US3853759A - Dynamic hydraulic column activation method - Google Patents
Dynamic hydraulic column activation method Download PDFInfo
- Publication number
- US3853759A US3853759A US9115170A US3853759A US 3853759 A US3853759 A US 3853759A US 9115170 A US9115170 A US 9115170A US 3853759 A US3853759 A US 3853759A
- Authority
- US
- United States
- Prior art keywords
- column
- influent
- sewage
- effluent
- liner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 230000004913 activation Effects 0.000 title description 4
- 239000000463 material Substances 0.000 claims abstract description 131
- 239000010865 sewage Substances 0.000 claims abstract description 52
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 28
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 230000008569 process Effects 0.000 claims description 39
- 238000002485 combustion reaction Methods 0.000 claims description 21
- 230000005484 gravity Effects 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000000670 limiting effect Effects 0.000 claims description 7
- 230000002950 deficient Effects 0.000 claims description 6
- 230000006872 improvement Effects 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 13
- 239000012530 fluid Substances 0.000 abstract description 12
- 238000010924 continuous production Methods 0.000 abstract description 5
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 239000005060 rubber Substances 0.000 description 28
- 238000011282 treatment Methods 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 239000000725 suspension Substances 0.000 description 10
- 239000003570 air Substances 0.000 description 8
- 239000003381 stabilizer Substances 0.000 description 8
- 239000011440 grout Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 6
- 241000239290 Araneae Species 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000001311 chemical methods and process Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000004636 vulcanized rubber Substances 0.000 description 3
- 235000005074 zinc chloride Nutrition 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- 206010035148 Plague Diseases 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000004073 vulcanization Methods 0.000 description 2
- 241000428352 Amma Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 108010070551 Meat Proteins Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001387976 Pera Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 235000015076 Shorea robusta Nutrition 0.000 description 1
- 244000166071 Shorea robusta Species 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002844 continuous effect Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 101150047356 dec-1 gene Proteins 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 210000002310 elbow joint Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011346 highly viscous material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/04—Pressure vessels, e.g. autoclaves
- B01J3/042—Pressure vessels, e.g. autoclaves in the form of a tube
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/025—Thermal hydrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/06—Treatment of sludge; Devices therefor by oxidation
- C02F11/08—Wet air oxidation
- C02F11/083—Wet air oxidation using deep well reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2021/00—Use of unspecified rubbers as moulding material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- ABSTRACT Disclosed is a method and apparatus for promoting chemical reactions in a hydraulic column, preferably in the form of a well, provided with an outer casing, an inner liner within and spaced from the casing, and a steam line within and spaced from the inner liner.
- the settled solids are concentrated and processed by various methods, some using high pressure autoclave type techniques.
- Presently known methods include digestion, flocculation and filtration, direct burial, incineration, air drying, wet combustion, centrifugal separation, lagooning, activated sludge with recirculation, and others. All of these methods, however, have the basic disadvantage of being directed only to a relatively small percentage of the total sewage influent.
- matter in solution, matter in colloidal dispersion, or matter which by virtue of its specific gravity is unsettleable simple never reaches the treating mechanism.
- These categories include living organisms, fatty acids, protein, cellulose, carbohydrates, and the volatile hydrocarbons representative of the aforementioned materials in various stages of decomposition, as well as precipitated detergent end products, rubber and polyethylene materials.
- one proposed but not presently commercially acceptable method of treating waste materials is a wet combustion process described in U.S. Pat. No. 3,449,247 wherein concentrated sewage is augmented by the addition of combustion material and provided to a vertical hydraulic column. Then, utilizing the combustible material as fuel, oxygen or air is added to the material so that the wet combustion process may take place. The air further provides an air lift so that the treated material will rise to the top of a separate vertical column.
- the apparatus employed to promote the desired chemical reactions consists of a hydraulic column to provide the reaction-inducing high pressure, and a means to provide heat energy to the bottom of the hydraulic column.
- the preferred manner of obtaining the high pressure is by utilizing a deep well having casing to conduct the material downwardly and a liner spaced within the casing to return the material to the surface.
- a steam line or other heating means is spaced within the liner to supply the necessary heat energy at the bottom of the column.
- Means are provided within the casing for the injection of a catalyst at any depth, should the process require it.
- the material is directed from between the outer casing and the liner into the bottom of the liner. This area is heated by steam or another media and the desired chemical reactions are thus promoted or accelerated. Since no extraneous air, oxygen or combustible refuse is provided to the column, the disadvantageous effects of wet combustion can be avoided.
- the heated substance being lighter than the denser and cooler influent, is caused to flow up within the liner. As the warm effluent passes by the cool influent, some of the heat is transferred through the liner from the effluent to warm the influent. Thus, not only is a continuous process assured, but also much of the heat energy supplied is conserved and passed on to the influent.
- FIG. 1 is a somewhat schematic elevational view of a preferred embodiment of the apparatus of the invention, parts being broken away and in section.
- FIG. 2 is a top plan view thereof.
- FIG. 3 is a schematic flow diagram of a preferred embodiment of the invention.
- FIG. 4 is a graphic illustration of representative pressures and temperatures of a material as it is being treated.
- FIG. 5 is an enlarged sectional view of the apparatus at the bottom of the hydraulic column according to a preferred embodiment of the present invention.
- FIG. 6 is an enlarged view of the liner within the outer casing showing the liner stabilizer according to a preferred embodiment of the present invention.
- FIG. 7 is a sectional view taken substantially along line 7-7 of FIG. 6.
- FIG. 8 is a schematic representation of the expansion device employed according to a preferred embodiment of the present invention.
- the apparatus according to the present invention is designated generally as numeral 10 in'FIG. l.
- a preferred manner of creating the hydraulic head necessary to accomplish the objectives of the present invention is the utilization of a well indicated generally as 11, of 'a prescribed depth which, of course, would vary according to the pressure needed for the particular chemical reactions contemplated.
- Well 11 consists of a bore 12 into which is fitted a well casing 13. Concentric of casing 13 is a liner 14 of smaller diameter than casing 13. Concentric of and spaced within liner 14 is a heat energy or steam line 15 which, as shown in FIG.
- the bottom of the well 11 is best shown in FIG. 5 as being closed off to the strata by a cement or grout 18, which can hold the casing 13 in place.
- a circular base member 19 Slidably received within casing 13 is a circular base member 19 having an outer annular flange 20 and resting on the grout 18.
- Base member 19 further provides an additional barrier to prevent significant contact of the fluid medium with the strata or with the grout system 18.
- Flange 20 of base 19 is provided basically for strength, base 19 being designed of a material having high corrosive and erosive resistance.
- Base 19 further has a center upright leg 21 which provdes a seat for the bottom of steam line 15, steam line 15 being preferably welded thereto.
- a spider 22 which has a plurality of radial branches providing outer shoulders 23 on which rest an outwardly tapered annular extension 24 of the bottom of liner 14. Extension 24 not only provides a mating face to rest on shoulders 23, but also serves to form a venturi zone to ease pressure losses at the reverse flow point as will hereinafter become evident.
- annular ring 25 Interiorly fastened to the liner 14 at the upper end of extension 24 is an annular ring 25 which is mounted, as shown in FIG. 5, in a plane transverse to that of the liner 14. Similarly, a smaller ring 26 is attached exteriorly of steam line 15, creating a restricted orifice 28. Rings 25 and 26 are shaped in cross-section like a parallelogram having no right angles therein. This is done so that even though the rings do not rest in a plane perpendicular to the liner 14, their surfaces 27 are nevertheless parallel to the liner.
- Orifice 28 is adjustable in size by mere rotation of liner 14. As shown, orifice 28 would be at its smallest extent; however, rotation of liner 14 by to the chain line position would open orifice 28 to its greatest extent. Orifice 28 can thus be adjusted to provide the desired amount of mixing action in the effluent passing through spider 22 upwardly into liner 14.
- Steam line 15 is provided with a plurality of discharge jets 29 which direct steam toward orifice 28. It is at approximately this area where the most rapid chemical reaction will take place, it being the area of greatest pressure and temperature in the system.
- Casing I3 is first set in grout l8 and the steam line is lowered with the base 19 attached thereto. Liner 14 is then lowered and extension 24 placed on shoulders 23 of spider 22. Finally an additionally grouting material 30 is packed around casing 13 within well bore 12.
- Grout 30 can be dry sand or powdered cement or a cement slurry mixture with additives for thermal stability and insulation purposes and is utilized to equalize the pressure inside and outside the casing. Grout 30 thus protects the casing from the eventual pressures of the strata and also acts as an insulation material.
- liner 14 Above ground level, liner 14 is shown extending through the top elbow of casing 13; therefore, a seal at 31 must be provided. Similarly, another seal at 32 is required where steam line 15 extends through the top elbow of liner 14.
- the seals 31 and 32 may be of a conventional construction. Steam line 15 then continues to a conventional steam generator (not shown).
- the process of devulcanizing rubber may be used as representative of many other treatments which system 10 is capable of accomplishing.
- the discarded rubber to be treated is ground up into small bits and placed in a carrying medium'which may be water or which in the devulcanization of rubber example may be a zinc chloride brine or caustic soda.
- a carrying medium' which may be water or which in the devulcanization of rubber example may be a zinc chloride brine or caustic soda.
- the conveying medium would aid the reaction with its catylitic effect.
- a conveying medium other than water it is possible and often desirable to provide in line 15 the vapor of the conveying medium as the heat energy.
- steam would be the most efficient form of heat energy.
- the mixture of ground rubber and water or catylitic brine is supplied to an influent tank or line 33 as shown in FIGS. I and 2.
- FIGS. 2 and 3 provisions have been made so that the influent rubber in suspension coming from line 33 may by-pass the entire system.
- This is shown in FIG. 2 as an open by-pass channel 34 having control gates 35 and 36 at the inlet and outlet thereof respectively. While being shown as open channels, it is evident that any medium, such as a pipe, would be sufficient.
- a simple by-pass line is shown having a normally closed valve 38.
- This by-pass system could be utilized, for example, either in times of emergency, as in system overflow or breakdown, or in other situations where by-pass might be desirable.
- the influent will then pass through gate 39 of FIG. 2 (normally open valve 40 of FIG. 3), and through a screening device 41.
- Screen 41 assures that no oversize particles of rubber reach the hydraulic column itself.
- Another normally open valve 42 may be provided after screen 41.
- a classifier 43 FIG. 3 which acts to segregate materials by specific gravity to eliminate overly dense or large undesirable particles which may have been passed the sizing test afforded by screen 41.
- an above-the-ground lateral extension 44 of casing 13 is provided through partition walls 45.
- Casing extension 44 is connected to a downturned pipe 46 which serves in a siphon-like manner to pick up the influent rubber in suspension.
- a classifier similar to that discussed with reference to FIG. 3, is thus provided at the mouth 47 of pipe 46. Mouth 47 acts like a siphon and will pick up only those particles which are light enough, thus eliminating overly dense materials.
- Bar 48 which acts not only to help stabilize the system, as will hereinafter be discussed, but it also duplicates the conditions found in the well 11 compensating by velocity selection design for the change in viscosity of the carrying fluid at the reverse flow point in the hydraulic column and thus assures that oversize and overweight particles will not clog the system.
- Bar 48 also provides a means for regulating the uptake force of mouth 47. A large bar will increase the uptake suction velocity at mouth 47, due to the decrease in the relative area of mouth 47.
- the influent rubber in suspension should now be ready to enter into the hydraulic column, or what has been previously referred to generally as well 11.
- the influent flows by gravity down in the area defined by the inside of casing 13 and the outside of liner l4.
- a plurality of influent probes 49 shown in FIG. 1 which are, in effect, long adjustable pipes or tubular members of small diameter which can be used to take ofi a sample of the influent at any desired depth, or, more importantly, can be used to add catalytic chemicals at the exact pressure and temperature condition needed.
- These substances will, at the right temperature and pressure, tend to break the sulfur bond associated with vulcanization.
- the probes provide for introduction of the chemical substances under the most effective temperature and pressure conditions.
- the devulcanization of rubber must be accomplished in the absence or near absence of air, care must be taken to assure that very little air is entrained in the influent supply. Otherwise, the heat and pressure conditions achieved by this system would cause combustion, burning the rubber and leaving no usable end product.
- the influent must be oxygen-deficient, that is, not have enough oxygen to cause substantial combustion.
- liner 14 should be relatively thin or made of a material which will readily transfer heat. Further, if the liner is sufiiciently thin, it may be flexed by flow reversal to crack off adhering brittle materials.
- the recirculation system may be an open channel with a control gate 51 and separating device 52, or as sche matically shown in FIG. 3, it may be a piping system having a normally open valve 53 which allows the material to enter a separator 54.
- Both separators 52 or 54 are designed to take off the devulcanized rubber and allow the warm carrying medium and any remaining vulcanized rubber to continue back through the system again. This is accomplished since devulcanized rubber tends to be lighter than vulcanized rubber, the former thus tending to move toward the top of the separator to be taken off there, and the latter gravitating to the bottom to be fed with the warm water through a variable valve 55 and back to classifier 42 for further treatment.
- valve 53 or 55 could be closed and, in the channel form of FIG. 2, outlet control gate 56 be opened, or in the schematic form of FIG. 3, either or both of valves 58 opened.
- filters are provided so that one can be used while the other is being cleaned of the materials via backwash valves 61.
- an adjustable sleeve member 58 (FIG. 1) which regulates the back pressure in liner 14. As sleeve 57 makes liner 14 larger (and thus closer to the bottom of the tank shown), more back pressure in liner 14 is provided, should it be desirable.
- FIG. 8 it has been determined that due to the high heat involved in the system, compensation should be made for pipe expansion.
- FIG. 8 is one example being applied to the steam line.
- the top of steam line has conventional pipe elbow joint 62 which holds articulating arm 63.
- the other end of arm 63 is connected by another joint 64, arm 63 and steam line 15 thus being connected to the steam generator 65.
- arm 63 moves from the chain line position to the full line position of FIG. 8 by rotation at joints 62 and 64.
- By varying the length of arm 63 most any pipe expansion can be accounted for.
- springs 66 are provided to alleviate any binding stresses at joints 62 and 64 due to the weight of arm 63.
- One alternative method of compensating from the pipe expansion would be to provide conventional expansion means between each length of pipe in the steam line itself. By utilizing this concept, each joint would have to account for a small fraction of total pipe expansion.
- Another alternative would be to provide a hanging liner 14, that is, suspend the cold liner above the shoulder 23 of spider 22 and allow it to grow downward when heated. The hanging liner, as well as seated liner for that matter, would be readily adaptable to facile raising and lowering which would aid in maintaining the liner free of undesirable materials.
- each pipe union of liner 14 has a system of stabilizers 68.
- the stabilizers consist of spirally curved lengths of rod which are welded, as at 69, at each pipe junction, and which rest against either the casing at 70 or steam line at 71. In effect these rods are spring loaded in that their force against the casing and steam line tend to keep the whole piping system centered on installation and during use. Further, these stabilizers will not only tend to dampen vibrations which might occur, but also provide a plurality of obstructions in the path of both the influent and effluent, which obstructions tend to mix the flow and keep the pipes clean. Stabilizers are also provided at the mouth 47 of pipe 46 for similar purposes.
- the stabilizers 68 can be designed to perform the additional function of turning or rotating the liner by a paddle wheel effect. This rotation would not only deter adherence of materials to the liner and break liner surface film and thereby improve heat transfer characteristics, but when in the path of the effluent, stabilizers also favorably utilize the excess head that may be present therein, as will hereinafter be described.
- a system of this depth is calculated to handle 5,000 pounds of rubber dispersed in 50,000 pounds of water each hour with an outer casing of at least 9 inch diameter, a liner of about 6 inch diameter, and steam line of about 3 inch diameter.
- the losses attributed to the strata are considered first.
- the well site should be a comparatively dry one, for if not, the heat would be quite readily carried off by any present moisture.
- the heat losses to the strata may be described as the instantaneous heating of an infinitely thick wall.
- the heat losses are found to be inversely proportional to the square root of time (in hours) so that while never reaching zero, it is evidentv that the losses become minimal after a short period of time. In fact, it is only during start-up and shortly thereafter that the losses are appreciable. After that, the heated strata actually acts like an insulator.
- the loss due to condensation in the steam line has been calculated at about 91,500 BTU per hour which means about 141 pounds of steam per hour. Note that in this regard, it has been mentioned that the steam line should be insulated. The reason for this is to prevent over-condensation as the steam travels down the line, and to prevent a heat loss from the steam line to the effluent. The net result is that the maximum steam can be provided at the maximum depth with only 141 pounds of steam lost each hour to condensation.
- the friction loss does play an important role, however, as a deterent to the thermal head which provides the motive force in the system.
- the differential thermal head that is, the motive force in this example, has been calculated at approximately psi.
- the total friction losses amount to about 10.5 psi. Therefore, in this particular example, either a static head would have to be created, i.e., raise the level of the influent, or a very small amount of steam be added over the saturation requirements. In the latter situation, the addition of a very small amount of steam significantly increases the head. This is due to the fact that any steam injected over saturation will remain as steam in the effluent, and thus substantially lighten the effluent and cause a greater flow therein. Therefore it is evident that the amount of steam controls the flow rate in the system. In the example above, the total flow time, as regulated by the steam, was only 59 minutes.
- the overall temperature-pressure conditions in the system just described can be best seen in the graphic representations of FIG. 4.
- the screen device 41 causes a slight pressure drop due to the slight resistance which it presents to the influent. A representation pressure drop of 1 psi is shown. Similarly, a small pressure drop occurs in the classifier. Then as the material passes into the casing of the well, the maximum point is reached. Of course, at this point the pressure will fluctuate somewhat radically due to the fluid flow around the reversal point and through the orifice. Then, as the material moves up the liner, the pressure decreases until the material is expelled at a pressure, which, of course, varies as a function of the thermal head involved. In the example given above, it is assumed that enough extra steam has been added to give the 30 psi output pressure shown in FIG. 4. Then the pressure drops again at the filter area before being ejected.
- the temperature at these various points is shown on the lower graph of FIG. 4.
- the influent temperature remains fairly constant after 1 year, except for the small increase due to the recirculation input, until reaching the hydraulic column. There as it passes by the warm liner, it gains heat progressively until it reaches the bottom when the temperature is bumped up by the steam injection. Then the effluent loses its heat to the influent until it reaches the top of the column. There it is taken off at a slightly higher temperature (in this example 16 F.) than the influent.
- This warmer effluent can either be merely ejected from the system and the heat lost to the atmosphere, or it can be recirculated to mix with the cooler influent.
- an advantage of the present process is that extraneous oxygen and refuse is not present in the reaction zone. That is, the present process does not require the affirmative step of adding oxygen or refuse extraneous to that small amount which may be inherently present in the material as it is provided to the hydraulic column 10.
- processes which do require such procedures are at a decided disadvantage.
- denying oxygen to the reaction zone having a minimum of combustible refuse present does not allow the reaction to be taken over by the wet combustion process.
- Naturally occurring unaugmented sewage is simply too oxygen-deficient for such to occur.
- the by-pass provisions are also helpful in the sewage situation, for example, to shut down the system for cleaning.
- the sewage would pass through the classifier 43 and onto the hydraulic column.
- Probes 49 which as discussed above, can be positioned at any height within the influent or effluent, are quite effective as samplers in the process of treating sewage.
- the step of adding a catalyst may be eliminated in this instance. But, it may be necessary, for example in a community having vast industrial wastes in its sewage, for certain chemicals to be added to aid in the purification. Probes 49 are thus useful in this situation.
- a probe entering the cooler zones of the effluent may be utilized to introduce a refrigerant compressed gas to be cooled and condensed by direct contact with the fluid.
- the refrigerant Upon throttled discharge at control 57, the refrigerant would boil and extract heat from or after-cool the effluent. The gas could then be recovered by separation for recompression and recycle.
- the recirculation channel 50 Since the natural environment of sewage is the liquid carrying medium, it would not be at all mandatory that the recirculation channel 50 be used. However, such a channel would be useful during a starting warm-up period and during periods of low sewage flow rates. Normally, however, the sewage effluent would usually pass to filters 59 and then into some natural water source such as a river or lake. Should some of the objectionable matter remain, however, the recirculation system could be utilized to return the effluent to recirculate through the system.
- the parameters of the sewage treating system are similar to those in the devulcanizing system except that since a desirable peak pressure in 1,800 psi and temperature is 635 F., a substantially deeper well of about 4,600 feet is needed. Further, a much larger diameter well is needed to handle greater volumes.
- the standard treatment plant of the Public Health Service serving a town of a 5,000 population, requires that 500,000 gallons of sewage be treated each day. To treat this volume, a casing of approximately 14 inches, liner of inches, and steam line of 4 inches would be necessary.
- the heat losses, gains, and transfers must be considered. Assuming relatively dry strata, the heat lost to the strata after 1 year in this example would be approximately 1 15,000 BTU per hour, which would mean a steam consumption of 250 pounds per hour lost to the strata.
- the average influent temperature of sewage is about 50 F. Note that this is substantially less than the 195 F. in the influent rubber situation. After the 50 F. sewage reaches the 635 F. peak condition, it will cool until it exists at about 84 F. The 551 F. temperature difference is, of course, transferred directly to the influent. Thus there is a terminal temperature difference of about 34 R, which difference translated into steam consumption means about 13,150 pounds of steam per hour. This steam consumption could obviously be reduced by increasing the heat transfer area of the liner if desired as by providing fins as would be well known to one having ordinary skill in the art.
- the additional heat or power loss due to condensation in the steam line has been calculated at about 349,000 BTU per hour or about 754 pounds of steam per hour.
- the thermal head would be about 87.2 feet considering the relative influent and effluent densities.
- the friction of the effluent going up the well reduces that head by an equivalent of 41.4 feet thus leaving a remaining head of 45.8 feet.
- much of the force of this thermal head can be used to rotate the liner and promote cleaning, and heat transfer, and is generally a source of mechanical energy. Nevertheless, due to the more drastic terminal temperature difference in this example, a much larger motive force is created and even though the well is twice as deep, the flow time is only minutes.
- the apparatus and method herein can be adapted for any desired use by a mere change in system parameters and possibly slight changes in chemical additives.
- This system can be utilized to effect an unlimited number of chemical processes which are aided by high pressure.
- the chemical reaction known as pyrolysis is one of the major chemical reactions which takes place in the purification of sewage and can be maintained at minimum temperature and pressure conditions of 550 F. and 1,000 psi; alkylation (the replacement of a hydrogen atom with an alkyl group in an organic compound) will take place at a temperature of at least 266 F.
- any form of chemical reaction in an oxygen deficient material can bepromoted and it is contemplated that general water treatment, extractions of oil from sands or shales, reduction of metallic ores and general molecular degeneration of any material can be performed and accelerated. As previously described, however, not all of these processes would necessarily utilize water as a conveying medium or steam as the heat energy.
- a method for treating a continuously flowing sewage material comprising the steps of, feeding the sewage material into the top of a hydraulic influent column, conducting said material from the bottom of said influent column into the bottom of a separate hydraulic effluent column, continuously supplying heat energy to the material near the bottom of one of said columns at the reaction zone to promote chemical reactions and decrease the specific gravity of the material, limiting combustion of the material by restricting the process to oxygen present in the material, whereby the pressure at the bottom of said influent column causes the heated material to rise in said effluent column, and removing the material from the top of said effluent column.
- a method for treating an oxygen-deficient sewage material comprising the steps of, continuously feeding the material into the top of a hydraulic influent column; conducting the material from the bottom of said influent column into the bottom of a separate hydraulic effluent column; continuously supplying heat energy to the material near the bottom of one of said columns at the area of greatest temperature and pressure to promote chemical reactions to decrease the specific gravity of the material, and to provide a pressure differential between the material in said influent column and the material in said effluent column, the pressure differential provided by the heat being the sole cause by which the material rises in said effluent column; limiting combustion of the material by restricting the process to oxygen present in the material; and continuously removing the material from the top of said effluent column.
- a process of treating raw sewage material including the steps of feeding the sewage material into the top of a hydraulic influent column, transferring said material from the bottom of said influent column to the bottom of a separate hydraulic effluent column, and removing the material from the top of said effluent column, the improvement comprising the additional steps of supplying heat energy to the material near the bottom of one of the columns so that the specific gravity of the sewage material will decrease and the material will rise in the effluent column, and limiting combustion of the material by restricting the process to oxygen present in the sewage material.
- a process according to claim 4, wherein said step of heating the material is done while restricting the process to combustible material present in the sewage mate rial.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9115170 US3853759A (en) | 1968-06-06 | 1970-11-19 | Dynamic hydraulic column activation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73506668A | 1968-06-06 | 1968-06-06 | |
US9115170 US3853759A (en) | 1968-06-06 | 1970-11-19 | Dynamic hydraulic column activation method |
Publications (1)
Publication Number | Publication Date |
---|---|
US3853759A true US3853759A (en) | 1974-12-10 |
Family
ID=26783646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US9115170 Expired - Lifetime US3853759A (en) | 1968-06-06 | 1970-11-19 | Dynamic hydraulic column activation method |
Country Status (1)
Country | Link |
---|---|
US (1) | US3853759A (en) |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4053404A (en) * | 1975-06-25 | 1977-10-11 | Whirlpool Corporation | Heat exchange method for wet oxidation systems |
WO1979000791A1 (en) * | 1978-03-17 | 1979-10-18 | J Mcgrew | Method and apparatus for effecting subsurface,controlled,accelerated chemical reactions |
US4272383A (en) * | 1978-03-17 | 1981-06-09 | Mcgrew Jay Lininger | Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions |
US4301014A (en) * | 1980-06-05 | 1981-11-17 | Hooker Chemicals & Plastics Corp. | Phosphorus pentasulfide waste water treatment |
US4406742A (en) * | 1980-10-20 | 1983-09-27 | Phillips Petroleum Company | Apparatus for lead pressured extraction of carbonaceous materials |
US4564458A (en) * | 1983-11-10 | 1986-01-14 | Burleson James C | Method and apparatus for disposal of a broad spectrum of waste featuring oxidation of waste |
US4582613A (en) * | 1984-09-24 | 1986-04-15 | Resource Technology Associates | Use of copper (II) oxide as source of oxygen for oxidation reactions |
US4594164A (en) * | 1985-05-23 | 1986-06-10 | Titmas James A | Method and apparatus for conducting chemical reactions at supercritical conditions |
US4606764A (en) * | 1983-08-17 | 1986-08-19 | Resource Technology Associates | Method of recovering metals from ores using a formate reducing agent |
US4648964A (en) * | 1985-08-30 | 1987-03-10 | Resource Technology Associates | Separation of hydrocarbons from tar sands froth |
US4671351A (en) * | 1985-07-17 | 1987-06-09 | Vertech Treatment Systems, Inc. | Fluid treatment apparatus and heat exchanger |
EP0228755A1 (en) * | 1986-01-06 | 1987-07-15 | James C. Burleson | Method and apparatus for disposal of a broad spectrum of waste featuring oxidation of waste |
US4683063A (en) * | 1985-05-08 | 1987-07-28 | Vitamins, Inc. | Method for carrying out extractions in subterranean well |
US4741386A (en) * | 1985-07-17 | 1988-05-03 | Vertech Treatment Systems, Inc. | Fluid treatment apparatus |
US4774006A (en) * | 1987-06-22 | 1988-09-27 | Vertech Treatment Systems, Inc. | Fluid treatment method |
WO1988007890A1 (en) * | 1987-04-13 | 1988-10-20 | James A. Titmas Associates Incorporated | Method and apparatus for conducting chemical reactions at supercritical conditions |
US4803054A (en) * | 1987-03-13 | 1989-02-07 | Vertech Treatment Systems, Inc. | Asymmetric heat-exchange reaction apparatus for effecting chemical reactions |
WO1991002139A1 (en) * | 1989-08-04 | 1991-02-21 | Eau-Viron Incorporated | Casing for gravity pressure reactor vessels |
US5008085A (en) * | 1987-06-05 | 1991-04-16 | Resource Technology Associates | Apparatus for thermal treatment of a hydrocarbon stream |
US5133877A (en) * | 1991-03-29 | 1992-07-28 | The United States Of America As Represented By The United States Department Of Energy | Conversion of hazardous materials using supercritical water oxidation |
US5160581A (en) * | 1990-06-01 | 1992-11-03 | Titmas And Associates Incorporated | Method for oxygen bleaching paper pulp |
US5358646A (en) * | 1993-01-11 | 1994-10-25 | Board Of Regents, The University Of Texas System | Method and apparatus for multiple-stage and recycle wet oxidation |
US5370801A (en) * | 1987-02-13 | 1994-12-06 | Conor Pacific Environmental Technologies, Inc. | Method for treating polluted material |
US5421998A (en) * | 1991-08-09 | 1995-06-06 | Board Of Regents, The University Of Texas System | Apparatus for reverse-injection wet oxidation |
US5536385A (en) * | 1995-03-03 | 1996-07-16 | Envirocorp Services & Technology, Inc. | Production and purification of contaminated effluent streams containing ammonium sulfate and ammonia |
US5551472A (en) * | 1994-08-01 | 1996-09-03 | Rpc Waste Management Services, Inc. | Pressure reduction system and method |
US5552039A (en) * | 1994-07-13 | 1996-09-03 | Rpc Waste Management Services, Inc. | Turbulent flow cold-wall reactor |
US5582715A (en) * | 1992-04-16 | 1996-12-10 | Rpc Waste Management Services, Inc. | Supercritical oxidation apparatus for treating water with side injection ports |
US5591415A (en) * | 1994-01-27 | 1997-01-07 | Rpc Waste Management Services, Inc. | Reactor for supercritical water oxidation of waste |
US5620606A (en) * | 1994-08-01 | 1997-04-15 | Rpc Waste Management Services, Inc. | Method and apparatus for reacting oxidizable matter with particles |
WO1997041247A1 (en) * | 1996-05-01 | 1997-11-06 | Eau-Viron Incorporated | Apparatus and method for the continuous conversion of a cellulosic material to ethanol |
DE29722933U1 (en) * | 1997-12-19 | 1998-02-12 | Mannesmann AG, 40213 Düsseldorf | Deep well reactor for the continuous implementation of chemical reactions |
DE29722926U1 (en) * | 1997-12-19 | 1998-02-19 | Mannesmann AG, 40213 Düsseldorf | Deep well reactor for the continuous implementation of chemical reactions |
US5755974A (en) * | 1994-08-01 | 1998-05-26 | Rpc Waste Management Services, Inc. | Method and apparatus for reacting oxidizable matter with a salt |
US5770174A (en) * | 1992-04-16 | 1998-06-23 | Rpc Waste Management Services, Inc. | Method for controlling reaction temperature |
US5785868A (en) * | 1995-09-11 | 1998-07-28 | Board Of Regents, Univ. Of Texas System | Method for selective separation of products at hydrothermal conditions |
US6001243A (en) * | 1996-06-07 | 1999-12-14 | Chematur Engineering Ab | Heating and reaction system and method using recycle reactor |
US6716360B2 (en) | 2002-04-16 | 2004-04-06 | Eau-Viron Incorporated | Method and apparatus for treating waste streams |
US6958122B1 (en) | 1999-09-03 | 2005-10-25 | Chematur Engineering Ab | High pressure and high temperature reaction system |
US20060086673A1 (en) * | 2004-10-27 | 2006-04-27 | Titmas James A | Gravity pressure vessel and related apparatus and methods |
US20060096163A1 (en) * | 2004-11-10 | 2006-05-11 | Enertech Environmental, Inc. | Slurry dewatering and conversion of biosolids to a renewable fuel |
US20060112627A1 (en) * | 2004-11-02 | 2006-06-01 | Geisel Donald J | Device, system, and method for remediation of contaminated soil |
US20060151642A1 (en) * | 2005-01-07 | 2006-07-13 | Titmas James A | Gravity pressure vessel and method for treating vulcanized rubber |
US20070223999A1 (en) * | 2004-06-23 | 2007-09-27 | Terrawatt Holdings Corporation | Method of Developing and Producing Deep Geothermal Reservoirs |
US20080073292A1 (en) * | 2004-11-15 | 2008-03-27 | Chematur Engineering Ab | Reactor and Method for Supercritical Water Oxidation |
US20080264873A1 (en) * | 2004-11-15 | 2008-10-30 | Anders Gidner | Method and System for Supercritical Water Oxidation of a Stream Containing Oxidizable Material |
US20090266541A1 (en) * | 2008-04-28 | 2009-10-29 | Reynolds Thomas A | Waste material processing for oil recovery |
US20100018933A1 (en) * | 2008-07-25 | 2010-01-28 | James Titmas | Method and apparatus for conducting supercritical wet oxidation reactions contained within a fluid envelope |
US20100121047A1 (en) * | 2007-11-01 | 2010-05-13 | James Titmas | Methods and apparatus for hydrolyzing cellulosic material |
US20110091953A1 (en) * | 2009-04-07 | 2011-04-21 | Enertech Environmental, Inc. | Method for converting organic material into a renewable fuel |
US20150021278A1 (en) * | 2012-02-08 | 2015-01-22 | Veolia Water Solutions & Technologies Support | Apparatus for continuous hydrolysis |
US9006297B2 (en) | 2012-06-16 | 2015-04-14 | Robert P. Herrmann | Fischer tropsch method for offshore production risers for oil and gas wells |
US20220411288A1 (en) * | 2019-12-05 | 2022-12-29 | Seachange Technologies, Inc. | Removing contaminants from liquids |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3060118A (en) * | 1958-05-16 | 1962-10-23 | Sterling Drug Inc | Sewage treatment |
US3272262A (en) * | 1964-01-23 | 1966-09-13 | Pan American Petroleum Corp | Ignition of thick pay formations |
US3359200A (en) * | 1966-02-24 | 1967-12-19 | Sterling Drug Inc | Partial wet air oxidation of sewage sludge |
US3449247A (en) * | 1965-10-23 | 1969-06-10 | William J Bauer | Process for wet oxidation of combustible waste materials |
US3606999A (en) * | 1967-08-04 | 1971-09-21 | Harold L Lawless | Method of and apparatus for carrying out a chemical or physical process |
-
1970
- 1970-11-19 US US9115170 patent/US3853759A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3060118A (en) * | 1958-05-16 | 1962-10-23 | Sterling Drug Inc | Sewage treatment |
US3272262A (en) * | 1964-01-23 | 1966-09-13 | Pan American Petroleum Corp | Ignition of thick pay formations |
US3449247A (en) * | 1965-10-23 | 1969-06-10 | William J Bauer | Process for wet oxidation of combustible waste materials |
US3359200A (en) * | 1966-02-24 | 1967-12-19 | Sterling Drug Inc | Partial wet air oxidation of sewage sludge |
US3606999A (en) * | 1967-08-04 | 1971-09-21 | Harold L Lawless | Method of and apparatus for carrying out a chemical or physical process |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4053404A (en) * | 1975-06-25 | 1977-10-11 | Whirlpool Corporation | Heat exchange method for wet oxidation systems |
WO1979000791A1 (en) * | 1978-03-17 | 1979-10-18 | J Mcgrew | Method and apparatus for effecting subsurface,controlled,accelerated chemical reactions |
US4272383A (en) * | 1978-03-17 | 1981-06-09 | Mcgrew Jay Lininger | Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions |
US4301014A (en) * | 1980-06-05 | 1981-11-17 | Hooker Chemicals & Plastics Corp. | Phosphorus pentasulfide waste water treatment |
US4406742A (en) * | 1980-10-20 | 1983-09-27 | Phillips Petroleum Company | Apparatus for lead pressured extraction of carbonaceous materials |
US4606764A (en) * | 1983-08-17 | 1986-08-19 | Resource Technology Associates | Method of recovering metals from ores using a formate reducing agent |
US4564458A (en) * | 1983-11-10 | 1986-01-14 | Burleson James C | Method and apparatus for disposal of a broad spectrum of waste featuring oxidation of waste |
US4582613A (en) * | 1984-09-24 | 1986-04-15 | Resource Technology Associates | Use of copper (II) oxide as source of oxygen for oxidation reactions |
US4683063A (en) * | 1985-05-08 | 1987-07-28 | Vitamins, Inc. | Method for carrying out extractions in subterranean well |
US4594164A (en) * | 1985-05-23 | 1986-06-10 | Titmas James A | Method and apparatus for conducting chemical reactions at supercritical conditions |
WO1986007047A1 (en) * | 1985-05-23 | 1986-12-04 | Titmas James A | Method and apparatus for conducting chemical reactions at supercritical conditions |
US4671351A (en) * | 1985-07-17 | 1987-06-09 | Vertech Treatment Systems, Inc. | Fluid treatment apparatus and heat exchanger |
US4741386A (en) * | 1985-07-17 | 1988-05-03 | Vertech Treatment Systems, Inc. | Fluid treatment apparatus |
US4648964A (en) * | 1985-08-30 | 1987-03-10 | Resource Technology Associates | Separation of hydrocarbons from tar sands froth |
EP0228755A1 (en) * | 1986-01-06 | 1987-07-15 | James C. Burleson | Method and apparatus for disposal of a broad spectrum of waste featuring oxidation of waste |
US5370801A (en) * | 1987-02-13 | 1994-12-06 | Conor Pacific Environmental Technologies, Inc. | Method for treating polluted material |
US4803054A (en) * | 1987-03-13 | 1989-02-07 | Vertech Treatment Systems, Inc. | Asymmetric heat-exchange reaction apparatus for effecting chemical reactions |
WO1988007890A1 (en) * | 1987-04-13 | 1988-10-20 | James A. Titmas Associates Incorporated | Method and apparatus for conducting chemical reactions at supercritical conditions |
US4792408A (en) * | 1987-04-13 | 1988-12-20 | James A. Titmas Associates Incorporated | Method and apparatus for enhancing chemical reactions at supercritical conditions |
US5008085A (en) * | 1987-06-05 | 1991-04-16 | Resource Technology Associates | Apparatus for thermal treatment of a hydrocarbon stream |
US4774006A (en) * | 1987-06-22 | 1988-09-27 | Vertech Treatment Systems, Inc. | Fluid treatment method |
WO1991002139A1 (en) * | 1989-08-04 | 1991-02-21 | Eau-Viron Incorporated | Casing for gravity pressure reactor vessels |
US5026209A (en) * | 1989-08-04 | 1991-06-25 | Eau-Viron Incorporated | Containment casing for a deep well gravity pressure reactor vessel |
US5160581A (en) * | 1990-06-01 | 1992-11-03 | Titmas And Associates Incorporated | Method for oxygen bleaching paper pulp |
US5133877A (en) * | 1991-03-29 | 1992-07-28 | The United States Of America As Represented By The United States Department Of Energy | Conversion of hazardous materials using supercritical water oxidation |
US5421998A (en) * | 1991-08-09 | 1995-06-06 | Board Of Regents, The University Of Texas System | Apparatus for reverse-injection wet oxidation |
US5454950A (en) * | 1991-08-09 | 1995-10-03 | Board Of Regents, The University Of Texas | Method and apparatus for reverse-injection wet oxidation, sintered material catalytic reaction, sintered material filtration at supercritical conditions, sintered material gas separation, and high temperature pressurization |
US5527466A (en) * | 1991-08-09 | 1996-06-18 | Board Of Regents, The University Of Texas System | Cross-flow filtration apparatus and method |
US5770174A (en) * | 1992-04-16 | 1998-06-23 | Rpc Waste Management Services, Inc. | Method for controlling reaction temperature |
US5582715A (en) * | 1992-04-16 | 1996-12-10 | Rpc Waste Management Services, Inc. | Supercritical oxidation apparatus for treating water with side injection ports |
US5358646A (en) * | 1993-01-11 | 1994-10-25 | Board Of Regents, The University Of Texas System | Method and apparatus for multiple-stage and recycle wet oxidation |
US5591415A (en) * | 1994-01-27 | 1997-01-07 | Rpc Waste Management Services, Inc. | Reactor for supercritical water oxidation of waste |
US5552039A (en) * | 1994-07-13 | 1996-09-03 | Rpc Waste Management Services, Inc. | Turbulent flow cold-wall reactor |
US5551472A (en) * | 1994-08-01 | 1996-09-03 | Rpc Waste Management Services, Inc. | Pressure reduction system and method |
US5620606A (en) * | 1994-08-01 | 1997-04-15 | Rpc Waste Management Services, Inc. | Method and apparatus for reacting oxidizable matter with particles |
US5755974A (en) * | 1994-08-01 | 1998-05-26 | Rpc Waste Management Services, Inc. | Method and apparatus for reacting oxidizable matter with a salt |
US5823220A (en) * | 1994-08-01 | 1998-10-20 | Rpc Waste Management Services, Inc. | Pressure reduction system and method |
US5536385A (en) * | 1995-03-03 | 1996-07-16 | Envirocorp Services & Technology, Inc. | Production and purification of contaminated effluent streams containing ammonium sulfate and ammonia |
US5785868A (en) * | 1995-09-11 | 1998-07-28 | Board Of Regents, Univ. Of Texas System | Method for selective separation of products at hydrothermal conditions |
WO1997041247A1 (en) * | 1996-05-01 | 1997-11-06 | Eau-Viron Incorporated | Apparatus and method for the continuous conversion of a cellulosic material to ethanol |
US5711817A (en) * | 1996-05-01 | 1998-01-27 | Eau-Viron Incorporated | Method for the continuous conversion of cellulosic material to sugar |
AU728023B2 (en) * | 1996-05-01 | 2001-01-04 | Eau-Viron Incorporated | Apparatus and method for the continuous conversion of a cellulosic material to ethanol |
US5879637A (en) * | 1996-05-01 | 1999-03-09 | Eau-Viron Incorporated | Apparatus for hydrolyzing cellulosic material |
US6017460A (en) * | 1996-06-07 | 2000-01-25 | Chematur Engineering Ab | Heating and reaction system and method using recycle reactor |
US6001243A (en) * | 1996-06-07 | 1999-12-14 | Chematur Engineering Ab | Heating and reaction system and method using recycle reactor |
DE29722933U1 (en) * | 1997-12-19 | 1998-02-12 | Mannesmann AG, 40213 Düsseldorf | Deep well reactor for the continuous implementation of chemical reactions |
DE29722926U1 (en) * | 1997-12-19 | 1998-02-19 | Mannesmann AG, 40213 Düsseldorf | Deep well reactor for the continuous implementation of chemical reactions |
US6958122B1 (en) | 1999-09-03 | 2005-10-25 | Chematur Engineering Ab | High pressure and high temperature reaction system |
US6716360B2 (en) | 2002-04-16 | 2004-04-06 | Eau-Viron Incorporated | Method and apparatus for treating waste streams |
US7753122B2 (en) | 2004-06-23 | 2010-07-13 | Terrawatt Holdings Corporation | Method of developing and producing deep geothermal reservoirs |
US20070223999A1 (en) * | 2004-06-23 | 2007-09-27 | Terrawatt Holdings Corporation | Method of Developing and Producing Deep Geothermal Reservoirs |
LT5472B (en) | 2004-06-23 | 2008-02-25 | Terrawatt Holdings Corporation | METHOD OF INSTALLATION AND USE OF DEEP-GEOTHERMAL RESERVOIRS |
US20060086673A1 (en) * | 2004-10-27 | 2006-04-27 | Titmas James A | Gravity pressure vessel and related apparatus and methods |
US7211194B2 (en) | 2004-10-27 | 2007-05-01 | Eau-Viron, Inc. | Gravity pressure vessel and related apparatus and methods |
US20060112627A1 (en) * | 2004-11-02 | 2006-06-01 | Geisel Donald J | Device, system, and method for remediation of contaminated soil |
US7175366B2 (en) * | 2004-11-02 | 2007-02-13 | Geisel Donald J | Device, system, and method for remediation of contaminated soil |
US8409303B2 (en) | 2004-11-10 | 2013-04-02 | SGC Advisors, LLC | Slurry dewatering and conversion of biosolids to a renewable fuel |
US9228132B2 (en) | 2004-11-10 | 2016-01-05 | SGC Advisors, LLC | Slurry dewatering and conversion of biosolids to a renewable fuel |
US20110192074A1 (en) * | 2004-11-10 | 2011-08-11 | Enertech Environmental, Inc. | Slurry dewatering and conversion of biosolids to a renewable fuel |
USRE45869E1 (en) | 2004-11-10 | 2016-01-26 | SGC Advisors, LLC | Slurry dewatering and conversion of biosolids to a renewable fuel |
US20060096163A1 (en) * | 2004-11-10 | 2006-05-11 | Enertech Environmental, Inc. | Slurry dewatering and conversion of biosolids to a renewable fuel |
US7909895B2 (en) | 2004-11-10 | 2011-03-22 | Enertech Environmental, Inc. | Slurry dewatering and conversion of biosolids to a renewable fuel |
US20080264873A1 (en) * | 2004-11-15 | 2008-10-30 | Anders Gidner | Method and System for Supercritical Water Oxidation of a Stream Containing Oxidizable Material |
US20080073292A1 (en) * | 2004-11-15 | 2008-03-27 | Chematur Engineering Ab | Reactor and Method for Supercritical Water Oxidation |
EP1855807A4 (en) * | 2005-01-07 | 2010-09-22 | Eau Viron Inc | Gravity pressure vessel and method for treating vulcanized rubber |
EP1855807A2 (en) * | 2005-01-07 | 2007-11-21 | Eau-Viron Incorporated | Gravity pressure vessel and method for treating vulcanized rubber |
US7188791B2 (en) | 2005-01-07 | 2007-03-13 | Eau-Viron, Incorporated | Gravity pressure vessel and method for treating vulcanized rubber |
US20060151642A1 (en) * | 2005-01-07 | 2006-07-13 | Titmas James A | Gravity pressure vessel and method for treating vulcanized rubber |
US20100121047A1 (en) * | 2007-11-01 | 2010-05-13 | James Titmas | Methods and apparatus for hydrolyzing cellulosic material |
US8496754B2 (en) | 2007-11-01 | 2013-07-30 | Eau-Viron Incorporated | Methods and apparatus for hydrolyzing cellulosic material |
US20090266541A1 (en) * | 2008-04-28 | 2009-10-29 | Reynolds Thomas A | Waste material processing for oil recovery |
US8006758B2 (en) * | 2008-04-28 | 2011-08-30 | Reynolds Thomas A | Waste material processing for oil recovery |
US20100018933A1 (en) * | 2008-07-25 | 2010-01-28 | James Titmas | Method and apparatus for conducting supercritical wet oxidation reactions contained within a fluid envelope |
US8017089B2 (en) | 2008-07-25 | 2011-09-13 | Eau-Viron Incorporated | Method and apparatus for conducting supercritical wet oxidation reactions contained within a fluid envelope |
US20110091953A1 (en) * | 2009-04-07 | 2011-04-21 | Enertech Environmental, Inc. | Method for converting organic material into a renewable fuel |
US20150021278A1 (en) * | 2012-02-08 | 2015-01-22 | Veolia Water Solutions & Technologies Support | Apparatus for continuous hydrolysis |
US9006297B2 (en) | 2012-06-16 | 2015-04-14 | Robert P. Herrmann | Fischer tropsch method for offshore production risers for oil and gas wells |
US9005554B1 (en) | 2012-06-16 | 2015-04-14 | Robert P. Herrmann | Fischer tropsch method for offshore production risers or oil and gas wells |
US20220411288A1 (en) * | 2019-12-05 | 2022-12-29 | Seachange Technologies, Inc. | Removing contaminants from liquids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3853759A (en) | Dynamic hydraulic column activation method | |
US4594164A (en) | Method and apparatus for conducting chemical reactions at supercritical conditions | |
US5188741A (en) | Treatment of sewage sludge | |
US3606999A (en) | Method of and apparatus for carrying out a chemical or physical process | |
CN102718375B (en) | Oily sediment treatment method and device | |
US5507946A (en) | Apparatus for wastewater treatment | |
CA1299844C (en) | Method and apparatus for conducting chemical reactions at supercritical conditions | |
CN104453747B (en) | Resource utilization method of oil and gas field well drilling abandoned oil-base mud | |
KR920002069B1 (en) | Chemical Reaction Process | |
CN108625821B (en) | Oil-based drill cuttings processing method | |
JPS6178498A (en) | Self-contained sewage treatment system and method | |
US3494463A (en) | Package biological sewage treatment | |
CN104355484B (en) | The disposal system of a kind of rubbish extrusion liquid and method | |
CN108238706A (en) | Oily sludge substep pyrolysis treatment systems and technique | |
CN202729965U (en) | Oil field skid-mounted type oil field waste treatment device | |
EP3601801A1 (en) | Pumping and comminution device, method for comminuting and heating an inflow material, and use of same | |
CA1040388A (en) | Dynamic hydraulic column activation apparatus and method | |
US3368967A (en) | Process for treatment of sludge and apparatus therefor | |
CN1304309C (en) | Process of flowing multistage chemical thermo-dynamic for cleaning mud oil-containing | |
FR2538800A1 (en) | Biological treatment process and stationary-bed reactor for its use | |
CN205528363U (en) | Sludge treatment system is fallen to ground in oil field | |
US3156646A (en) | Apparatus for digestion of waste removed from septic tanks | |
CN204643887U (en) | The treatment unit of waste liquid is produced after a kind of oil-sludge treatment | |
CN107265799A (en) | Oil-containing solid waste comprehensive processing technique and device | |
US2792117A (en) | laboon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VECTOR PARTNERS, LTD., A LIMITED PARTNERSHIP OF TE Free format text: SECURITY INTEREST;ASSIGNOR:OXIDYNE CORPORATION, A CORP. OF TX;REEL/FRAME:005075/0563 Effective date: 19890315 Owner name: VECTOR PARTNERS, LTD., A TEXAS LIMITED PARTNERSHIP Free format text: SECURITY INTEREST;ASSIGNOR:OXIDYNE CORPORATION, A TX CORP.;REEL/FRAME:005075/0559 Effective date: 19890315 |
|
AS | Assignment |
Owner name: MILLER, G. CARTER, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:TITMAS, JAMES A.;KULLGREN, GILBERT V.;REEL/FRAME:005181/0424;SIGNING DATES FROM 19891106 TO 19891108 |
|
AS | Assignment |
Owner name: EAST RESOURCES, LLC, MISSOURI Free format text: EXCLUSIVE OPTION TO LICENSE AND EXCLUSIVE LICENSING AGREEMENT;ASSIGNOR:GENESYST INTERNATIONAL, INC.;REEL/FRAME:014624/0621 Effective date: 20031003 Owner name: MIDWEST RESOURCES, LLC, MISSOURI Free format text: EXCLUSIVE OPTION TO LICENSE AND EXCLUSIVE LICENSING AGREEMENT;ASSIGNOR:GENESYST INTERNATIONAL, INC.;REEL/FRAME:014624/0621 Effective date: 20031003 Owner name: NORTHEAST RESOURCES, LLC, MISSOURI Free format text: EXCLUSIVE OPTION TO LICENSE AND EXCLUSIVE LICENSING AGREEMENT;ASSIGNOR:GENESYST INTERNATIONAL, INC.;REEL/FRAME:014624/0621 Effective date: 20031003 Owner name: SUPERCRITICAL RECOVERY SYSTEMS, INC., TEXAS Free format text: EXCLUSIVE OPTION TO LICENSE AND EXCLUSIVE LICENSING AGREEMENT;ASSIGNOR:GENESYST INTERNATIONAL, INC.;REEL/FRAME:014624/0621 Effective date: 20031003 Owner name: UPPER MIDWEST RESOURCES, LLC, MISSOURI Free format text: EXCLUSIVE OPTION TO LICENSE AND EXCLUSIVE LICENSING AGREEMENT;ASSIGNOR:GENESYST INTERNATIONAL, INC.;REEL/FRAME:014624/0621 Effective date: 20031003 Owner name: WEST RESOURCES, LLC, MISSOURI Free format text: EXCLUSIVE OPTION TO LICENSE AND EXCLUSIVE LICENSING AGREEMENT;ASSIGNOR:GENESYST INTERNATIONAL, INC.;REEL/FRAME:014624/0621 Effective date: 20031003 |