -P0lymer Technology(Temple Press) (London) (1965) pp. 342-343. T
Encyclopedia of Polymer Science and Technology, vol. 7, pp. 1;" 17, 18, and 58 (Interscience) (N.Y.) (1967).
MORRIS LIEBMAN, Primary Examiner H. H. FLETCHER, Assistant Examiner US. Cl. X.R.
106--15 FP; 117201,'229; 260-37 N, 78 TF, Dig. 24
US652412A 1967-07-11 1967-07-11 Flame-resistant resistor coatings Expired - Lifetime US3655607A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US65241267A 1967-07-11 1967-07-11

Publications (1)

Publication Number Publication Date
US3655607A true US3655607A (en) 1972-04-11

Family

ID=24616740

Family Applications (1)

Application Number Title Priority Date Filing Date
US652412A Expired - Lifetime US3655607A (en) 1967-07-11 1967-07-11 Flame-resistant resistor coatings

Country Status (7)

Country Link
US (1) US3655607A (en)
DE (1) DE1769619A1 (en)
DK (1) DK115562B (en)
ES (1) ES356007A1 (en)
FR (1) FR1574424A (en)
GB (1) GB1235710A (en)
NL (1) NL6802533A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928673A (en) * 1973-08-16 1975-12-23 Ball Brothers Res Corp Release and lubricating composition for glass molds and method and apparatus utilizing such composition
US4600606A (en) * 1979-04-18 1986-07-15 White Chemical Corporation Process for rendering non-thermoplastic fibrous materials flame resistant to molten materials by application thereto of a flame resistant composition, and related articles and compositions
US4623583A (en) * 1979-04-18 1986-11-18 White Chemical Corporation Flame retardant textile fabrics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928673A (en) * 1973-08-16 1975-12-23 Ball Brothers Res Corp Release and lubricating composition for glass molds and method and apparatus utilizing such composition
US4600606A (en) * 1979-04-18 1986-07-15 White Chemical Corporation Process for rendering non-thermoplastic fibrous materials flame resistant to molten materials by application thereto of a flame resistant composition, and related articles and compositions
US4623583A (en) * 1979-04-18 1986-11-18 White Chemical Corporation Flame retardant textile fabrics

Also Published As

Publication number Publication date
DK115562B (en) 1969-10-20
FR1574424A (en) 1969-07-11
DE1769619A1 (en) 1971-07-01
GB1235710A (en) 1971-06-16
NL6802533A (en) 1969-01-14
ES356007A1 (en) 1969-12-16

Similar Documents

Publication Publication Date Title
US2258222A (en) Methyl aryl silicones and insulated conductors and other products utilizing the same
US2686738A (en) Dispersion of polymeric trifluorochloroethylene, method of preparing said dispersion, and method of coating a base therewith
US4578427A (en) Coating resin composition
US2258221A (en) Aroxy silicones and insulated conductors and other products utilizing the same
US3922442A (en) Flame retardant compositions
US3804669A (en) Flame-resistant resistor coatings
US4098756A (en) Fluoropolymer primer compositions
US3418267A (en) Flame-resistant polyamides and process thereof
US3803103A (en) Polyimides from dimer diamines and electrical insulation
US3104985A (en) Conducting polymer compositions
US3741929A (en) Inorganic flameproofing composition for organic materials
US2891033A (en) Process for the preparation of flameretardant silicone rubber and composition thereof
DE69005936T2 (en) Processable, halogen-free and low-smoke wire coating compound based on silicone imide.
DE69733045T2 (en) Antistatic aromatic polyimide film
US3655607A (en) Flame-resistant resistor coatings
US2522501A (en) Vinyl diaryl ether polymers
US3669738A (en) Polyester coated wire
US3100136A (en) Method of making polyethylene-insulated power cables
US4447572A (en) Fire retardant polyamide
US4212914A (en) Electroinsulating material
US4170686A (en) Substrates and articles of manufacture incorporating a fluoropolymer primer coating
US3788997A (en) Resistance material and electrical resistor made therefrom
US2624777A (en) Insulated electrical conductor
US2775569A (en) Dispersion of fluorochlorocarbon polymers
US3440215A (en) Aromatic polyimides

Legal Events

Date Code Title Description
AS Assignment

Owner name: VISHAY INTERTECHNOLOGY, INC., 63 LINCOLN HIGHWAY,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO LICENSE RECITED;ASSIGNOR:CORNING GLASS WORKS;REEL/FRAME:004821/0304

Effective date: 19871110

Owner name: VISHAY INTERTECHNOLOGY, INC.,PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CORNING GLASS WORKS;REEL/FRAME:004821/0304

Effective date: 19871110