US4093783A - Novel formulations M2 UO2 F2 and their use in electrochemical cells - Google Patents
Novel formulations M2 UO2 F2 and their use in electrochemical cells Download PDFInfo
- Publication number
- US4093783A US4093783A US05/789,813 US78981377A US4093783A US 4093783 A US4093783 A US 4093783A US 78981377 A US78981377 A US 78981377A US 4093783 A US4093783 A US 4093783A
- Authority
- US
- United States
- Prior art keywords
- electrochemical cell
- electrolyte
- lithium
- group
- perchlorate solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 39
- 238000009472 formulation Methods 0.000 title 1
- 239000003792 electrolyte Substances 0.000 claims abstract description 45
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 15
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 15
- 229910001413 alkali metal ion Inorganic materials 0.000 claims abstract description 8
- 150000002500 ions Chemical class 0.000 claims abstract description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 24
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 24
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 18
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 18
- -1 dioxalane Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 12
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 11
- 239000011149 active material Substances 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 9
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 claims description 9
- MPDOUGUGIVBSGZ-UHFFFAOYSA-N n-(cyclobutylmethyl)-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC=CC(NCC2CCC2)=C1 MPDOUGUGIVBSGZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 6
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 5
- 229910001867 inorganic solvent Inorganic materials 0.000 claims description 4
- 239000003049 inorganic solvent Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- UMFJAHHVKNCGLG-UHFFFAOYSA-N n-Nitrosodimethylamine Chemical compound CN(C)N=O UMFJAHHVKNCGLG-UHFFFAOYSA-N 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052785 arsenic Inorganic materials 0.000 claims description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 3
- BDUPRNVPXOHWIL-UHFFFAOYSA-N dimethyl sulfite Chemical compound COS(=O)OC BDUPRNVPXOHWIL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 239000005486 organic electrolyte Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- YNECJZSONMVFHE-UHFFFAOYSA-N phosphoric dichloride fluoride Chemical compound FP(Cl)(Cl)=O YNECJZSONMVFHE-UHFFFAOYSA-N 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 2
- 239000007788 liquid Substances 0.000 claims 2
- 239000011255 nonaqueous electrolyte Substances 0.000 claims 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims 1
- 229910001416 lithium ion Inorganic materials 0.000 claims 1
- 239000006182 cathode active material Substances 0.000 abstract description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000006183 anode active material Substances 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- HEPLMSKRHVKCAQ-UHFFFAOYSA-N lead nickel Chemical compound [Ni].[Pb] HEPLMSKRHVKCAQ-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G43/00—Compounds of uranium
- C01G43/006—Compounds containing uranium, with or without oxygen or hydrogen, and containing two or more other elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G43/00—Compounds of uranium
- C01G43/04—Halides of uranium
- C01G43/06—Fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0563—Liquid materials, e.g. for Li-SOCl2 cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention is directed to compositions of matter having the formula M 2 UO 2 F 2 where each M is any alkali metal ion or mixtures thereof.
- the present invention is also directed to electrochemical cells having anodes containing anode-active alkali metal, electrolytes capable of conducting ions of said alkali metal, and cathodes containing cathode-active material having the formula M 2 UO 2 F 2 where each M is any alkali metal ion or mixtures thereof.
- the cathode-active material has the formula UO 2 F 2 .
- electrochemical cells commonly referred to as batteries contain at least two electrodes of differing types.
- One of these, commonly referred to as the anode contains an electropositive material, i.e., a material which can donate electrons which results in the anode material assuming a positive charge.
- the other electrode, commonly referred to as the cathode contains an electronegative material capable of accepting the electrons released from the anode and, in doing so, the material of the cathode assumes a negative charge.
- Electrodes are both immersed in an electrolyte which is capable of moving charged ions in order that both electrodes remain uncharged while the electronic conductivity of the electrolyte medium is so low as to allow the electrons to migrate from the anode to the cathode through an external circuit.
- the flow of electrons through such a circuit can be utilized to perform useful work.
- the present invention is related to traditional primary and secondary cells in which the electrical energy is derived from active materials stored in solid electrodes.
- FIG. 1 is a diagrammatic illustration of the electrochemical cell according to the present invention.
- FIG. 2 is a graph displaying the cell potential both at closed circuit and at open circuit, when UO 2 F 2 was employed as a cathode-active material according to the present invention.
- FIG. 3 is a graph displaying the cell potential, both in the charging mode and at open circuit, when an electrochemical cell was constructed with the cathode-active material being Li 2 UO 2 F 2 .
- FIG. 4 is a graph displaying the cell potential, both at closed circuit and at open circuit, during discharge of an electrochemical cell according to the present invention in which the cathode-active material was Li 2 UO 2 F 2 which was initially activated by a charging step (show in FIG. 3).
- FIG. 5 is a graph showing the cell potential of the electrochemical cell of FIGS. 3 and 4 in a closed circuit configuration during a second charging cycle and a second discharging cycle.
- the present invention includes a composition of matter having the formula M 2 UO 2 F 2 where each M is any alkali metal ion or mixtures thereof.
- the invention also includes an electrochemical cell.
- the cell includes a container, an anode which includes as active material an alkali metal or alloys containing one or more alkali metals, an electrolyte capable of carrying ions of the alkali metal, and a cathode which includes an active material having the formula M 2 UO 2 F 2 where each M is any alkali metal ion or mixtures thereof.
- the anode and electrolyte are unchanged, but the cathode includes an active material having the formula UO 2 F 2 .
- the present invention includes the composition of matter, M 2 UO 2 F 2 where each M is any alkali matal ion or mixtures thereof.
- a preferred alkali metal is lithium.
- the composition of matter is useful in electrochemical devices, e.g., batteries, as will be discussed below.
- each M may be different from each other e.g. LiNaUO 2 F 2 and KCsUO 2 F 2 .
- each M may represent a combination of different alkali metals such that the total net positive charge attributable to the alkali metals in the compound is 2 e.g. LiNa 0 .5 K 0 .5 UO 2 F 2 and Li 0 .7 Na 0 .3 Cs 0 .4 Rb 0 .6 UO 2 F 2 .
- the present invention also includes an electrochemical cell having a container, an anode, an electrolyte, and a cathode.
- the cathode includes M 2 UO 2 F 2 as its cathode-active material.
- the structure of the cathode is not necessarily formed entirely of the cathode-active material.
- the cathode-active material may be mixed with graphite and a binder such as a powdered Teflon and may also include an appropriate metal grid consisting of nickel, copper, etc.
- the cathode consists of the cathode-active material with graphite and powdered Teflon affixed to a nickel screen.
- the amount of graphite and binder that is mixed with the cathode-active material is not a critical parameter, but preferably the mixture consists of 65 wt. % cathode-active material, 25 wt. % graphite and 10 wt. % binder.
- the anode of the electrochemical cell of the present invention includes as active material an electropositive metal selected from the group Li, Na, K. Rb, Cs and alloys containing one or more of these metals.
- the alkali metal is Li.
- the anode may be in the form of an ingot or pressed into a convenient shape and also may be affixed to an appropriate noninteracting grid, made of, for example, nickel, nickel alloys, stainless steel, silver, or platinum.
- the electrolyte system must be capable of transferring ions of the anode material to the cathode.
- Suitable electrolytes include organic or inorganic non-aqueous systems.
- the organic electrolyte comprises an organic solvent selected from the group consisting of tetrahydrofuran, N-nitrosodimethylamine, dimethylsulfite, propylene carbonate, gamma-butyrolactone, acetonitrile, dioxolane, and mixtures thereof, and has dissolved therein soluble salts of the anode metals, for exmple, the perchlorates, hexafluorophosphates, tetrafluoroborates, tetrachloroaluminates, and hexafluoroarsenates of lithium.
- organic solvent selected from the group consisting of tetrahydrofuran, N-nitrosodimethylamine, dimethylsulfite, propylene carbonate, gamma-butyrolactone, acetonitrile, dioxolane, and mixtures thereof, and has dissolved therein soluble salts of the anode metals, for exmple, the perchlorates, he
- the inorganic electrolyte has an inorganic solvent material selected from the group consisting of phosphorus oxychloride, monofluorophosphoryl dichloride, thionyl chloride, sulfuryl chloride, and mixtures thereof.
- Preferred electrolytes include 0.5 to 2.0 M lithium perchlorate solutions in 0.5:4.0 to 4.0:0.5 (by volume) mixtures of tetrahydrofuran and propylene carbonate. More preferred electrolytes are 1.0 to 2.0 M lithium perchlorate solutions in 1.0:2.0 to 2.0:1.0 (by volume) mixtures of tetrahydrofuran and propylene carbonate. The most preferred electrolyte is a 2.0 M lithium perchlorate solution in a 2:1 (by volume) mixture of tetrahydrofuran and propylene carbonate.
- the preferred electrolytes also include 0.5 to 2.5 M lithium perchlorate solutions in dioxolane. More preferred electrolytes are 1.0 to 2.5 M lithium perchlorate solutions in dioxolane. A most preferred electrolyte is a 2.5 M lithium perchlorate solutions in dioxolane.
- Another preferred electrolyte system includes 0.5 to 2.0 M solutions of lithium tetrachloroaluminate in thionyl chloride. More preferred electrolytes are 1.0 to 2.5 M solutions of lithium tetrachloroaluminate in thionyl chloride. A most preferred electrolyte is a 1.5 M solution of lithium tetrachloroaluminate in thionyl chloride.
- the cell described above must be charged after construction and before use.
- the cathode in another embodiment, includes as active material UO 2 F 2 .
- the structure of the cathode is similar to that in the first embodiment except for the substitution of UO 2 F 2 for the fully metallated M 2 UO 2 F 2 .
- the anode and electrolyte remain unchanged from the first embodiment.
- a preferred anode-active metal is lithium.
- the cell is operable after construction, i.e., it need not be charged before operation.
- the test cell was assembled as shown in FIG. 1.
- the cell includes a cathode-active material 11, and an anode-active material 13, each sandwiched between two layers of glass fiber filter paper 12. Both electrodes 11 and 13 and filter paper 12 were rigidly positioned on polytetrafluoroethylene supports (not shown).
- the cathode-active material 11 and anode-active material 13 are pressed onto Ni screens 18 with Ni wires 19 spot welded to the screens 18.
- the electrodes 11 and 13 and filter paper 12 are immersed in electrolyte 14 which is housed in a teflon container 15 with end cover 16 and O-ring 17 seal between the container 15 and cover 16.
- FIG. 2 shows the closed and open circuit potentials of the discharge of the above-described cell.
- Example 2 Following the general procedures of Example 2, a test cell containing 6.2 mg Li 2 UO 2 F 2 , 14 mg graphite and 3 mg polytetrafluoroethylene powder as the cathode mixture was assembled. The test cell was charged and discharged galvanostaticly.
- FIG. 3 shows the closed and opened circuit potentials of the first charging.
- FIG. 4 shows the first discharging cycle and
- FIG. 5 shows the second charging and discharging cycle.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
The present invention is directed to compositions of matter having the formula M2 UO2 F2 where each M is any alkali metal ion or mixtures thereof. The present invention is also directed to electrochemical cells having anodes containing anode-active alkali metal, electrolytes capable of conducting ions of said alkali metal, and cathodes containing cathode-active material having the formula M2 UO2 F2 where each M is any alkali metal ion or mixtures thereof. In another embodiment the cathode-active material has the formula UO2 F2.
Description
The present invention is directed to compositions of matter having the formula M2 UO2 F2 where each M is any alkali metal ion or mixtures thereof. The present invention is also directed to electrochemical cells having anodes containing anode-active alkali metal, electrolytes capable of conducting ions of said alkali metal, and cathodes containing cathode-active material having the formula M2 UO2 F2 where each M is any alkali metal ion or mixtures thereof. In another embodiment the cathode-active material has the formula UO2 F2.
Generally, electrochemical cells commonly referred to as batteries contain at least two electrodes of differing types. One of these, commonly referred to as the anode, contains an electropositive material, i.e., a material which can donate electrons which results in the anode material assuming a positive charge. The other electrode, commonly referred to as the cathode, contains an electronegative material capable of accepting the electrons released from the anode and, in doing so, the material of the cathode assumes a negative charge. These two types of electrodes are both immersed in an electrolyte which is capable of moving charged ions in order that both electrodes remain uncharged while the electronic conductivity of the electrolyte medium is so low as to allow the electrons to migrate from the anode to the cathode through an external circuit. The flow of electrons through such a circuit can be utilized to perform useful work.
The present invention is related to traditional primary and secondary cells in which the electrical energy is derived from active materials stored in solid electrodes.
FIG. 1 is a diagrammatic illustration of the electrochemical cell according to the present invention.
FIG. 2 is a graph displaying the cell potential both at closed circuit and at open circuit, when UO2 F2 was employed as a cathode-active material according to the present invention.
FIG. 3 is a graph displaying the cell potential, both in the charging mode and at open circuit, when an electrochemical cell was constructed with the cathode-active material being Li2 UO2 F2.
FIG. 4 is a graph displaying the cell potential, both at closed circuit and at open circuit, during discharge of an electrochemical cell according to the present invention in which the cathode-active material was Li2 UO2 F2 which was initially activated by a charging step (show in FIG. 3).
FIG. 5 is a graph showing the cell potential of the electrochemical cell of FIGS. 3 and 4 in a closed circuit configuration during a second charging cycle and a second discharging cycle.
The present invention includes a composition of matter having the formula M2 UO2 F2 where each M is any alkali metal ion or mixtures thereof.
The invention also includes an electrochemical cell. In one embodiment, the cell includes a container, an anode which includes as active material an alkali metal or alloys containing one or more alkali metals, an electrolyte capable of carrying ions of the alkali metal, and a cathode which includes an active material having the formula M2 UO2 F2 where each M is any alkali metal ion or mixtures thereof.
In another embodiment, the anode and electrolyte are unchanged, but the cathode includes an active material having the formula UO2 F2.
The present invention includes the composition of matter, M2 UO2 F2 where each M is any alkali matal ion or mixtures thereof. A preferred alkali metal is lithium. The composition of matter is useful in electrochemical devices, e.g., batteries, as will be discussed below.
The expression "mixtures thereof" is used so as to include components of M2 UO2 F2 where each M may be different from each other e.g. LiNaUO2 F2 and KCsUO2 F2. In addition, each M may represent a combination of different alkali metals such that the total net positive charge attributable to the alkali metals in the compound is 2 e.g. LiNa0.5 K0.5 UO2 F2 and Li0.7 Na0.3 Cs0.4 Rb0.6 UO2 F2.
The present invention also includes an electrochemical cell having a container, an anode, an electrolyte, and a cathode.
In one embodiment, the cathode includes M2 UO2 F2 as its cathode-active material. The structure of the cathode is not necessarily formed entirely of the cathode-active material. The cathode-active material may be mixed with graphite and a binder such as a powdered Teflon and may also include an appropriate metal grid consisting of nickel, copper, etc. Preferably, the cathode consists of the cathode-active material with graphite and powdered Teflon affixed to a nickel screen. The amount of graphite and binder that is mixed with the cathode-active material is not a critical parameter, but preferably the mixture consists of 65 wt. % cathode-active material, 25 wt. % graphite and 10 wt. % binder.
The anode of the electrochemical cell of the present invention includes as active material an electropositive metal selected from the group Li, Na, K. Rb, Cs and alloys containing one or more of these metals. Preferably, the alkali metal is Li. The anode may be in the form of an ingot or pressed into a convenient shape and also may be affixed to an appropriate noninteracting grid, made of, for example, nickel, nickel alloys, stainless steel, silver, or platinum.
The electrolyte system must be capable of transferring ions of the anode material to the cathode. Suitable electrolytes include organic or inorganic non-aqueous systems.
The organic electrolyte comprises an organic solvent selected from the group consisting of tetrahydrofuran, N-nitrosodimethylamine, dimethylsulfite, propylene carbonate, gamma-butyrolactone, acetonitrile, dioxolane, and mixtures thereof, and has dissolved therein soluble salts of the anode metals, for exmple, the perchlorates, hexafluorophosphates, tetrafluoroborates, tetrachloroaluminates, and hexafluoroarsenates of lithium.
The inorganic electrolyte has an inorganic solvent material selected from the group consisting of phosphorus oxychloride, monofluorophosphoryl dichloride, thionyl chloride, sulfuryl chloride, and mixtures thereof. A solute is dissolved in the inorganic solvent which provides the cation of the anode metal and at least one anion of the general formula JX4 -, QX6 -, and LX6 =, where J is an element selected from the group consisting of boron and aluminum, Q is an element selected from the group consisting of phosphorus, arsenic, and antimony, L is an element selected from the group consisting of tin, zirconium, and titanium; and X is any halogen.
Preferred electrolytes include 0.5 to 2.0 M lithium perchlorate solutions in 0.5:4.0 to 4.0:0.5 (by volume) mixtures of tetrahydrofuran and propylene carbonate. More preferred electrolytes are 1.0 to 2.0 M lithium perchlorate solutions in 1.0:2.0 to 2.0:1.0 (by volume) mixtures of tetrahydrofuran and propylene carbonate. The most preferred electrolyte is a 2.0 M lithium perchlorate solution in a 2:1 (by volume) mixture of tetrahydrofuran and propylene carbonate.
The preferred electrolytes also include 0.5 to 2.5 M lithium perchlorate solutions in dioxolane. More preferred electrolytes are 1.0 to 2.5 M lithium perchlorate solutions in dioxolane. A most preferred electrolyte is a 2.5 M lithium perchlorate solutions in dioxolane.
Another preferred electrolyte system includes 0.5 to 2.0 M solutions of lithium tetrachloroaluminate in thionyl chloride. More preferred electrolytes are 1.0 to 2.5 M solutions of lithium tetrachloroaluminate in thionyl chloride. A most preferred electrolyte is a 1.5 M solution of lithium tetrachloroaluminate in thionyl chloride.
The cell described above must be charged after construction and before use.
In another embodiment of the cell, the cathode includes as active material UO2 F2. The structure of the cathode is similar to that in the first embodiment except for the substitution of UO2 F2 for the fully metallated M2 UO2 F2. For this embodiment of the cell, the anode and electrolyte remain unchanged from the first embodiment. A preferred anode-active metal is lithium.
In this embodiment of the cell, the cell is operable after construction, i.e., it need not be charged before operation.
The following examples illustrated are given to enable one skilled in the art to more clearly understand and practice the invention. The examples are given for illustrative purposes only and are not to be considered as limitations upon the scope of the invention.
Approximately 75 cc of dried hexane is added to 10g of UO2 F2 (anhydrous). This mixture is vigorously stirred and 80 cc of a hexane solution of n-butyl lithium (22 wt. %) is added. Heat is applied to the reaction mixture and the entire mixture is allowed to reflux for 24 hours. At this time the entire mixture is cooled to room temperature and the desired product, Li2 UO2 F2, which is insoluble in the reaction media is separated from the excess n-butyl lithium and hexane by standard filtration techniques. The product is then washed with 50 cc of anhydrous hexane and allowed to dry by evaporation under an inert atmosphere (water and oxygen free N2).
All of the above manipulations are carried out in an inert atmosphere glove box filled with N2 and equipped with standard water vapor and oxygen removal equipment.
Analytical data for the material so produced are presented in Table I.
TABLE I ______________________________________ Elemental Analysis for Li.sub.2 UO.sub.2 F.sub.2 Calculated Element (wt. %) Obs. ______________________________________ Li 4.31 4.36 U 73.94 73.89 O 9.94 9.93 F 11.80 11.80 C 0.00 ≦0.26 H 0.00 ≦0.30 Li/U 2.00 2.02 ______________________________________
In this Example, 5.0 mg of UO2 F2 were mixed with 25.0 mg of graphite and 3.3 mg of polytetrafluoroethylene powder. Several drops of xylene were added to this mixture to form a thick paste. The paste was evenly spread in a 1 cm2 cavity of a stainless steel pressing die positioned on a 1.2 cm × 1.2 cm square nickel screen which had a sheet of polytetrafluoroethylene underneath. The nickel screen has a previously spot welded nickel wire lead attached. A 1 cm2 polytetrafluoroethylene disc was then placed on the cavity and the assembly was pressed to 6000 lb. pressure at room temperature for a period of several minutes. The lithium anodes were prepared by pressing commercial lithium ribbon (1/2 in. wide and 1/16 in. thick) onto a 1.2 cm × 1.2 cm square nickel screen to which a nickel lead had previously been spot welded. The test cell was assembled as shown in FIG. 1. The cell includes a cathode-active material 11, and an anode-active material 13, each sandwiched between two layers of glass fiber filter paper 12. Both electrodes 11 and 13 and filter paper 12 were rigidly positioned on polytetrafluoroethylene supports (not shown). The cathode-active material 11 and anode-active material 13 are pressed onto Ni screens 18 with Ni wires 19 spot welded to the screens 18. The electrodes 11 and 13 and filter paper 12 are immersed in electrolyte 14 which is housed in a teflon container 15 with end cover 16 and O-ring 17 seal between the container 15 and cover 16. FIG. 2 shows the closed and open circuit potentials of the discharge of the above-described cell.
Following the general procedures of Example 2, a test cell containing 6.2 mg Li2 UO2 F2, 14 mg graphite and 3 mg polytetrafluoroethylene powder as the cathode mixture was assembled. The test cell was charged and discharged galvanostaticly. FIG. 3 shows the closed and opened circuit potentials of the first charging. FIG. 4 shows the first discharging cycle and FIG. 5 shows the second charging and discharging cycle.
Claims (34)
1. A composition of matter having the formula M1 UO2 F2 where each M is any alkali metal ion or mixtures thereof.
2. The composition of matter of claim 1 in which M is a lithium ion.
3. An electrochemical cell comprising:
(a) a container;
(b) a cathode including active material having the formula M2 UO2 F2 where each M is any alkali metal ion or mixtures thereof;
(c) an anode including as active material the same metal (s) M as in said cathode; and
(d) a liquid non-aqueous electrolyte in said container capable of carrying ions of said metal(s).
4. The electrochemical cell of claim 3 in which said alkali metal is lithium.
5. The electrochemical cell of claim 3 in which said electrolyte is an organic nonaqueous system.
6. The electrochemical cell of claim 5 in which said organic electrolyte comprises an organic solvent selected from the group consisting of tetrahydrofuran, N-nitrosodimethylamine, dimethylsulfite, propylene carbonate, gamma-butyrolactone, acetonitrile, dioxalane, and mixtures thereof, and has dissolved therein soluble salts of the anode metals.
7. The electrochemical cell of claim 6 in which said soluble salt is selected from the group consisting of perchlorates, hexafluoroarsenates, tetrafluoroborates, tetrachloroaluminates and hexafluorcarsenates of lithium.
8. The electrochemical cell of claim 7 in which said electrolyte is between 0.5 to 2.0 M lithium perchlorate solution in a 0.5:4.0 to 4.0:0.5 (by volume) mixture of tetrahydrofuran and propylene carbonate.
9. The electrochemical cell of claim 8 in which said electrolyte is between 1.0 to 2.0 M lithium perchlorate solution in a 1:2 to 2:1 (by volume) mixture of tetrahydrofuran and propylene carbonate.
10. The electrochemical cell of claim 9 in which said electrolyte is 2 M lithium perchlorate solution in a 2:1 (by volume) mixture of tetrahydrofuran and propylene carbonate.
11. The electrochemical cell of claim 7 in which said electrolyte is between 0.5 to 2.5 M lithium perchlorate solution in dioxolane.
12. The electrochemical cell of claim 11 in which said electrolyte is between 1.0 to 2.5 M lithium perchlorate solution in dioxolane.
13. The electrochemical cell of claim 12 in which said electrolyte is 2.5 M lithium perchlorate solution in dioxolane.
14. The electrochemical cell of claim 7 in which said electrolyte is between 0.5 to 2.0 M lithium tetrachloroaluminate in thionyl chloride.
15. The electrochemical cell of claim 14 in which said electrolyte is between 1.0 to 2.5 M lithium tetrachloroaluminate in thionyl chloride.
16. The electrochemical cell of claim 15 in which said electrolyte is 1.5 M lithium tetrachloroaluminate in thionyl chloride.
17. The electrochemical cell of claim 3 in which said electrolyte is an inorganic nonaqueous system.
18. The electrochemical cell of claim 17 in which said inorganic electrolyte comprises an inorganic solvent material selected from the group consisting of phosphorus oxychloride, monofuorophosphoryl dichloride, thionyl chloride, sulfuryl chloride, and mixtures thereof and has dissolved therein a solute for providing the cation of the anode metal and at least one anion of the general formula JX4 -, OX6 -, and LX6 =, where J is an element selected from the group consisting of boron and aluminum, Q is an element selected from the group consisting of phosphorus, arsenic, and antimony, L is an element selected from the group consisting of tin, zirconium and titanium; and X is a halogen.
19. An electrochemical cell comprising:
(a) a container;
(b) a cathode including active material having the formula UO2 F2 ;
(c) an anode containing as active material an alkali metal or an alloy containing one or more alkali metals; and
(d) a liquid non-aqueous electrolyte in said container capable of carrying ions of said metal.
20. The electrochemical cell of claim 19 in which said anode includes the alkali metal lithium.
21. The electrochemical cell of claim 19 in which said electrolyte is an organic nonaqueous system.
22. The electrochemical cell of claim 21 in which said organic electrolyte comprises an organic solvent selected from the group consisting of tetrahydrofuran, N-nitrosodiumethylamine, dimethylsulfite, propylene carbonate, gammabutyrolactone, acetonitrile, dioxolane, and mixtures thereof, and has dissolved therein soluble salts of the anode metals.
23. The electrochemical cell of claim 22 in which said soluble salt is selected from the group consisting of perchlorates, hexafluorophosphates, tetrafluoroborates, tetrachloroaluminates and hexafluoroarsenates of lithium.
24. The electrochemical cell of claim 23 in which said electrolyte is between 0.5 to 2.0 M lithium perchlorate solution in a 0.5:4.0 to 4.0:0.5 (by volume) mixture of tetrahydrofuran and propylene carbonate.
25. The electrochemical cell of claim 24 in which said electrolyte is between 1.0 to 2.0 M lithium perchlorate solution in a 1:2 to 2:1 (by volume) mixture of tetrahydrofuran and propylene carbonate.
26. The electrochemical cell of claim 25 in which said electrolyte is 2 M lithium perchlorate solution in a 2:1 (by volume) mixture of tetrahydrofuran and propylene carbonate.
27. The electrochemical cell of claim 23 in which said electrolyte is between 0.5 to 2.5 M lithium perchlorate solution in dioxolane.
28. The electrochemical cell of claim 27 in which said electrolyte is between 1.0 to 2.5 M lithium perchlorate solution in dioxolane.
29. The electrochemical cell of claim 28 in which said electrolyte is 2.5 M lithium perchlorate solution in dioxolane.
30. The electrochemical cell of claim 23 in which said electrolyte is between 0.5 to 2.0 M lithium tetrachloroaluminate in thionyl chloride.
31. The electrochemical cell of claim 30 in which said electrolyte is between 1.0 to 2.5 M lithium tetrachloroaluminate in thionyl chloride.
32. The electrochemical cell or claim 31 in which said electrolyte is 1.5 M lithium tetrachloroaluminate in thionyl chloride.
33. The electrochemical cell of claim 19 in which said electrolyte is an inorganic nonaqueous system.
34. The electrochemical cell of claim 33 in which said inorganic electrolyte comprises an inorganic solvent material selected from the group consisting of phosphorus oxychloride, monofluorophosphoryl dichloride, thionyl chloride, sulfuryl chloride, and mixtures thereof and has dissolved therein a solute for providing the cation of the anode metal and at least one anion of the general formula JX4 -, QX6 -, and LX6 =, where J is an element selected from the group consisting of boron and aluminum, Q is an element selected from the group consisting of phosphorus, arsenic, and antimony, L is an element selected from the group consisting of tin, zirconium and titanium; and X is a halogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/789,813 US4093783A (en) | 1977-04-22 | 1977-04-22 | Novel formulations M2 UO2 F2 and their use in electrochemical cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/789,813 US4093783A (en) | 1977-04-22 | 1977-04-22 | Novel formulations M2 UO2 F2 and their use in electrochemical cells |
Publications (1)
Publication Number | Publication Date |
---|---|
US4093783A true US4093783A (en) | 1978-06-06 |
Family
ID=25148749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/789,813 Expired - Lifetime US4093783A (en) | 1977-04-22 | 1977-04-22 | Novel formulations M2 UO2 F2 and their use in electrochemical cells |
Country Status (1)
Country | Link |
---|---|
US (1) | US4093783A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5506068A (en) * | 1993-03-01 | 1996-04-09 | Tadiran, Ltd. | Non-aqueous safe secondary cell |
US20090130556A1 (en) * | 2007-11-16 | 2009-05-21 | Sony Corporation | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3189485A (en) * | 1962-01-25 | 1965-06-15 | Richard E Panzer | Electrochemical power producing battery cell |
US3709834A (en) * | 1968-08-26 | 1973-01-09 | Matsushita Electric Ind Co Ltd | Method of making a uranium containing catalyst for a metal electrode |
US3990911A (en) * | 1971-02-24 | 1976-11-09 | Manfred Mannheimer | Solid electrolyte galvanic cell |
-
1977
- 1977-04-22 US US05/789,813 patent/US4093783A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3189485A (en) * | 1962-01-25 | 1965-06-15 | Richard E Panzer | Electrochemical power producing battery cell |
US3709834A (en) * | 1968-08-26 | 1973-01-09 | Matsushita Electric Ind Co Ltd | Method of making a uranium containing catalyst for a metal electrode |
US3990911A (en) * | 1971-02-24 | 1976-11-09 | Manfred Mannheimer | Solid electrolyte galvanic cell |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5506068A (en) * | 1993-03-01 | 1996-04-09 | Tadiran, Ltd. | Non-aqueous safe secondary cell |
US20090130556A1 (en) * | 2007-11-16 | 2009-05-21 | Sony Corporation | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4049879A (en) | Intercalated transition metal phosphorus trisulfides | |
Dey | Electrochemical alloying of lithium in organic electrolytes | |
US4052539A (en) | Electrochemical cell with a grahite intercalation compound cathode | |
US4189529A (en) | High temperature secondary cells | |
US3508967A (en) | Negative lithium electrode and electrochemical battery containing the same | |
US4158722A (en) | High energy electrochemical current source | |
SU489367A3 (en) | Primary element | |
CA1084586A (en) | Negative electrode of lithium, silicon and boron for electrochemical cells | |
JPS618850A (en) | Dense anode of lithium alloy for full solid battery | |
GB2058442A (en) | Electrochemical cell | |
DE2521216A1 (en) | WATER-FREE ELECTROCHEMICAL CELL | |
US4309491A (en) | Electric cell with a non-aqueous electrolyte | |
AU593980B2 (en) | Electrolyte for lithium-sulfur dioxide electrochemical cell | |
US4060676A (en) | Metal periodate organic electrolyte cells | |
US3998658A (en) | High voltage organic electrolyte batteries | |
US4346152A (en) | Lithium-germanium electrodes for batteries | |
US3726716A (en) | Organic electrolytes for batteries | |
US4145806A (en) | Method of assembling an electrochemical cell | |
US4093783A (en) | Novel formulations M2 UO2 F2 and their use in electrochemical cells | |
CA1061859A (en) | Electrochemical cell with cathode containing silver carbonate | |
US4362793A (en) | Galvanic cell with solid electrolyte | |
US4223079A (en) | Non-aqueous primary battery having a stannous sulfide cathode | |
US4546057A (en) | Positive active material for electrochemical cells and electrochemical cells using said material | |
ES450696A1 (en) | Non-aqueous, primary battery having a blended cathode active material | |
CA1089534A (en) | Non-aqueous cell having a cathode of lead monoxide- coated lead dioxide particles |